@@ -14,6 +14,7 @@ | |||
#include <functional> | |||
#include <string> | |||
#include <tuple> | |||
#include "megdnn/oprs/base.h" | |||
#include "src/common/utils.h" | |||
@@ -83,6 +84,29 @@ public: | |||
} | |||
}; | |||
template <std::size_t I = 0, typename Opr, typename... Tp> | |||
inline typename std::enable_if<I == sizeof...(Tp), void>::type | |||
set_sub_execution_policy(const Opr*, std::tuple<Tp...>&) {} | |||
template <std::size_t I = 0, typename Opr, typename... Tp> | |||
inline typename std::enable_if < | |||
I<sizeof...(Tp), void>::type set_sub_execution_policy( | |||
const Opr* opr, std::tuple<Tp...>& t) { | |||
std::get<I>(t)->execution_policy() = opr->execution_policy().sub_policy[I]; | |||
set_sub_execution_policy<I + 1, Tp...>(opr, t); | |||
} | |||
template <typename Opr, typename... SubOpr> | |||
void set_execution_policy(const Opr* opr, SubOpr... sub_oprs) { | |||
if (opr->execution_policy().algo.valid() && | |||
!opr->execution_policy().sub_policy.empty()) { | |||
megdnn_assert(opr->execution_policy().sub_policy.size() == | |||
sizeof...(sub_oprs)); | |||
auto&& sub = std::make_tuple(sub_oprs...); | |||
set_sub_execution_policy<sizeof...(sub_oprs), Opr, SubOpr...>(opr, sub); | |||
} | |||
} | |||
} // namespace megdnn | |||
namespace std { | |||
@@ -8,9 +8,12 @@ | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include <algorithm> | |||
#include <memory> | |||
#include "./algo.h" | |||
#include "megdnn/opr_param_defs.h" | |||
#include "src/common/algo_chooser.h" | |||
#include "src/common/algo_base.h" | |||
#include "src/cuda/handle.h" | |||
#include "src/cuda/utils.h" | |||
@@ -27,6 +30,20 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config( | |||
return {{mm_layout_a, mm_layout_b, mm_layout_c}, opr->param()}; | |||
} | |||
std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr( | |||
const BatchedMatrixMulForwardImpl::AlgoBase::SizeArgs& args) { | |||
auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>(); | |||
set_execution_policy<BatchedMatrixMulForward, MatrixMulForward*>( | |||
args.opr, matmul_opr.get()); | |||
auto&& config = sub_opr_config(args.layout_a, args.layout_b, args.layout_c, | |||
args.opr); | |||
matmul_opr->param() = config.second; | |||
return {config.first, std::move(matmul_opr)}; | |||
} | |||
} // namespace | |||
std::vector<Algorithm::SearchItem> | |||
@@ -43,51 +60,23 @@ BatchedMatrixMulForwardImpl::AlgoBruteForce::get_subopr_list( | |||
bool BatchedMatrixMulForwardImpl::AlgoBruteForce::is_available( | |||
const SizeArgs& args) const { | |||
auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid() && | |||
!args.opr->execution_policy().sub_policy.empty()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
matmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto config = prepare_sub_opr(args); | |||
auto&& config = sub_opr_config(args.layout_a, args.layout_b, args.layout_c, | |||
args.opr); | |||
matmul_opr->param() = config.second; | |||
return get_algorithm(static_cast<MatrixMulForwardImpl*>(matmul_opr.get()), | |||
config.first[0], config.first[1], config.first[2]); | |||
return get_algorithm( | |||
static_cast<MatrixMulForwardImpl*>(config.second.get()), | |||
config.first[0], config.first[1], config.first[2]); | |||
} | |||
size_t BatchedMatrixMulForwardImpl::AlgoBruteForce::get_workspace_in_bytes( | |||
const SizeArgs& args) const { | |||
auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid() && | |||
!args.opr->execution_policy().sub_policy.empty()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
matmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = sub_opr_config(args.layout_a, args.layout_b, args.layout_c, | |||
args.opr); | |||
matmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
return matmul_opr->get_workspace_in_bytes(config.first[0], config.first[1], | |||
config.first[2]); | |||
return config.second->get_workspace_in_bytes( | |||
config.first[0], config.first[1], config.first[2]); | |||
} | |||
void BatchedMatrixMulForwardImpl::AlgoBruteForce::exec( | |||
const ExecArgs& args) const { | |||
auto N = args.layout_a.shape[0]; | |||
auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
matmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = sub_opr_config(args.layout_a, args.layout_b, args.layout_c, | |||
args.opr); | |||
matmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
rep(n, N) { | |||
TensorND A_, B_, C_; | |||
@@ -100,6 +89,6 @@ void BatchedMatrixMulForwardImpl::AlgoBruteForce::exec( | |||
tensor_n_from_batch(args.tensor_a, A_); | |||
tensor_n_from_batch(args.tensor_b, B_); | |||
tensor_n_from_batch(args.tensor_c, C_); | |||
matmul_opr->exec(A_, B_, C_, args.workspace); | |||
config.second->exec(A_, B_, C_, args.workspace); | |||
} | |||
} |
@@ -11,6 +11,7 @@ | |||
*/ | |||
#include "src/common/algo_chooser.h" | |||
#include "src/common/algo_base.h" | |||
#include "src/common/conv_bias.h" | |||
#include "src/cuda/batched_matrix_mul/algo.h" | |||
#include "src/cuda/conv_bias/algo.h" | |||
@@ -51,6 +52,19 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config( | |||
return {{A, B, C}, param}; | |||
} | |||
std::pair<TensorLayoutArray, std::unique_ptr<BatchedMatrixMulForward>> | |||
prepare_sub_opr(const ConvBiasForwardImpl::AlgoBase::SizeArgs& args) { | |||
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
set_execution_policy<ConvBiasForward, BatchedMatrixMulForward*>( | |||
args.opr, bmatmul_opr.get()); | |||
auto&& config = | |||
sub_opr_config(args.filter_meta, *args.src_layout, | |||
*args.filter_layout, *args.dst_layout, args.opr); | |||
bmatmul_opr->param() = config.second; | |||
return {config.first, std::move(bmatmul_opr)}; | |||
} | |||
} // namespace | |||
std::vector<Algorithm::SearchItem> | |||
@@ -74,18 +88,7 @@ bool ConvBiasForwardImpl::AlgoBatchedMatmul::is_available( | |||
if (args.z_layout->ndim > 0) | |||
return false; | |||
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid() && | |||
!args.opr->execution_policy().sub_policy.empty()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
bmatmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = | |||
sub_opr_config(args.filter_meta, *args.src_layout, | |||
*args.filter_layout, *args.dst_layout, args.opr); | |||
bmatmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
auto&& fm = args.filter_meta; | |||
return fm.format == Param::Format::NCHW && | |||
@@ -95,9 +98,9 @@ bool ConvBiasForwardImpl::AlgoBatchedMatmul::is_available( | |||
fm.dilation[1] == 1 && fm.spatial[0] == 1 && fm.spatial[1] == 1 && | |||
fm.padding[0] == 0 && fm.padding[1] == 0 && fm.stride[0] == 1 && | |||
fm.stride[1] == 1 && | |||
get_algorithm( | |||
static_cast<BatchedMatrixMulForwardImpl*>(bmatmul_opr.get()), | |||
config.first[0], config.first[1], config.first[2]); | |||
get_algorithm(static_cast<BatchedMatrixMulForwardImpl*>( | |||
config.second.get()), | |||
config.first[0], config.first[1], config.first[2]); | |||
} | |||
WorkspaceBundle ConvBiasForwardImpl::AlgoBatchedMatmul::get_workspace_bundle( | |||
@@ -115,21 +118,10 @@ WorkspaceBundle ConvBiasForwardImpl::AlgoBatchedMatmul::get_workspace_bundle( | |||
SizeArgs conv_args = args; | |||
conv_args.dst_layout = &dst_layout; | |||
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid() && | |||
!args.opr->execution_policy().sub_policy.empty()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
bmatmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = | |||
sub_opr_config(args.filter_meta, *args.src_layout, | |||
*args.filter_layout, *args.dst_layout, args.opr); | |||
bmatmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
sizes.insert(sizes.begin(), | |||
args.handle->batched_matrix_mul()->get_workspace_in_bytes( | |||
config.second->get_workspace_in_bytes( | |||
config.first[0], config.first[1], config.first[2])); | |||
return {ptr, std::move(sizes)}; | |||
} | |||
@@ -154,23 +146,12 @@ void ConvBiasForwardImpl::AlgoBatchedMatmul::exec(const ExecArgs& args) const { | |||
conv_args.dst_tensor = &conv_dst_tensor; | |||
conv_args.dst_layout = &conv_dst_tensor.layout; | |||
{ | |||
auto bmatmul_opr = | |||
args.handle->create_operator<BatchedMatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
bmatmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = | |||
sub_opr_config(args.filter_meta, *args.src_layout, | |||
*args.filter_layout, *args.dst_layout, args.opr); | |||
bmatmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
TensorND A{args.filter_tensor->raw_ptr, config.first[0]}, | |||
B{args.src_tensor->raw_ptr, config.first[1]}, | |||
C{args.dst_tensor->raw_ptr, config.first[2]}; | |||
bmatmul_opr->exec(A, B, C, bundle.get_workspace(0)); | |||
config.second->exec(A, B, C, bundle.get_workspace(0)); | |||
} | |||
handle_bias_and_nonlinear(args.handle, args.nonlinear_mode, | |||
&conv_dst_tensor, args.dst_tensor, | |||
@@ -14,6 +14,7 @@ | |||
#include "src/cuda/handle.h" | |||
#include "src/cuda/utils.cuh" | |||
#include "src/cuda/utils.h" | |||
#include "src/common/algo_base.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
@@ -40,6 +41,18 @@ std::pair<TensorLayoutArray, ConvBiasForwardImpl::Param> sub_opr_config( | |||
ret.second.compute_mode = ConvBiasForwardImpl::Param::ComputeMode::DEFAULT; | |||
return ret; | |||
} | |||
std::pair<TensorLayoutArray, std::unique_ptr<ConvBiasForward>> prepare_sub_opr( | |||
const ConvBiasForwardImpl::AlgoBase::SizeArgs& args) { | |||
auto convbias_opr = args.handle->create_operator<ConvBias>(); | |||
auto&& config = sub_opr_config( | |||
{*args.src_layout, *args.filter_layout, *args.bias_layout, | |||
*args.z_layout, *args.dst_layout}, | |||
args.opr); | |||
convbias_opr->param() = config.second; | |||
return {config.first, std::move(convbias_opr)}; | |||
} | |||
} // namespace | |||
std::vector<Algorithm::SearchItem> | |||
@@ -55,33 +68,18 @@ ConvBiasForwardImpl::AlgoBFloat16::get_subopr_list( | |||
bool ConvBiasForwardImpl::AlgoBFloat16::is_available( | |||
const SizeArgs& args) const { | |||
auto convbias_opr = args.handle->create_operator<ConvBias>(); | |||
auto&& config = sub_opr_config( | |||
{*args.src_layout, *args.filter_layout, *args.bias_layout, | |||
*args.z_layout, *args.dst_layout}, | |||
args.opr); | |||
convbias_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
return args.src_layout->dtype == args.filter_layout->dtype && | |||
args.src_layout->dtype == dtype::BFloat16() && | |||
get_algorithm(static_cast<ConvBiasForwardImpl*>(convbias_opr.get()), | |||
get_algorithm(static_cast<ConvBiasForwardImpl*>(config.second.get()), | |||
config.first[0], config.first[1], config.first[2], | |||
config.first[3], config.first[4]); | |||
} | |||
WorkspaceBundle ConvBiasForwardImpl::AlgoBFloat16::get_workspace_bundle( | |||
void* ptr, const SizeArgs& args) const { | |||
auto convbias_opr = args.handle->create_operator<ConvBias>(); | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
convbias_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = sub_opr_config( | |||
{*args.src_layout, *args.filter_layout, *args.bias_layout, | |||
*args.z_layout, *args.dst_layout}, | |||
args.opr); | |||
convbias_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
SmallVector<size_t> sizes; | |||
auto get_workspace = [&sizes](const TensorLayout& src, | |||
@@ -95,7 +93,7 @@ WorkspaceBundle ConvBiasForwardImpl::AlgoBFloat16::get_workspace_bundle( | |||
get_workspace(*args.bias_layout, config.first[2]); | |||
get_workspace(*args.z_layout, config.first[3]); | |||
get_workspace(*args.dst_layout, config.first[4]); | |||
sizes.push_back(convbias_opr->get_workspace_in_bytes( | |||
sizes.push_back(config.second->get_workspace_in_bytes( | |||
config.first[0], config.first[1], config.first[2], config.first[3], | |||
config.first[4], nullptr)); | |||
@@ -123,17 +121,10 @@ void ConvBiasForwardImpl::AlgoBFloat16::exec(const ExecArgs& args) const { | |||
.src_to_comp_type(*args.dst_tensor, fdst_tensor); | |||
} | |||
{ | |||
auto convbias_opr = args.handle->create_operator<ConvBias>(); | |||
convbias_opr->param() = args.opr->param(); | |||
convbias_opr->param().compute_mode = Param::ComputeMode::DEFAULT; | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
convbias_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto config = prepare_sub_opr(args); | |||
convbias_opr->exec(fsrc_tensor, ffilter_tensor, fbias_tensor, fz_tensor, | |||
fdst_tensor, nullptr, cvter.workspace()); | |||
config.second->exec(fsrc_tensor, ffilter_tensor, fbias_tensor, | |||
fz_tensor, fdst_tensor, nullptr, cvter.workspace()); | |||
} | |||
{ cvter.comp_to_dst_type(fdst_tensor, *args.dst_tensor); } | |||
} | |||
@@ -15,6 +15,7 @@ | |||
#include "src/cuda/conv_bias/helper.h" | |||
#include "src/cuda/conv_bias/matmul/im2col.cuh" | |||
#include "src/cuda/utils.h" | |||
#include "src/common/algo_base.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
@@ -40,6 +41,19 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config( | |||
return {{Al, Bl, Cl}, param}; | |||
} | |||
std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr( | |||
const ConvBiasForwardImpl::AlgoBase::SizeArgs& args) { | |||
auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
set_execution_policy<ConvBiasForward, MatrixMulForward*>(args.opr, | |||
matmul_opr.get()); | |||
auto&& config = | |||
sub_opr_config(args.filter_meta, *args.src_layout, | |||
*args.filter_layout, *args.dst_layout, args.opr); | |||
matmul_opr->param() = config.second; | |||
return {config.first, std::move(matmul_opr)}; | |||
} | |||
} // namespace | |||
std::vector<Algorithm::SearchItem> | |||
@@ -87,19 +101,8 @@ WorkspaceBundle ConvBiasForwardImpl::AlgoMatmul::get_workspace_bundle( | |||
conv_args.dst_layout = &dst_layout; | |||
SmallVector<size_t> matmul_sizes = matmul_get_workspace_bundle(conv_args); | |||
auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid() && | |||
!args.opr->execution_policy().sub_policy.empty()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
matmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = | |||
sub_opr_config(args.filter_meta, *args.src_layout, | |||
*args.filter_layout, *args.dst_layout, args.opr); | |||
matmul_opr->param() = config.second; | |||
size_t mm_ws = matmul_opr->get_workspace_in_bytes( | |||
auto config = prepare_sub_opr(args); | |||
size_t mm_ws = config.second->get_workspace_in_bytes( | |||
config.first[0], config.first[1], config.first[2]); | |||
matmul_sizes.push_back(mm_ws); | |||
@@ -162,17 +165,7 @@ void ConvBiasForwardImpl::AlgoMatmul::exec_internal( | |||
args.src_layout->stride[0], IC, IH, IW, FH, FW, OH, OW, | |||
PH, PW, SH, SW, DH, DW, stream); | |||
auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
matmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = | |||
sub_opr_config(args.filter_meta, *args.src_layout, | |||
*args.filter_layout, *args.dst_layout, args.opr); | |||
matmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
TensorND A(args.filter_tensor->ptr<T>(), config.first[0]), | |||
B(col, config.first[1]), C(dst_t, config.first[2]); | |||
@@ -182,7 +175,7 @@ void ConvBiasForwardImpl::AlgoMatmul::exec_internal( | |||
matmul_ws_idx = 3; | |||
} | |||
matmul_opr->exec(A, B, C, bundle.get_workspace(matmul_ws_idx)); | |||
config.second->exec(A, B, C, bundle.get_workspace(matmul_ws_idx)); | |||
TensorLayout C2l({OC * OH * OW, N}, typename DTypeTrait<T>::dtype()), | |||
C3l = C2l; | |||
@@ -10,6 +10,7 @@ | |||
*/ | |||
#include "./algo.h" | |||
#include "src/common/algo_base.h" | |||
#include "src/cuda/convolution/chanwise/kern.cuh" | |||
#include "src/cuda/utils.h" | |||
@@ -38,7 +39,19 @@ std::pair<TensorLayoutArray, ConvolutionBackwardDataImpl::Param> sub_opr_config( | |||
ConvolutionBackwardData::Param::ComputeMode::DEFAULT; | |||
return ret; | |||
} | |||
std::pair<TensorLayoutArray, std::unique_ptr<ConvolutionBackwardData>> | |||
prepare_sub_opr(const ConvolutionBackwardDataImpl::AlgoBase::SizeArgs& args) { | |||
auto conv_back_data_opr = | |||
args.handle->create_operator<ConvolutionBackwardData>(); | |||
auto&& config = sub_opr_config( | |||
{*args.filter_layout, *args.diff_layout, *args.grad_layout}, | |||
args.opr); | |||
conv_back_data_opr->param() = config.second; | |||
return {config.first, std::move(conv_back_data_opr)}; | |||
} | |||
} // namespace | |||
std::vector<Algorithm::SearchItem> | |||
ConvolutionBackwardDataImpl::AlgoBFloat16::get_subopr_list( | |||
@@ -54,33 +67,17 @@ ConvolutionBackwardDataImpl::AlgoBFloat16::get_subopr_list( | |||
bool ConvolutionBackwardDataImpl::AlgoBFloat16::is_available( | |||
const SizeArgs& args) const { | |||
TensorLayout ffilter, fdiff, fgrad; | |||
auto conv_back_data_opr = | |||
args.handle->create_operator<ConvolutionBackwardData>(); | |||
auto&& config = sub_opr_config( | |||
{*args.filter_layout, *args.diff_layout, *args.grad_layout}, | |||
args.opr); | |||
conv_back_data_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
return args.diff_layout->dtype == args.filter_layout->dtype && | |||
args.diff_layout->dtype == dtype::BFloat16() && | |||
get_algorithm(static_cast<ConvolutionBackwardDataImpl*>( | |||
conv_back_data_opr.get()), | |||
config.second.get()), | |||
config.first[0], config.first[1], config.first[2]); | |||
} | |||
WorkspaceBundle ConvolutionBackwardDataImpl::AlgoBFloat16::get_workspace_bundle( | |||
void* ptr, const SizeArgs& args) const { | |||
auto conv_back_data_opr = | |||
args.handle->create_operator<ConvolutionBackwardData>(); | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
conv_back_data_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = sub_opr_config( | |||
{*args.filter_layout, *args.diff_layout, *args.grad_layout}, | |||
args.opr); | |||
conv_back_data_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
SmallVector<size_t> sizes; | |||
auto get_workspace = [&sizes](const TensorLayout& src, | |||
const TensorLayout& dst) { | |||
@@ -92,7 +89,7 @@ WorkspaceBundle ConvolutionBackwardDataImpl::AlgoBFloat16::get_workspace_bundle( | |||
get_workspace(*args.diff_layout, config.first[1]); | |||
get_workspace(*args.grad_layout, config.first[2]); | |||
sizes.push_back(conv_back_data_opr->get_workspace_in_bytes( | |||
sizes.push_back(config.second->get_workspace_in_bytes( | |||
config.first[0], config.first[1], config.first[2])); | |||
return {ptr, std::move(sizes)}; | |||
} | |||
@@ -115,17 +112,9 @@ void ConvolutionBackwardDataImpl::AlgoBFloat16::exec( | |||
.src_to_comp_type(*args.grad_tensor, fgrad_tensor); | |||
} | |||
{ | |||
auto conv_back_data_opr = | |||
args.handle->create_operator<ConvolutionBackwardData>(); | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
conv_back_data_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
conv_back_data_opr->param() = args.opr->param(); | |||
conv_back_data_opr->param().compute_mode = Param::ComputeMode::DEFAULT; | |||
conv_back_data_opr->exec(ffilter_tensor, fdiff_tensor, fgrad_tensor, | |||
cvter.workspace()); | |||
auto config = prepare_sub_opr(args); | |||
config.second->exec(ffilter_tensor, fdiff_tensor, fgrad_tensor, | |||
cvter.workspace()); | |||
} | |||
{ cvter.comp_to_dst_type(fgrad_tensor, *args.grad_tensor); } | |||
} | |||
@@ -11,6 +11,7 @@ | |||
*/ | |||
#include "./algo.h" | |||
#include "src/common/algo_base.h" | |||
#include "src/cuda/convolution/helper.h" | |||
#include "src/cuda/convolution/im2col.cuh" | |||
#include "src/cuda/matrix_mul/opr_impl.h" | |||
@@ -43,6 +44,19 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config( | |||
param.transposeA = true; | |||
return {{Al, Cl, Bl}, param}; | |||
} | |||
std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr( | |||
const ConvolutionBackwardDataImpl::AlgoBase::SizeArgs& args) { | |||
auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
set_execution_policy<ConvolutionBackwardData, MatrixMulForward*>( | |||
args.opr, matmul_opr.get()); | |||
auto&& config = | |||
sub_opr_config(args.filter_meta, *args.filter_layout, | |||
*args.diff_layout, *args.grad_layout, args.opr); | |||
matmul_opr->param() = config.second; | |||
return {config.first, std::move(matmul_opr)}; | |||
} | |||
} // namespace | |||
std::vector<Algorithm::SearchItem> | |||
@@ -57,8 +71,7 @@ ConvolutionBackwardDataImpl::AlgoMatmul::get_subopr_list( | |||
std::string param_str; | |||
Algorithm::serialize_write_pod(config.second, param_str); | |||
return {{Algorithm::OprType::MATRIX_MUL_FORWARD, param_str, | |||
config.first}}; | |||
return {{Algorithm::OprType::MATRIX_MUL_FORWARD, param_str, config.first}}; | |||
} | |||
bool ConvolutionBackwardDataImpl::AlgoMatmul::is_available( | |||
@@ -75,22 +88,10 @@ bool ConvolutionBackwardDataImpl::AlgoMatmul::is_available( | |||
size_t ConvolutionBackwardDataImpl::AlgoMatmul::get_workspace_in_bytes( | |||
const SizeArgs& args) const { | |||
auto matmul_opr = | |||
args.handle->create_operator<MatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid() && | |||
!args.opr->execution_policy().sub_policy.empty()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
matmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = | |||
sub_opr_config(args.filter_meta, *args.filter_layout, | |||
*args.diff_layout, *args.grad_layout, args.opr); | |||
matmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
auto&& sizes = matmul_get_workspace_bundle(args.as_fwd_args()); | |||
sizes.push_back(matmul_opr->get_workspace_in_bytes( | |||
sizes.push_back(config.second->get_workspace_in_bytes( | |||
config.first[0], config.first[1], config.first[2])); | |||
return WorkspaceBundle(nullptr, sizes).total_size_in_bytes(); | |||
} | |||
@@ -121,19 +122,10 @@ void ConvolutionBackwardDataImpl::AlgoMatmul::exec_internal( | |||
DW = fm.dilation[1]; | |||
auto stream = cuda_stream(args.handle); | |||
auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
matmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = | |||
sub_opr_config(args.filter_meta, *args.filter_layout, | |||
*args.diff_layout, *args.grad_layout, args.opr); | |||
matmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
auto&& sizes = matmul_get_workspace_bundle(args.as_fwd_args()); | |||
sizes.push_back(matmul_opr->get_workspace_in_bytes( | |||
sizes.push_back(config.second->get_workspace_in_bytes( | |||
config.first[0], config.first[1], config.first[2])); | |||
auto wbundle = WorkspaceBundle(args.workspace.raw_ptr, sizes); | |||
@@ -159,9 +151,9 @@ void ConvolutionBackwardDataImpl::AlgoMatmul::exec_internal( | |||
if (fm.should_flip) { | |||
convolution::flip_filter(args.as_fwd_args(), | |||
wbundle.get_workspace(2), A.raw_ptr); | |||
matmul_opr->exec(A, C, B, wbundle.get_workspace(3)); | |||
config.second->exec(A, C, B, wbundle.get_workspace(3)); | |||
} else { | |||
matmul_opr->exec(A, C, B, wbundle.get_workspace(2)); | |||
config.second->exec(A, C, B, wbundle.get_workspace(2)); | |||
} | |||
} | |||
{ | |||
@@ -11,6 +11,7 @@ | |||
*/ | |||
#include "./algo.h" | |||
#include "src/common/algo_base.h" | |||
#include "src/cuda/convolution/chanwise/kern.cuh" | |||
#include "src/cuda/utils.h" | |||
@@ -39,6 +40,18 @@ sub_opr_config(const TensorLayoutArray& layouts, | |||
ConvolutionBackwardFilter::Param::ComputeMode::DEFAULT; | |||
return ret; | |||
} | |||
std::pair<TensorLayoutArray, std::unique_ptr<ConvolutionBackwardFilter>> | |||
prepare_sub_opr(const ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs& args) { | |||
auto conv_back_filter_opr = | |||
args.handle->create_operator<ConvolutionBackwardFilter>(); | |||
auto&& config = sub_opr_config( | |||
{*args.src_layout, *args.diff_layout, *args.grad_layout}, args.opr); | |||
conv_back_filter_opr->param() = config.second; | |||
return {config.first, std::move(conv_back_filter_opr)}; | |||
} | |||
} // namespace | |||
std::vector<Algorithm::SearchItem> | |||
@@ -55,36 +68,18 @@ ConvolutionBackwardFilterImpl::AlgoBFloat16::get_subopr_list( | |||
bool ConvolutionBackwardFilterImpl::AlgoBFloat16::is_available( | |||
const SizeArgs& args) const { | |||
TensorLayout fsrc, fdiff, fgrad; | |||
auto conv_back_filter_opr = | |||
args.handle->create_operator<ConvolutionBackwardFilter>(); | |||
auto&& config = sub_opr_config( | |||
{*args.src_layout, *args.diff_layout, *args.grad_layout}, | |||
args.opr); | |||
conv_back_filter_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
return args.src_layout->dtype == args.diff_layout->dtype && | |||
args.src_layout->dtype == dtype::BFloat16() && | |||
get_algorithm(static_cast<ConvolutionBackwardFilterImpl*>( | |||
conv_back_filter_opr.get()), | |||
config.second.get()), | |||
config.first[0], config.first[1], config.first[2]); | |||
} | |||
WorkspaceBundle | |||
ConvolutionBackwardFilterImpl::AlgoBFloat16::get_workspace_bundle( | |||
void* ptr, const SizeArgs& args) const { | |||
auto conv_back_filter_opr = | |||
args.handle->create_operator<ConvolutionBackwardFilter>(); | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
conv_back_filter_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = sub_opr_config( | |||
{*args.src_layout, *args.diff_layout, *args.grad_layout}, | |||
args.opr); | |||
conv_back_filter_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
SmallVector<size_t> sizes; | |||
auto get_workspace = [&sizes](const TensorLayout& src, | |||
const TensorLayout& dst) { | |||
@@ -96,7 +91,7 @@ ConvolutionBackwardFilterImpl::AlgoBFloat16::get_workspace_bundle( | |||
get_workspace(*args.src_layout, config.first[0]); | |||
get_workspace(*args.diff_layout, config.first[1]); | |||
get_workspace(*args.grad_layout, config.first[2]); | |||
sizes.push_back(conv_back_filter_opr->get_workspace_in_bytes( | |||
sizes.push_back(config.second->get_workspace_in_bytes( | |||
config.first[0], config.first[1], config.first[2])); | |||
auto ret = WorkspaceBundle{ptr, std::move(sizes)}; | |||
return ret; | |||
@@ -120,19 +115,9 @@ void ConvolutionBackwardFilterImpl::AlgoBFloat16::exec( | |||
.src_to_comp_type(*args.grad_tensor, fgrad_tensor); | |||
} | |||
{ | |||
auto conv_back_filter_opr = | |||
args.handle->create_operator<ConvolutionBackwardFilter>(); | |||
conv_back_filter_opr->param() = args.opr->param(); | |||
conv_back_filter_opr->param().compute_mode = | |||
Param::ComputeMode::DEFAULT; | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
conv_back_filter_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
conv_back_filter_opr->exec(fsrc_tensor, fdiff_tensor, fgrad_tensor, | |||
cvter.workspace()); | |||
auto config = prepare_sub_opr(args); | |||
config.second->exec(fsrc_tensor, fdiff_tensor, fgrad_tensor, | |||
cvter.workspace()); | |||
} | |||
{ cvter.comp_to_dst_type(fgrad_tensor, *args.grad_tensor); } | |||
} | |||
@@ -11,6 +11,7 @@ | |||
*/ | |||
#include "./algo.h" | |||
#include "src/common/algo_base.h" | |||
#include "src/cuda/convolution/helper.h" | |||
#include "src/cuda/convolution/im2col.cuh" | |||
#include "src/cuda/utils.h" | |||
@@ -42,6 +43,20 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config( | |||
param.transposeB = true; | |||
return {{Cl, Bl, Al}, param}; | |||
} | |||
std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr( | |||
const ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs& args) { | |||
auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
set_execution_policy<ConvolutionBackwardFilter, MatrixMulForward*>( | |||
args.opr, matmul_opr.get()); | |||
auto&& config = | |||
sub_opr_config(args.grad_filter_meta, *args.src_layout, | |||
*args.diff_layout, *args.grad_layout, args.opr); | |||
matmul_opr->param() = config.second; | |||
return {config.first, std::move(matmul_opr)}; | |||
} | |||
} // namespace | |||
std::vector<Algorithm::SearchItem> | |||
@@ -56,11 +71,9 @@ ConvolutionBackwardFilterImpl::AlgoMatmul::get_subopr_list( | |||
std::string param_str; | |||
Algorithm::serialize_write_pod(config.second, param_str); | |||
return {{Algorithm::OprType::MATRIX_MUL_FORWARD, param_str, | |||
config.first}}; | |||
return {{Algorithm::OprType::MATRIX_MUL_FORWARD, param_str, config.first}}; | |||
} | |||
bool ConvolutionBackwardFilterImpl::AlgoMatmul::is_available( | |||
const SizeArgs& args) const { | |||
if (args.src_layout->dtype == args.diff_layout->dtype && | |||
@@ -75,21 +88,10 @@ bool ConvolutionBackwardFilterImpl::AlgoMatmul::is_available( | |||
size_t ConvolutionBackwardFilterImpl::AlgoMatmul::get_workspace_in_bytes( | |||
const SizeArgs& args) const { | |||
auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid() && | |||
!args.opr->execution_policy().sub_policy.empty()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
matmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = | |||
sub_opr_config(args.grad_filter_meta, *args.src_layout, | |||
*args.diff_layout, *args.grad_layout, args.opr); | |||
matmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
auto&& sizes = matmul_get_workspace_bundle(args.as_fwd_args()); | |||
sizes.push_back(matmul_opr->get_workspace_in_bytes( | |||
sizes.push_back(config.second->get_workspace_in_bytes( | |||
config.first[0], config.first[1], config.first[2])); | |||
return WorkspaceBundle(nullptr, sizes).total_size_in_bytes(); | |||
} | |||
@@ -121,19 +123,10 @@ void ConvolutionBackwardFilterImpl::AlgoMatmul::exec_internal( | |||
DW = fm.dilation[1]; | |||
auto stream = cuda_stream(args.handle); | |||
auto matmul_opr = args.handle->create_operator<MatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
matmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = | |||
sub_opr_config(args.grad_filter_meta, *args.src_layout, | |||
*args.diff_layout, *args.grad_layout, args.opr); | |||
matmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
auto&& sizes = matmul_get_workspace_bundle(args.as_fwd_args()); | |||
sizes.push_back(matmul_opr->get_workspace_in_bytes( | |||
sizes.push_back(config.second->get_workspace_in_bytes( | |||
config.first[0], config.first[1], config.first[2])); | |||
auto wbundle = WorkspaceBundle(args.workspace.raw_ptr, sizes); | |||
@@ -164,14 +157,14 @@ void ConvolutionBackwardFilterImpl::AlgoMatmul::exec_internal( | |||
TensorND A(args.grad_tensor->ptr<T>(), Al), B(col, Bl), C(diff_t, Cl); | |||
if (fm.should_flip) { | |||
A.raw_ptr = wbundle.get(2); | |||
matmul_opr->exec(C, B, A, wbundle.get_workspace(3)); | |||
config.second->exec(C, B, A, wbundle.get_workspace(3)); | |||
convolution::flip_filter( | |||
args.as_fwd_args(), | |||
{static_cast<dt_byte*>(args.grad_tensor->raw_ptr), | |||
wbundle.get_size(2)}, | |||
A.raw_ptr); | |||
} else { | |||
matmul_opr->exec(C, B, A, wbundle.get_workspace(2)); | |||
config.second->exec(C, B, A, wbundle.get_workspace(2)); | |||
} | |||
} | |||
} | |||
@@ -65,6 +65,20 @@ std::pair<TensorLayoutArray, ConvBiasForward::Param> sub_opr_config( | |||
return ret; | |||
} | |||
std::pair<TensorLayoutArray, std::unique_ptr<ConvBiasForward>> prepare_sub_opr( | |||
const ConvolutionForwardImpl::AlgoBase::SizeArgs& args) { | |||
auto conv_bias_opr = args.opr->handle()->create_operator<ConvBiasForward>(); | |||
set_execution_policy<ConvolutionForward, ConvBiasForward*>( | |||
args.opr, conv_bias_opr.get()); | |||
auto&& config = sub_opr_config( | |||
*args.layout_src, *args.layout_filter, *args.layout_dst, | |||
args.opr); | |||
conv_bias_opr->param() = config.second; | |||
return {config.first, std::move(conv_bias_opr)}; | |||
} | |||
} // namespace | |||
ConvolutionForwardImpl::AlgoPack::AlgoPack() { | |||
@@ -121,13 +135,8 @@ ConvolutionForwardImpl::AlgoDefault::get_subopr_list( | |||
bool ConvolutionForwardImpl::AlgoDefault::is_available( | |||
const SizeArgs& args) const { | |||
auto conv_bias_opr = | |||
args.opr->handle()->create_operator<ConvBiasForward>(); | |||
auto&& config = sub_opr_config( | |||
*args.layout_src, *args.layout_filter, *args.layout_dst, | |||
args.opr); | |||
conv_bias_opr->param() = config.second; | |||
return get_algorithm(static_cast<ConvBiasForwardImpl*>(conv_bias_opr.get()), | |||
auto config = prepare_sub_opr(args); | |||
return get_algorithm(static_cast<ConvBiasForwardImpl*>(config.second.get()), | |||
*args.layout_src, *args.layout_filter, config.first[0], | |||
config.first[1], *args.layout_dst); | |||
} | |||
@@ -135,36 +144,15 @@ bool ConvolutionForwardImpl::AlgoDefault::is_available( | |||
size_t ConvolutionForwardImpl::AlgoDefault::get_workspace_in_bytes( | |||
const SizeArgs& args) const { | |||
auto conv_bias_opr = args.opr->handle()->create_operator<ConvBiasForward>(); | |||
if (args.opr->execution_policy().algo.valid() && | |||
!args.opr->execution_policy().sub_policy.empty()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
conv_bias_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = sub_opr_config( | |||
*args.layout_src, *args.layout_filter, *args.layout_dst, | |||
args.opr); | |||
conv_bias_opr->param() = config.second; | |||
return conv_bias_opr->get_workspace_in_bytes( | |||
auto config = prepare_sub_opr(args); | |||
return config.second->get_workspace_in_bytes( | |||
*args.layout_src, *args.layout_filter, config.first[0], | |||
config.first[1], *args.layout_dst, nullptr); | |||
} | |||
void ConvolutionForwardImpl::AlgoDefault::exec(const ExecArgs& args) const { | |||
auto conv_bias_opr = args.opr->handle()->create_operator<ConvBiasForward>(); | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
conv_bias_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = sub_opr_config( | |||
*args.layout_src, *args.layout_filter, *args.layout_dst, | |||
args.opr); | |||
conv_bias_opr->param() = config.second; | |||
conv_bias_opr->exec(args.tensor_src, args.tensor_filter, | |||
auto config = prepare_sub_opr(args); | |||
config.second->exec(args.tensor_src, args.tensor_filter, | |||
{nullptr, config.first[0]}, {nullptr, config.first[1]}, | |||
args.tensor_dst, nullptr, args.workspace); | |||
} | |||
@@ -14,6 +14,7 @@ | |||
#include "src/cuda/deformable_conv/bwd_data/algo.h" | |||
#include "src/cuda/deformable_conv/kimpl/deformable_conv.cuh" | |||
#include "src/cuda/deformable_conv/opr_impl.h" | |||
#include "src/common/algo_base.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
@@ -79,15 +80,28 @@ std::pair<TensorLayoutArray, BatchedMatrixMulForward::Param> sub_opr_config( | |||
return {{al, bl, cl}, param}; | |||
} | |||
std::pair<TensorLayoutArray, std::unique_ptr<BatchedMatrixMulForward>> | |||
prepare_sub_opr( | |||
const DeformableConvBackwardDataImpl::AlgoBase::SizeArgs& args) { | |||
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
set_execution_policy<DeformableConvBackwardData, BatchedMatrixMulForward*>( | |||
args.opr, bmatmul_opr.get()); | |||
auto&& config = sub_opr_config(args.filter_meta, args.im_layout, | |||
args.out_grad_layout); | |||
bmatmul_opr->param() = config.second; | |||
return {config.first, std::move(bmatmul_opr)}; | |||
} | |||
}; // anonymous namespace | |||
std::vector<Algorithm::SearchItem> | |||
Algo::get_subopr_list( | |||
std::vector<Algorithm::SearchItem> Algo::get_subopr_list( | |||
const TensorLayoutArray& layouts, const OperatorBase* opr) const { | |||
const DeformableConvBackwardDataImpl* deformable_conv = | |||
static_cast<const DeformableConvBackwardDataImpl*>(opr); | |||
CanonizedFilterMeta fm = deformable_conv->make_canonized_filter_meta( | |||
layouts[0].ndim, layouts[1], layouts[2]); | |||
layouts[0].ndim, layouts[1], layouts[2]); | |||
auto&& config = sub_opr_config(fm, layouts[0], layouts[4]); | |||
std::string param_str; | |||
@@ -106,19 +120,9 @@ WorkspaceBundle Algo::get_bundle(const SizeArgs& args) { | |||
OC = args.out_grad_layout[1], OH = args.out_grad_layout[2], | |||
OW = args.out_grad_layout[3], FH = fm.spatial[0], FW = fm.spatial[1]; | |||
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid() && | |||
!args.opr->execution_policy().sub_policy.empty()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
bmatmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = sub_opr_config(args.filter_meta, args.im_layout, | |||
args.out_grad_layout); | |||
bmatmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
size_t bmm_ws = bmatmul_opr->get_workspace_in_bytes( | |||
size_t bmm_ws = config.second->get_workspace_in_bytes( | |||
config.first[0], config.first[1], config.first[2]); | |||
size_t result_ws = batch_sz * IC * FH * FW * OH * OW * sizeof(float); | |||
size_t relayout_ws1 = batch_sz * OC * OH * OW * sizeof(float); | |||
@@ -183,24 +187,14 @@ void Algo::exec(const ExecArgs& args) const { | |||
// matmul [g, icpg, FH, FW, ocpg] * [g, ocpg, N, OH, OW] => | |||
// => [g, icpg, FH, FW, N, OH, OW] | |||
{ | |||
auto bmatmul_opr = | |||
args.handle->create_operator<BatchedMatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
bmatmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = sub_opr_config(args.filter_meta, args.im_layout, | |||
args.out_grad_layout); | |||
bmatmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
TensorND A(static_cast<void*>(dev_filter), config.first[0]), | |||
B(static_cast<void*>(relayout_ws1), config.first[1]), | |||
C(static_cast<void*>(result_ws), config.first[2]); | |||
size_t bmm_ws_size = bundle.get_size(0); | |||
bmatmul_opr->exec( | |||
config.second->exec( | |||
A, B, C, | |||
Workspace(static_cast<megdnn::dt_byte*>(bmm_ws), bmm_ws_size)); | |||
} | |||
@@ -15,6 +15,7 @@ | |||
#include "src/cuda/deformable_conv/bwd_flt/algo.h" | |||
#include "src/cuda/deformable_conv/kimpl/deformable_conv.cuh" | |||
#include "src/cuda/deformable_conv/opr_impl.h" | |||
#include "src/common/algo_base.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
@@ -79,10 +80,23 @@ std::pair<TensorLayoutArray, BatchedMatrixMulForward::Param> sub_opr_config( | |||
return {{al, bl, cl}, param}; | |||
} | |||
std::pair<TensorLayoutArray, std::unique_ptr<BatchedMatrixMulForward>> | |||
prepare_sub_opr( | |||
const DeformableConvBackwardFilterImpl::AlgoBase::SizeArgs& args) { | |||
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
set_execution_policy<DeformableConvBackwardFilter, | |||
BatchedMatrixMulForward*>(args.opr, bmatmul_opr.get()); | |||
auto&& config = sub_opr_config(args.filter_grad_meta, args.im_layout, | |||
args.out_grad_layout); | |||
bmatmul_opr->param() = config.second; | |||
return {config.first, std::move(bmatmul_opr)}; | |||
} | |||
}; // anonymous namespace | |||
std::vector<Algorithm::SearchItem> | |||
Algo::get_subopr_list( | |||
std::vector<Algorithm::SearchItem> Algo::get_subopr_list( | |||
const TensorLayoutArray& layouts, const OperatorBase* opr) const { | |||
const DeformableConvBackwardFilterImpl* deformable_conv = | |||
static_cast<const DeformableConvBackwardFilterImpl*>(opr); | |||
@@ -107,21 +121,11 @@ WorkspaceBundle Algo::get_bundle(const SizeArgs& args) { | |||
size_t IC = fm.group * fm.icpg, OC = args.out_grad_layout[1]; | |||
auto batch_sz = args.im_layout[0]; | |||
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid() && | |||
!args.opr->execution_policy().sub_policy.empty()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
bmatmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = sub_opr_config(args.filter_grad_meta, args.im_layout, | |||
args.out_grad_layout); | |||
bmatmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
size_t col_ws = batch_sz * IC * FH * FW * OH * OW * sizeof(float); | |||
size_t out_grad_ws = batch_sz * OC * OH * OW * sizeof(float); | |||
size_t bmm_ws = bmatmul_opr->get_workspace_in_bytes( | |||
size_t bmm_ws = config.second->get_workspace_in_bytes( | |||
config.first[0], config.first[1], config.first[2]); | |||
return {nullptr, {col_ws, out_grad_ws, bmm_ws}}; | |||
@@ -166,23 +170,14 @@ void Algo::exec(const ExecArgs& args) const { | |||
args.handle->relayout_opr()->exec(C2, C3); | |||
// matmul | |||
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
bmatmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = sub_opr_config(args.filter_grad_meta, args.im_layout, | |||
args.out_grad_layout); | |||
bmatmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
TensorND A(static_cast<void*>(out_grad_ws), config.first[0]), | |||
B(static_cast<void*>(col_ws), config.first[1]), | |||
C(static_cast<void*>(dev_filter_grad), config.first[2]); | |||
size_t bmm_ws_size = bundle.get_size(2); | |||
bmatmul_opr->exec( | |||
config.second->exec( | |||
A, B, C, | |||
Workspace(static_cast<megdnn::dt_byte*>(bmm_ws), bmm_ws_size)); | |||
} | |||
@@ -14,6 +14,7 @@ | |||
#include "src/cuda/batched_matrix_mul/algo.h" | |||
#include "src/cuda/deformable_conv/fwd/algo.h" | |||
#include "src/cuda/deformable_conv/kimpl/deformable_conv.cuh" | |||
#include "src/common/algo_base.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
@@ -78,15 +79,27 @@ std::pair<TensorLayoutArray, BatchedMatrixMulForward::Param> sub_opr_config( | |||
return {{al, bl, cl}, param}; | |||
} | |||
std::pair<TensorLayoutArray, std::unique_ptr<BatchedMatrixMulForward>> | |||
prepare_sub_opr(const DeformableConvForwardImpl::AlgoBase::SizeArgs& args) { | |||
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
set_execution_policy<DeformableConvForward, BatchedMatrixMulForward*>( | |||
args.opr, bmatmul_opr.get()); | |||
auto&& config = | |||
sub_opr_config(args.filter_meta, args.im_layout, args.dst_layout); | |||
bmatmul_opr->param() = config.second; | |||
return {config.first, std::move(bmatmul_opr)}; | |||
} | |||
}; // anonymous namespace | |||
std::vector<Algorithm::SearchItem> | |||
Algo::get_subopr_list( | |||
std::vector<Algorithm::SearchItem> Algo::get_subopr_list( | |||
const TensorLayoutArray& layouts, const OperatorBase* opr) const { | |||
const DeformableConvForwardImpl* deformable_conv = | |||
static_cast<const DeformableConvForwardImpl*>(opr); | |||
CanonizedFilterMeta fm = deformable_conv->make_canonized_filter_meta( | |||
layouts[0].ndim, layouts[1], layouts[2]); | |||
layouts[0].ndim, layouts[1], layouts[2]); | |||
auto&& config = sub_opr_config(fm, layouts[0], layouts[4]); | |||
std::string param_str; | |||
@@ -95,7 +108,6 @@ Algo::get_subopr_list( | |||
config.first}}; | |||
} | |||
bool Algo::is_available(const SizeArgs&) const { | |||
return true; | |||
} | |||
@@ -106,20 +118,10 @@ WorkspaceBundle Algo::get_bundle(const SizeArgs& args) { | |||
OC = args.dst_layout[1], OH = args.dst_layout[2], | |||
OW = args.dst_layout[3], FH = fm.spatial[0], FW = fm.spatial[1]; | |||
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid() && | |||
!args.opr->execution_policy().sub_policy.empty()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
bmatmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = | |||
sub_opr_config(args.filter_meta, args.im_layout, args.dst_layout); | |||
bmatmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
size_t col_ws = batch_sz * IC * FH * FW * OH * OW * sizeof(float); | |||
size_t bmm_ws = bmatmul_opr->get_workspace_in_bytes( | |||
size_t bmm_ws = config.second->get_workspace_in_bytes( | |||
config.first[0], config.first[1], config.first[2]); | |||
size_t result_ws = batch_sz * OC * OH * OW * sizeof(float); | |||
@@ -154,16 +156,7 @@ void Algo::exec(const ExecArgs& args) const { | |||
deformable_conv::im2col(dev_im, dev_offset, dev_mask, | |||
static_cast<float*>(col_ws), p); | |||
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
bmatmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = | |||
sub_opr_config(args.filter_meta, args.im_layout, args.dst_layout); | |||
bmatmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
// matmul | |||
TensorND A(static_cast<void*>(dev_filter), config.first[0]), | |||
@@ -171,7 +164,7 @@ void Algo::exec(const ExecArgs& args) const { | |||
C(static_cast<void*>(result_ws), config.first[2]); | |||
size_t bmm_ws_size = bundle.get_size(1); | |||
bmatmul_opr->exec( | |||
config.second->exec( | |||
A, B, C, | |||
Workspace(static_cast<megdnn::dt_byte*>(bmm_ws), bmm_ws_size)); | |||
// relayout | |||
@@ -14,6 +14,7 @@ | |||
#include "src/cuda/matrix_mul/algos.h" | |||
#include "src/cuda/utils.h" | |||
#include "src/common/algo_chooser.h" | |||
#include "src/common/algo_base.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
@@ -37,6 +38,15 @@ std::pair<TensorLayoutArray, MatrixMulForwardImpl::Param> sub_opr_config( | |||
ret.second.compute_mode = MatrixMulForwardImpl::Param::ComputeMode::DEFAULT; | |||
return ret; | |||
} | |||
std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr( | |||
const MatrixMulForwardImpl::AlgoBase::SizeArgs& args) { | |||
auto&& config = sub_opr_config( | |||
{args.layout_a, args.layout_b, args.layout_c}, args.opr); | |||
auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>(); | |||
matmul_opr->param() = config.second; | |||
return {config.first, std::move(matmul_opr)}; | |||
} | |||
} // namespace | |||
std::vector<Algorithm::SearchItem> | |||
@@ -52,27 +62,16 @@ MatrixMulForwardImpl::AlgoBFloat16::get_subopr_list( | |||
bool MatrixMulForwardImpl::AlgoBFloat16::is_available( | |||
const SizeArgs& args) const { | |||
auto&& config = sub_opr_config( | |||
{args.layout_a, args.layout_b, args.layout_c}, args.opr); | |||
auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>(); | |||
matmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
return args.layout_a.dtype == dtype::BFloat16() && | |||
get_algorithm(static_cast<MatrixMulForwardImpl*>(matmul_opr.get()), | |||
config.first[0], config.first[1], config.first[2]); | |||
get_algorithm( | |||
static_cast<MatrixMulForwardImpl*>(config.second.get()), | |||
config.first[0], config.first[1], config.first[2]); | |||
} | |||
WorkspaceBundle MatrixMulForwardImpl::AlgoBFloat16::get_workspace_bundle( | |||
void* ptr, const SizeArgs& args) const { | |||
auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>(); | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
matmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
auto&& config = sub_opr_config( | |||
{args.layout_a, args.layout_b, args.layout_c}, args.opr); | |||
matmul_opr->param() = config.second; | |||
auto config = prepare_sub_opr(args); | |||
SmallVector<size_t> sizes; | |||
auto get_workspace = [&sizes](const TensorLayout& src, | |||
@@ -85,7 +84,7 @@ WorkspaceBundle MatrixMulForwardImpl::AlgoBFloat16::get_workspace_bundle( | |||
get_workspace(args.layout_a, config.first[0]); | |||
get_workspace(args.layout_b, config.first[1]); | |||
get_workspace(args.layout_c, config.first[2]); | |||
sizes.push_back(matmul_opr->get_workspace_in_bytes( | |||
sizes.push_back(config.second->get_workspace_in_bytes( | |||
config.first[0], config.first[1], config.first[2])); | |||
return {ptr, std::move(sizes)}; | |||
} | |||
@@ -106,17 +105,8 @@ void MatrixMulForwardImpl::AlgoBFloat16::exec(const ExecArgs& args) const { | |||
.src_to_comp_type(args.tensor_b, b) | |||
.src_to_comp_type(args.tensor_c, c); | |||
{ | |||
auto matmul_opr = | |||
args.opr->handle()->create_operator<MatrixMulForward>(); | |||
matmul_opr->param() = args.opr->param(); | |||
matmul_opr->param().compute_mode = Param::ComputeMode::DEFAULT; | |||
if (args.opr->execution_policy().algo.valid()) { | |||
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1); | |||
matmul_opr->execution_policy() = | |||
args.opr->execution_policy().sub_policy[0]; | |||
} | |||
matmul_opr->exec(a, b, c, ctypecvt.workspace()); | |||
auto config = prepare_sub_opr(args); | |||
config.second->exec(a, b, c, ctypecvt.workspace()); | |||
} | |||
ctypecvt.comp_to_dst_type(c, args.tensor_c); | |||
} | |||