Browse Source

refactor(megdnn): refactor sub opr setter

GitOrigin-RevId: 475afb9c10
tags/v1.3.0
Megvii Engine Team 4 years ago
parent
commit
7afa422df4
14 changed files with 292 additions and 395 deletions
  1. +24
    -0
      dnn/src/common/algo_base.h
  2. +26
    -37
      dnn/src/cuda/batched_matrix_mul/brute_force.cpp
  3. +22
    -41
      dnn/src/cuda/conv_bias/batched_matmul.cpp
  4. +20
    -29
      dnn/src/cuda/conv_bias/bfloat16.cpp
  5. +18
    -25
      dnn/src/cuda/conv_bias/matmul.cpp
  6. +20
    -31
      dnn/src/cuda/convolution/backward_data/bfloat16.cpp
  7. +21
    -29
      dnn/src/cuda/convolution/backward_data/matmul.cpp
  8. +20
    -35
      dnn/src/cuda/convolution/backward_filter/bfloat16.cpp
  9. +22
    -29
      dnn/src/cuda/convolution/backward_filter/matmul.cpp
  10. +20
    -32
      dnn/src/cuda/convolution/forward/algos.cpp
  11. +21
    -27
      dnn/src/cuda/deformable_conv/bwd_data/algo_matmul.cpp
  12. +20
    -25
      dnn/src/cuda/deformable_conv/bwd_flt/algo_matmul.cpp
  13. +20
    -27
      dnn/src/cuda/deformable_conv/fwd/algo_matmul.cpp
  14. +18
    -28
      dnn/src/cuda/matrix_mul/bfloat16.cpp

+ 24
- 0
dnn/src/common/algo_base.h View File

@@ -14,6 +14,7 @@

#include <functional>
#include <string>
#include <tuple>

#include "megdnn/oprs/base.h"
#include "src/common/utils.h"
@@ -83,6 +84,29 @@ public:
}
};

template <std::size_t I = 0, typename Opr, typename... Tp>
inline typename std::enable_if<I == sizeof...(Tp), void>::type
set_sub_execution_policy(const Opr*, std::tuple<Tp...>&) {}

template <std::size_t I = 0, typename Opr, typename... Tp>
inline typename std::enable_if <
I<sizeof...(Tp), void>::type set_sub_execution_policy(
const Opr* opr, std::tuple<Tp...>& t) {
std::get<I>(t)->execution_policy() = opr->execution_policy().sub_policy[I];
set_sub_execution_policy<I + 1, Tp...>(opr, t);
}

template <typename Opr, typename... SubOpr>
void set_execution_policy(const Opr* opr, SubOpr... sub_oprs) {
if (opr->execution_policy().algo.valid() &&
!opr->execution_policy().sub_policy.empty()) {
megdnn_assert(opr->execution_policy().sub_policy.size() ==
sizeof...(sub_oprs));
auto&& sub = std::make_tuple(sub_oprs...);
set_sub_execution_policy<sizeof...(sub_oprs), Opr, SubOpr...>(opr, sub);
}
}

} // namespace megdnn

namespace std {


+ 26
- 37
dnn/src/cuda/batched_matrix_mul/brute_force.cpp View File

@@ -8,9 +8,12 @@
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#include <algorithm>
#include <memory>
#include "./algo.h"
#include "megdnn/opr_param_defs.h"
#include "src/common/algo_chooser.h"
#include "src/common/algo_base.h"
#include "src/cuda/handle.h"
#include "src/cuda/utils.h"

@@ -27,6 +30,20 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config(

return {{mm_layout_a, mm_layout_b, mm_layout_c}, opr->param()};
}

std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr(
const BatchedMatrixMulForwardImpl::AlgoBase::SizeArgs& args) {
auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>();
set_execution_policy<BatchedMatrixMulForward, MatrixMulForward*>(
args.opr, matmul_opr.get());

auto&& config = sub_opr_config(args.layout_a, args.layout_b, args.layout_c,
args.opr);
matmul_opr->param() = config.second;

return {config.first, std::move(matmul_opr)};
}

} // namespace

std::vector<Algorithm::SearchItem>
@@ -43,51 +60,23 @@ BatchedMatrixMulForwardImpl::AlgoBruteForce::get_subopr_list(

bool BatchedMatrixMulForwardImpl::AlgoBruteForce::is_available(
const SizeArgs& args) const {
auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>();
if (args.opr->execution_policy().algo.valid() &&
!args.opr->execution_policy().sub_policy.empty()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
matmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}
auto config = prepare_sub_opr(args);

auto&& config = sub_opr_config(args.layout_a, args.layout_b, args.layout_c,
args.opr);
matmul_opr->param() = config.second;

return get_algorithm(static_cast<MatrixMulForwardImpl*>(matmul_opr.get()),
config.first[0], config.first[1], config.first[2]);
return get_algorithm(
static_cast<MatrixMulForwardImpl*>(config.second.get()),
config.first[0], config.first[1], config.first[2]);
}
size_t BatchedMatrixMulForwardImpl::AlgoBruteForce::get_workspace_in_bytes(
const SizeArgs& args) const {
auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>();
if (args.opr->execution_policy().algo.valid() &&
!args.opr->execution_policy().sub_policy.empty()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
matmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config = sub_opr_config(args.layout_a, args.layout_b, args.layout_c,
args.opr);
matmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

return matmul_opr->get_workspace_in_bytes(config.first[0], config.first[1],
config.first[2]);
return config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]);
}
void BatchedMatrixMulForwardImpl::AlgoBruteForce::exec(
const ExecArgs& args) const {
auto N = args.layout_a.shape[0];
auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>();
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
matmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config = sub_opr_config(args.layout_a, args.layout_b, args.layout_c,
args.opr);
matmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

rep(n, N) {
TensorND A_, B_, C_;
@@ -100,6 +89,6 @@ void BatchedMatrixMulForwardImpl::AlgoBruteForce::exec(
tensor_n_from_batch(args.tensor_a, A_);
tensor_n_from_batch(args.tensor_b, B_);
tensor_n_from_batch(args.tensor_c, C_);
matmul_opr->exec(A_, B_, C_, args.workspace);
config.second->exec(A_, B_, C_, args.workspace);
}
}

+ 22
- 41
dnn/src/cuda/conv_bias/batched_matmul.cpp View File

@@ -11,6 +11,7 @@
*/

#include "src/common/algo_chooser.h"
#include "src/common/algo_base.h"
#include "src/common/conv_bias.h"
#include "src/cuda/batched_matrix_mul/algo.h"
#include "src/cuda/conv_bias/algo.h"
@@ -51,6 +52,19 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config(

return {{A, B, C}, param};
}

std::pair<TensorLayoutArray, std::unique_ptr<BatchedMatrixMulForward>>
prepare_sub_opr(const ConvBiasForwardImpl::AlgoBase::SizeArgs& args) {
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>();
set_execution_policy<ConvBiasForward, BatchedMatrixMulForward*>(
args.opr, bmatmul_opr.get());
auto&& config =
sub_opr_config(args.filter_meta, *args.src_layout,
*args.filter_layout, *args.dst_layout, args.opr);
bmatmul_opr->param() = config.second;

return {config.first, std::move(bmatmul_opr)};
}
} // namespace

std::vector<Algorithm::SearchItem>
@@ -74,18 +88,7 @@ bool ConvBiasForwardImpl::AlgoBatchedMatmul::is_available(
if (args.z_layout->ndim > 0)
return false;

auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>();
if (args.opr->execution_policy().algo.valid() &&
!args.opr->execution_policy().sub_policy.empty()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
bmatmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config =
sub_opr_config(args.filter_meta, *args.src_layout,
*args.filter_layout, *args.dst_layout, args.opr);
bmatmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

auto&& fm = args.filter_meta;
return fm.format == Param::Format::NCHW &&
@@ -95,9 +98,9 @@ bool ConvBiasForwardImpl::AlgoBatchedMatmul::is_available(
fm.dilation[1] == 1 && fm.spatial[0] == 1 && fm.spatial[1] == 1 &&
fm.padding[0] == 0 && fm.padding[1] == 0 && fm.stride[0] == 1 &&
fm.stride[1] == 1 &&
get_algorithm(
static_cast<BatchedMatrixMulForwardImpl*>(bmatmul_opr.get()),
config.first[0], config.first[1], config.first[2]);
get_algorithm(static_cast<BatchedMatrixMulForwardImpl*>(
config.second.get()),
config.first[0], config.first[1], config.first[2]);
}

WorkspaceBundle ConvBiasForwardImpl::AlgoBatchedMatmul::get_workspace_bundle(
@@ -115,21 +118,10 @@ WorkspaceBundle ConvBiasForwardImpl::AlgoBatchedMatmul::get_workspace_bundle(
SizeArgs conv_args = args;
conv_args.dst_layout = &dst_layout;

auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>();
if (args.opr->execution_policy().algo.valid() &&
!args.opr->execution_policy().sub_policy.empty()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
bmatmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config =
sub_opr_config(args.filter_meta, *args.src_layout,
*args.filter_layout, *args.dst_layout, args.opr);
bmatmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

sizes.insert(sizes.begin(),
args.handle->batched_matrix_mul()->get_workspace_in_bytes(
config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]));
return {ptr, std::move(sizes)};
}
@@ -154,23 +146,12 @@ void ConvBiasForwardImpl::AlgoBatchedMatmul::exec(const ExecArgs& args) const {
conv_args.dst_tensor = &conv_dst_tensor;
conv_args.dst_layout = &conv_dst_tensor.layout;
{
auto bmatmul_opr =
args.handle->create_operator<BatchedMatrixMulForward>();
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
bmatmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config =
sub_opr_config(args.filter_meta, *args.src_layout,
*args.filter_layout, *args.dst_layout, args.opr);
bmatmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

TensorND A{args.filter_tensor->raw_ptr, config.first[0]},
B{args.src_tensor->raw_ptr, config.first[1]},
C{args.dst_tensor->raw_ptr, config.first[2]};
bmatmul_opr->exec(A, B, C, bundle.get_workspace(0));
config.second->exec(A, B, C, bundle.get_workspace(0));
}
handle_bias_and_nonlinear(args.handle, args.nonlinear_mode,
&conv_dst_tensor, args.dst_tensor,


+ 20
- 29
dnn/src/cuda/conv_bias/bfloat16.cpp View File

@@ -14,6 +14,7 @@
#include "src/cuda/handle.h"
#include "src/cuda/utils.cuh"
#include "src/cuda/utils.h"
#include "src/common/algo_base.h"

using namespace megdnn;
using namespace cuda;
@@ -40,6 +41,18 @@ std::pair<TensorLayoutArray, ConvBiasForwardImpl::Param> sub_opr_config(
ret.second.compute_mode = ConvBiasForwardImpl::Param::ComputeMode::DEFAULT;
return ret;
}

std::pair<TensorLayoutArray, std::unique_ptr<ConvBiasForward>> prepare_sub_opr(
const ConvBiasForwardImpl::AlgoBase::SizeArgs& args) {
auto convbias_opr = args.handle->create_operator<ConvBias>();
auto&& config = sub_opr_config(
{*args.src_layout, *args.filter_layout, *args.bias_layout,
*args.z_layout, *args.dst_layout},
args.opr);
convbias_opr->param() = config.second;

return {config.first, std::move(convbias_opr)};
}
} // namespace

std::vector<Algorithm::SearchItem>
@@ -55,33 +68,18 @@ ConvBiasForwardImpl::AlgoBFloat16::get_subopr_list(

bool ConvBiasForwardImpl::AlgoBFloat16::is_available(
const SizeArgs& args) const {
auto convbias_opr = args.handle->create_operator<ConvBias>();
auto&& config = sub_opr_config(
{*args.src_layout, *args.filter_layout, *args.bias_layout,
*args.z_layout, *args.dst_layout},
args.opr);
convbias_opr->param() = config.second;
auto config = prepare_sub_opr(args);

return args.src_layout->dtype == args.filter_layout->dtype &&
args.src_layout->dtype == dtype::BFloat16() &&
get_algorithm(static_cast<ConvBiasForwardImpl*>(convbias_opr.get()),
get_algorithm(static_cast<ConvBiasForwardImpl*>(config.second.get()),
config.first[0], config.first[1], config.first[2],
config.first[3], config.first[4]);
}

WorkspaceBundle ConvBiasForwardImpl::AlgoBFloat16::get_workspace_bundle(
void* ptr, const SizeArgs& args) const {
auto convbias_opr = args.handle->create_operator<ConvBias>();
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
convbias_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}
auto&& config = sub_opr_config(
{*args.src_layout, *args.filter_layout, *args.bias_layout,
*args.z_layout, *args.dst_layout},
args.opr);
convbias_opr->param() = config.second;
auto config = prepare_sub_opr(args);

SmallVector<size_t> sizes;
auto get_workspace = [&sizes](const TensorLayout& src,
@@ -95,7 +93,7 @@ WorkspaceBundle ConvBiasForwardImpl::AlgoBFloat16::get_workspace_bundle(
get_workspace(*args.bias_layout, config.first[2]);
get_workspace(*args.z_layout, config.first[3]);
get_workspace(*args.dst_layout, config.first[4]);
sizes.push_back(convbias_opr->get_workspace_in_bytes(
sizes.push_back(config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2], config.first[3],
config.first[4], nullptr));

@@ -123,17 +121,10 @@ void ConvBiasForwardImpl::AlgoBFloat16::exec(const ExecArgs& args) const {
.src_to_comp_type(*args.dst_tensor, fdst_tensor);
}
{
auto convbias_opr = args.handle->create_operator<ConvBias>();
convbias_opr->param() = args.opr->param();
convbias_opr->param().compute_mode = Param::ComputeMode::DEFAULT;
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
convbias_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}
auto config = prepare_sub_opr(args);

convbias_opr->exec(fsrc_tensor, ffilter_tensor, fbias_tensor, fz_tensor,
fdst_tensor, nullptr, cvter.workspace());
config.second->exec(fsrc_tensor, ffilter_tensor, fbias_tensor,
fz_tensor, fdst_tensor, nullptr, cvter.workspace());
}
{ cvter.comp_to_dst_type(fdst_tensor, *args.dst_tensor); }
}


+ 18
- 25
dnn/src/cuda/conv_bias/matmul.cpp View File

@@ -15,6 +15,7 @@
#include "src/cuda/conv_bias/helper.h"
#include "src/cuda/conv_bias/matmul/im2col.cuh"
#include "src/cuda/utils.h"
#include "src/common/algo_base.h"

using namespace megdnn;
using namespace cuda;
@@ -40,6 +41,19 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config(

return {{Al, Bl, Cl}, param};
}

std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr(
const ConvBiasForwardImpl::AlgoBase::SizeArgs& args) {
auto matmul_opr = args.handle->create_operator<MatrixMulForward>();
set_execution_policy<ConvBiasForward, MatrixMulForward*>(args.opr,
matmul_opr.get());
auto&& config =
sub_opr_config(args.filter_meta, *args.src_layout,
*args.filter_layout, *args.dst_layout, args.opr);
matmul_opr->param() = config.second;

return {config.first, std::move(matmul_opr)};
}
} // namespace

std::vector<Algorithm::SearchItem>
@@ -87,19 +101,8 @@ WorkspaceBundle ConvBiasForwardImpl::AlgoMatmul::get_workspace_bundle(
conv_args.dst_layout = &dst_layout;
SmallVector<size_t> matmul_sizes = matmul_get_workspace_bundle(conv_args);

auto matmul_opr = args.handle->create_operator<MatrixMulForward>();
if (args.opr->execution_policy().algo.valid() &&
!args.opr->execution_policy().sub_policy.empty()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
matmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config =
sub_opr_config(args.filter_meta, *args.src_layout,
*args.filter_layout, *args.dst_layout, args.opr);
matmul_opr->param() = config.second;
size_t mm_ws = matmul_opr->get_workspace_in_bytes(
auto config = prepare_sub_opr(args);
size_t mm_ws = config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]);
matmul_sizes.push_back(mm_ws);

@@ -162,17 +165,7 @@ void ConvBiasForwardImpl::AlgoMatmul::exec_internal(
args.src_layout->stride[0], IC, IH, IW, FH, FW, OH, OW,
PH, PW, SH, SW, DH, DW, stream);

auto matmul_opr = args.handle->create_operator<MatrixMulForward>();
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
matmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config =
sub_opr_config(args.filter_meta, *args.src_layout,
*args.filter_layout, *args.dst_layout, args.opr);
matmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

TensorND A(args.filter_tensor->ptr<T>(), config.first[0]),
B(col, config.first[1]), C(dst_t, config.first[2]);
@@ -182,7 +175,7 @@ void ConvBiasForwardImpl::AlgoMatmul::exec_internal(
matmul_ws_idx = 3;
}

matmul_opr->exec(A, B, C, bundle.get_workspace(matmul_ws_idx));
config.second->exec(A, B, C, bundle.get_workspace(matmul_ws_idx));

TensorLayout C2l({OC * OH * OW, N}, typename DTypeTrait<T>::dtype()),
C3l = C2l;


+ 20
- 31
dnn/src/cuda/convolution/backward_data/bfloat16.cpp View File

@@ -10,6 +10,7 @@
*/

#include "./algo.h"
#include "src/common/algo_base.h"
#include "src/cuda/convolution/chanwise/kern.cuh"
#include "src/cuda/utils.h"

@@ -38,7 +39,19 @@ std::pair<TensorLayoutArray, ConvolutionBackwardDataImpl::Param> sub_opr_config(
ConvolutionBackwardData::Param::ComputeMode::DEFAULT;
return ret;
}

std::pair<TensorLayoutArray, std::unique_ptr<ConvolutionBackwardData>>
prepare_sub_opr(const ConvolutionBackwardDataImpl::AlgoBase::SizeArgs& args) {
auto conv_back_data_opr =
args.handle->create_operator<ConvolutionBackwardData>();
auto&& config = sub_opr_config(
{*args.filter_layout, *args.diff_layout, *args.grad_layout},
args.opr);
conv_back_data_opr->param() = config.second;

return {config.first, std::move(conv_back_data_opr)};
}
} // namespace

std::vector<Algorithm::SearchItem>
ConvolutionBackwardDataImpl::AlgoBFloat16::get_subopr_list(
@@ -54,33 +67,17 @@ ConvolutionBackwardDataImpl::AlgoBFloat16::get_subopr_list(

bool ConvolutionBackwardDataImpl::AlgoBFloat16::is_available(
const SizeArgs& args) const {
TensorLayout ffilter, fdiff, fgrad;
auto conv_back_data_opr =
args.handle->create_operator<ConvolutionBackwardData>();
auto&& config = sub_opr_config(
{*args.filter_layout, *args.diff_layout, *args.grad_layout},
args.opr);
conv_back_data_opr->param() = config.second;
auto config = prepare_sub_opr(args);
return args.diff_layout->dtype == args.filter_layout->dtype &&
args.diff_layout->dtype == dtype::BFloat16() &&
get_algorithm(static_cast<ConvolutionBackwardDataImpl*>(
conv_back_data_opr.get()),
config.second.get()),
config.first[0], config.first[1], config.first[2]);
}

WorkspaceBundle ConvolutionBackwardDataImpl::AlgoBFloat16::get_workspace_bundle(
void* ptr, const SizeArgs& args) const {
auto conv_back_data_opr =
args.handle->create_operator<ConvolutionBackwardData>();
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
conv_back_data_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}
auto&& config = sub_opr_config(
{*args.filter_layout, *args.diff_layout, *args.grad_layout},
args.opr);
conv_back_data_opr->param() = config.second;
auto config = prepare_sub_opr(args);
SmallVector<size_t> sizes;
auto get_workspace = [&sizes](const TensorLayout& src,
const TensorLayout& dst) {
@@ -92,7 +89,7 @@ WorkspaceBundle ConvolutionBackwardDataImpl::AlgoBFloat16::get_workspace_bundle(
get_workspace(*args.diff_layout, config.first[1]);
get_workspace(*args.grad_layout, config.first[2]);

sizes.push_back(conv_back_data_opr->get_workspace_in_bytes(
sizes.push_back(config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]));
return {ptr, std::move(sizes)};
}
@@ -115,17 +112,9 @@ void ConvolutionBackwardDataImpl::AlgoBFloat16::exec(
.src_to_comp_type(*args.grad_tensor, fgrad_tensor);
}
{
auto conv_back_data_opr =
args.handle->create_operator<ConvolutionBackwardData>();
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
conv_back_data_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}
conv_back_data_opr->param() = args.opr->param();
conv_back_data_opr->param().compute_mode = Param::ComputeMode::DEFAULT;
conv_back_data_opr->exec(ffilter_tensor, fdiff_tensor, fgrad_tensor,
cvter.workspace());
auto config = prepare_sub_opr(args);
config.second->exec(ffilter_tensor, fdiff_tensor, fgrad_tensor,
cvter.workspace());
}
{ cvter.comp_to_dst_type(fgrad_tensor, *args.grad_tensor); }
}


+ 21
- 29
dnn/src/cuda/convolution/backward_data/matmul.cpp View File

@@ -11,6 +11,7 @@
*/

#include "./algo.h"
#include "src/common/algo_base.h"
#include "src/cuda/convolution/helper.h"
#include "src/cuda/convolution/im2col.cuh"
#include "src/cuda/matrix_mul/opr_impl.h"
@@ -43,6 +44,19 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config(
param.transposeA = true;
return {{Al, Cl, Bl}, param};
}

std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr(
const ConvolutionBackwardDataImpl::AlgoBase::SizeArgs& args) {
auto matmul_opr = args.handle->create_operator<MatrixMulForward>();
set_execution_policy<ConvolutionBackwardData, MatrixMulForward*>(
args.opr, matmul_opr.get());
auto&& config =
sub_opr_config(args.filter_meta, *args.filter_layout,
*args.diff_layout, *args.grad_layout, args.opr);
matmul_opr->param() = config.second;

return {config.first, std::move(matmul_opr)};
}
} // namespace

std::vector<Algorithm::SearchItem>
@@ -57,8 +71,7 @@ ConvolutionBackwardDataImpl::AlgoMatmul::get_subopr_list(

std::string param_str;
Algorithm::serialize_write_pod(config.second, param_str);
return {{Algorithm::OprType::MATRIX_MUL_FORWARD, param_str,
config.first}};
return {{Algorithm::OprType::MATRIX_MUL_FORWARD, param_str, config.first}};
}

bool ConvolutionBackwardDataImpl::AlgoMatmul::is_available(
@@ -75,22 +88,10 @@ bool ConvolutionBackwardDataImpl::AlgoMatmul::is_available(

size_t ConvolutionBackwardDataImpl::AlgoMatmul::get_workspace_in_bytes(
const SizeArgs& args) const {
auto matmul_opr =
args.handle->create_operator<MatrixMulForward>();
if (args.opr->execution_policy().algo.valid() &&
!args.opr->execution_policy().sub_policy.empty()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
matmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config =
sub_opr_config(args.filter_meta, *args.filter_layout,
*args.diff_layout, *args.grad_layout, args.opr);
matmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

auto&& sizes = matmul_get_workspace_bundle(args.as_fwd_args());
sizes.push_back(matmul_opr->get_workspace_in_bytes(
sizes.push_back(config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]));
return WorkspaceBundle(nullptr, sizes).total_size_in_bytes();
}
@@ -121,19 +122,10 @@ void ConvolutionBackwardDataImpl::AlgoMatmul::exec_internal(
DW = fm.dilation[1];
auto stream = cuda_stream(args.handle);

auto matmul_opr = args.handle->create_operator<MatrixMulForward>();
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
matmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}
auto&& config =
sub_opr_config(args.filter_meta, *args.filter_layout,
*args.diff_layout, *args.grad_layout, args.opr);
matmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

auto&& sizes = matmul_get_workspace_bundle(args.as_fwd_args());
sizes.push_back(matmul_opr->get_workspace_in_bytes(
sizes.push_back(config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]));
auto wbundle = WorkspaceBundle(args.workspace.raw_ptr, sizes);

@@ -159,9 +151,9 @@ void ConvolutionBackwardDataImpl::AlgoMatmul::exec_internal(
if (fm.should_flip) {
convolution::flip_filter(args.as_fwd_args(),
wbundle.get_workspace(2), A.raw_ptr);
matmul_opr->exec(A, C, B, wbundle.get_workspace(3));
config.second->exec(A, C, B, wbundle.get_workspace(3));
} else {
matmul_opr->exec(A, C, B, wbundle.get_workspace(2));
config.second->exec(A, C, B, wbundle.get_workspace(2));
}
}
{


+ 20
- 35
dnn/src/cuda/convolution/backward_filter/bfloat16.cpp View File

@@ -11,6 +11,7 @@
*/

#include "./algo.h"
#include "src/common/algo_base.h"
#include "src/cuda/convolution/chanwise/kern.cuh"
#include "src/cuda/utils.h"

@@ -39,6 +40,18 @@ sub_opr_config(const TensorLayoutArray& layouts,
ConvolutionBackwardFilter::Param::ComputeMode::DEFAULT;
return ret;
}

std::pair<TensorLayoutArray, std::unique_ptr<ConvolutionBackwardFilter>>
prepare_sub_opr(const ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs& args) {
auto conv_back_filter_opr =
args.handle->create_operator<ConvolutionBackwardFilter>();

auto&& config = sub_opr_config(
{*args.src_layout, *args.diff_layout, *args.grad_layout}, args.opr);
conv_back_filter_opr->param() = config.second;

return {config.first, std::move(conv_back_filter_opr)};
}
} // namespace

std::vector<Algorithm::SearchItem>
@@ -55,36 +68,18 @@ ConvolutionBackwardFilterImpl::AlgoBFloat16::get_subopr_list(

bool ConvolutionBackwardFilterImpl::AlgoBFloat16::is_available(
const SizeArgs& args) const {
TensorLayout fsrc, fdiff, fgrad;
auto conv_back_filter_opr =
args.handle->create_operator<ConvolutionBackwardFilter>();

auto&& config = sub_opr_config(
{*args.src_layout, *args.diff_layout, *args.grad_layout},
args.opr);
conv_back_filter_opr->param() = config.second;
auto config = prepare_sub_opr(args);
return args.src_layout->dtype == args.diff_layout->dtype &&
args.src_layout->dtype == dtype::BFloat16() &&
get_algorithm(static_cast<ConvolutionBackwardFilterImpl*>(
conv_back_filter_opr.get()),
config.second.get()),
config.first[0], config.first[1], config.first[2]);
}

WorkspaceBundle
ConvolutionBackwardFilterImpl::AlgoBFloat16::get_workspace_bundle(
void* ptr, const SizeArgs& args) const {
auto conv_back_filter_opr =
args.handle->create_operator<ConvolutionBackwardFilter>();
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
conv_back_filter_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}
auto&& config = sub_opr_config(
{*args.src_layout, *args.diff_layout, *args.grad_layout},
args.opr);

conv_back_filter_opr->param() = config.second;
auto config = prepare_sub_opr(args);
SmallVector<size_t> sizes;
auto get_workspace = [&sizes](const TensorLayout& src,
const TensorLayout& dst) {
@@ -96,7 +91,7 @@ ConvolutionBackwardFilterImpl::AlgoBFloat16::get_workspace_bundle(
get_workspace(*args.src_layout, config.first[0]);
get_workspace(*args.diff_layout, config.first[1]);
get_workspace(*args.grad_layout, config.first[2]);
sizes.push_back(conv_back_filter_opr->get_workspace_in_bytes(
sizes.push_back(config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]));
auto ret = WorkspaceBundle{ptr, std::move(sizes)};
return ret;
@@ -120,19 +115,9 @@ void ConvolutionBackwardFilterImpl::AlgoBFloat16::exec(
.src_to_comp_type(*args.grad_tensor, fgrad_tensor);
}
{
auto conv_back_filter_opr =
args.handle->create_operator<ConvolutionBackwardFilter>();
conv_back_filter_opr->param() = args.opr->param();
conv_back_filter_opr->param().compute_mode =
Param::ComputeMode::DEFAULT;

if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
conv_back_filter_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}
conv_back_filter_opr->exec(fsrc_tensor, fdiff_tensor, fgrad_tensor,
cvter.workspace());
auto config = prepare_sub_opr(args);
config.second->exec(fsrc_tensor, fdiff_tensor, fgrad_tensor,
cvter.workspace());
}
{ cvter.comp_to_dst_type(fgrad_tensor, *args.grad_tensor); }
}


+ 22
- 29
dnn/src/cuda/convolution/backward_filter/matmul.cpp View File

@@ -11,6 +11,7 @@
*/

#include "./algo.h"
#include "src/common/algo_base.h"
#include "src/cuda/convolution/helper.h"
#include "src/cuda/convolution/im2col.cuh"
#include "src/cuda/utils.h"
@@ -42,6 +43,20 @@ std::pair<TensorLayoutArray, MatrixMulForward::Param> sub_opr_config(
param.transposeB = true;
return {{Cl, Bl, Al}, param};
}

std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr(
const ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs& args) {
auto matmul_opr = args.handle->create_operator<MatrixMulForward>();
set_execution_policy<ConvolutionBackwardFilter, MatrixMulForward*>(
args.opr, matmul_opr.get());

auto&& config =
sub_opr_config(args.grad_filter_meta, *args.src_layout,
*args.diff_layout, *args.grad_layout, args.opr);
matmul_opr->param() = config.second;

return {config.first, std::move(matmul_opr)};
}
} // namespace

std::vector<Algorithm::SearchItem>
@@ -56,11 +71,9 @@ ConvolutionBackwardFilterImpl::AlgoMatmul::get_subopr_list(

std::string param_str;
Algorithm::serialize_write_pod(config.second, param_str);
return {{Algorithm::OprType::MATRIX_MUL_FORWARD, param_str,
config.first}};
return {{Algorithm::OprType::MATRIX_MUL_FORWARD, param_str, config.first}};
}


bool ConvolutionBackwardFilterImpl::AlgoMatmul::is_available(
const SizeArgs& args) const {
if (args.src_layout->dtype == args.diff_layout->dtype &&
@@ -75,21 +88,10 @@ bool ConvolutionBackwardFilterImpl::AlgoMatmul::is_available(

size_t ConvolutionBackwardFilterImpl::AlgoMatmul::get_workspace_in_bytes(
const SizeArgs& args) const {
auto matmul_opr = args.handle->create_operator<MatrixMulForward>();
if (args.opr->execution_policy().algo.valid() &&
!args.opr->execution_policy().sub_policy.empty()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
matmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config =
sub_opr_config(args.grad_filter_meta, *args.src_layout,
*args.diff_layout, *args.grad_layout, args.opr);
matmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

auto&& sizes = matmul_get_workspace_bundle(args.as_fwd_args());
sizes.push_back(matmul_opr->get_workspace_in_bytes(
sizes.push_back(config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]));
return WorkspaceBundle(nullptr, sizes).total_size_in_bytes();
}
@@ -121,19 +123,10 @@ void ConvolutionBackwardFilterImpl::AlgoMatmul::exec_internal(
DW = fm.dilation[1];
auto stream = cuda_stream(args.handle);

auto matmul_opr = args.handle->create_operator<MatrixMulForward>();
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
matmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}
auto&& config =
sub_opr_config(args.grad_filter_meta, *args.src_layout,
*args.diff_layout, *args.grad_layout, args.opr);
matmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

auto&& sizes = matmul_get_workspace_bundle(args.as_fwd_args());
sizes.push_back(matmul_opr->get_workspace_in_bytes(
sizes.push_back(config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]));
auto wbundle = WorkspaceBundle(args.workspace.raw_ptr, sizes);

@@ -164,14 +157,14 @@ void ConvolutionBackwardFilterImpl::AlgoMatmul::exec_internal(
TensorND A(args.grad_tensor->ptr<T>(), Al), B(col, Bl), C(diff_t, Cl);
if (fm.should_flip) {
A.raw_ptr = wbundle.get(2);
matmul_opr->exec(C, B, A, wbundle.get_workspace(3));
config.second->exec(C, B, A, wbundle.get_workspace(3));
convolution::flip_filter(
args.as_fwd_args(),
{static_cast<dt_byte*>(args.grad_tensor->raw_ptr),
wbundle.get_size(2)},
A.raw_ptr);
} else {
matmul_opr->exec(C, B, A, wbundle.get_workspace(2));
config.second->exec(C, B, A, wbundle.get_workspace(2));
}
}
}


+ 20
- 32
dnn/src/cuda/convolution/forward/algos.cpp View File

@@ -65,6 +65,20 @@ std::pair<TensorLayoutArray, ConvBiasForward::Param> sub_opr_config(
return ret;
}

std::pair<TensorLayoutArray, std::unique_ptr<ConvBiasForward>> prepare_sub_opr(
const ConvolutionForwardImpl::AlgoBase::SizeArgs& args) {
auto conv_bias_opr = args.opr->handle()->create_operator<ConvBiasForward>();
set_execution_policy<ConvolutionForward, ConvBiasForward*>(
args.opr, conv_bias_opr.get());

auto&& config = sub_opr_config(
*args.layout_src, *args.layout_filter, *args.layout_dst,
args.opr);
conv_bias_opr->param() = config.second;

return {config.first, std::move(conv_bias_opr)};
}

} // namespace

ConvolutionForwardImpl::AlgoPack::AlgoPack() {
@@ -121,13 +135,8 @@ ConvolutionForwardImpl::AlgoDefault::get_subopr_list(

bool ConvolutionForwardImpl::AlgoDefault::is_available(
const SizeArgs& args) const {
auto conv_bias_opr =
args.opr->handle()->create_operator<ConvBiasForward>();
auto&& config = sub_opr_config(
*args.layout_src, *args.layout_filter, *args.layout_dst,
args.opr);
conv_bias_opr->param() = config.second;
return get_algorithm(static_cast<ConvBiasForwardImpl*>(conv_bias_opr.get()),
auto config = prepare_sub_opr(args);
return get_algorithm(static_cast<ConvBiasForwardImpl*>(config.second.get()),
*args.layout_src, *args.layout_filter, config.first[0],
config.first[1], *args.layout_dst);
}
@@ -135,36 +144,15 @@ bool ConvolutionForwardImpl::AlgoDefault::is_available(

size_t ConvolutionForwardImpl::AlgoDefault::get_workspace_in_bytes(
const SizeArgs& args) const {
auto conv_bias_opr = args.opr->handle()->create_operator<ConvBiasForward>();
if (args.opr->execution_policy().algo.valid() &&
!args.opr->execution_policy().sub_policy.empty()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
conv_bias_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config = sub_opr_config(
*args.layout_src, *args.layout_filter, *args.layout_dst,
args.opr);
conv_bias_opr->param() = config.second;
return conv_bias_opr->get_workspace_in_bytes(
auto config = prepare_sub_opr(args);
return config.second->get_workspace_in_bytes(
*args.layout_src, *args.layout_filter, config.first[0],
config.first[1], *args.layout_dst, nullptr);
}

void ConvolutionForwardImpl::AlgoDefault::exec(const ExecArgs& args) const {
auto conv_bias_opr = args.opr->handle()->create_operator<ConvBiasForward>();
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
conv_bias_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config = sub_opr_config(
*args.layout_src, *args.layout_filter, *args.layout_dst,
args.opr);
conv_bias_opr->param() = config.second;
conv_bias_opr->exec(args.tensor_src, args.tensor_filter,
auto config = prepare_sub_opr(args);
config.second->exec(args.tensor_src, args.tensor_filter,
{nullptr, config.first[0]}, {nullptr, config.first[1]},
args.tensor_dst, nullptr, args.workspace);
}


+ 21
- 27
dnn/src/cuda/deformable_conv/bwd_data/algo_matmul.cpp View File

@@ -14,6 +14,7 @@
#include "src/cuda/deformable_conv/bwd_data/algo.h"
#include "src/cuda/deformable_conv/kimpl/deformable_conv.cuh"
#include "src/cuda/deformable_conv/opr_impl.h"
#include "src/common/algo_base.h"

using namespace megdnn;
using namespace cuda;
@@ -79,15 +80,28 @@ std::pair<TensorLayoutArray, BatchedMatrixMulForward::Param> sub_opr_config(
return {{al, bl, cl}, param};
}

std::pair<TensorLayoutArray, std::unique_ptr<BatchedMatrixMulForward>>
prepare_sub_opr(
const DeformableConvBackwardDataImpl::AlgoBase::SizeArgs& args) {
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>();
set_execution_policy<DeformableConvBackwardData, BatchedMatrixMulForward*>(
args.opr, bmatmul_opr.get());

auto&& config = sub_opr_config(args.filter_meta, args.im_layout,
args.out_grad_layout);
bmatmul_opr->param() = config.second;

return {config.first, std::move(bmatmul_opr)};
}

}; // anonymous namespace

std::vector<Algorithm::SearchItem>
Algo::get_subopr_list(
std::vector<Algorithm::SearchItem> Algo::get_subopr_list(
const TensorLayoutArray& layouts, const OperatorBase* opr) const {
const DeformableConvBackwardDataImpl* deformable_conv =
static_cast<const DeformableConvBackwardDataImpl*>(opr);
CanonizedFilterMeta fm = deformable_conv->make_canonized_filter_meta(
layouts[0].ndim, layouts[1], layouts[2]);
layouts[0].ndim, layouts[1], layouts[2]);
auto&& config = sub_opr_config(fm, layouts[0], layouts[4]);

std::string param_str;
@@ -106,19 +120,9 @@ WorkspaceBundle Algo::get_bundle(const SizeArgs& args) {
OC = args.out_grad_layout[1], OH = args.out_grad_layout[2],
OW = args.out_grad_layout[3], FH = fm.spatial[0], FW = fm.spatial[1];

auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>();
if (args.opr->execution_policy().algo.valid() &&
!args.opr->execution_policy().sub_policy.empty()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
bmatmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config = sub_opr_config(args.filter_meta, args.im_layout,
args.out_grad_layout);
bmatmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

size_t bmm_ws = bmatmul_opr->get_workspace_in_bytes(
size_t bmm_ws = config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]);
size_t result_ws = batch_sz * IC * FH * FW * OH * OW * sizeof(float);
size_t relayout_ws1 = batch_sz * OC * OH * OW * sizeof(float);
@@ -183,24 +187,14 @@ void Algo::exec(const ExecArgs& args) const {
// matmul [g, icpg, FH, FW, ocpg] * [g, ocpg, N, OH, OW] =>
// => [g, icpg, FH, FW, N, OH, OW]
{
auto bmatmul_opr =
args.handle->create_operator<BatchedMatrixMulForward>();
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
bmatmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config = sub_opr_config(args.filter_meta, args.im_layout,
args.out_grad_layout);
bmatmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

TensorND A(static_cast<void*>(dev_filter), config.first[0]),
B(static_cast<void*>(relayout_ws1), config.first[1]),
C(static_cast<void*>(result_ws), config.first[2]);

size_t bmm_ws_size = bundle.get_size(0);
bmatmul_opr->exec(
config.second->exec(
A, B, C,
Workspace(static_cast<megdnn::dt_byte*>(bmm_ws), bmm_ws_size));
}


+ 20
- 25
dnn/src/cuda/deformable_conv/bwd_flt/algo_matmul.cpp View File

@@ -15,6 +15,7 @@
#include "src/cuda/deformable_conv/bwd_flt/algo.h"
#include "src/cuda/deformable_conv/kimpl/deformable_conv.cuh"
#include "src/cuda/deformable_conv/opr_impl.h"
#include "src/common/algo_base.h"

using namespace megdnn;
using namespace cuda;
@@ -79,10 +80,23 @@ std::pair<TensorLayoutArray, BatchedMatrixMulForward::Param> sub_opr_config(
return {{al, bl, cl}, param};
}

std::pair<TensorLayoutArray, std::unique_ptr<BatchedMatrixMulForward>>
prepare_sub_opr(
const DeformableConvBackwardFilterImpl::AlgoBase::SizeArgs& args) {
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>();
set_execution_policy<DeformableConvBackwardFilter,
BatchedMatrixMulForward*>(args.opr, bmatmul_opr.get());

auto&& config = sub_opr_config(args.filter_grad_meta, args.im_layout,
args.out_grad_layout);
bmatmul_opr->param() = config.second;

return {config.first, std::move(bmatmul_opr)};
}

}; // anonymous namespace

std::vector<Algorithm::SearchItem>
Algo::get_subopr_list(
std::vector<Algorithm::SearchItem> Algo::get_subopr_list(
const TensorLayoutArray& layouts, const OperatorBase* opr) const {
const DeformableConvBackwardFilterImpl* deformable_conv =
static_cast<const DeformableConvBackwardFilterImpl*>(opr);
@@ -107,21 +121,11 @@ WorkspaceBundle Algo::get_bundle(const SizeArgs& args) {
size_t IC = fm.group * fm.icpg, OC = args.out_grad_layout[1];
auto batch_sz = args.im_layout[0];

auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>();
if (args.opr->execution_policy().algo.valid() &&
!args.opr->execution_policy().sub_policy.empty()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
bmatmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config = sub_opr_config(args.filter_grad_meta, args.im_layout,
args.out_grad_layout);
bmatmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

size_t col_ws = batch_sz * IC * FH * FW * OH * OW * sizeof(float);
size_t out_grad_ws = batch_sz * OC * OH * OW * sizeof(float);
size_t bmm_ws = bmatmul_opr->get_workspace_in_bytes(
size_t bmm_ws = config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]);

return {nullptr, {col_ws, out_grad_ws, bmm_ws}};
@@ -166,23 +170,14 @@ void Algo::exec(const ExecArgs& args) const {

args.handle->relayout_opr()->exec(C2, C3);
// matmul
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>();
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
bmatmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config = sub_opr_config(args.filter_grad_meta, args.im_layout,
args.out_grad_layout);
bmatmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

TensorND A(static_cast<void*>(out_grad_ws), config.first[0]),
B(static_cast<void*>(col_ws), config.first[1]),
C(static_cast<void*>(dev_filter_grad), config.first[2]);

size_t bmm_ws_size = bundle.get_size(2);
bmatmul_opr->exec(
config.second->exec(
A, B, C,
Workspace(static_cast<megdnn::dt_byte*>(bmm_ws), bmm_ws_size));
}


+ 20
- 27
dnn/src/cuda/deformable_conv/fwd/algo_matmul.cpp View File

@@ -14,6 +14,7 @@
#include "src/cuda/batched_matrix_mul/algo.h"
#include "src/cuda/deformable_conv/fwd/algo.h"
#include "src/cuda/deformable_conv/kimpl/deformable_conv.cuh"
#include "src/common/algo_base.h"

using namespace megdnn;
using namespace cuda;
@@ -78,15 +79,27 @@ std::pair<TensorLayoutArray, BatchedMatrixMulForward::Param> sub_opr_config(
return {{al, bl, cl}, param};
}

std::pair<TensorLayoutArray, std::unique_ptr<BatchedMatrixMulForward>>
prepare_sub_opr(const DeformableConvForwardImpl::AlgoBase::SizeArgs& args) {
auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>();
set_execution_policy<DeformableConvForward, BatchedMatrixMulForward*>(
args.opr, bmatmul_opr.get());

auto&& config =
sub_opr_config(args.filter_meta, args.im_layout, args.dst_layout);
bmatmul_opr->param() = config.second;

return {config.first, std::move(bmatmul_opr)};
}

}; // anonymous namespace

std::vector<Algorithm::SearchItem>
Algo::get_subopr_list(
std::vector<Algorithm::SearchItem> Algo::get_subopr_list(
const TensorLayoutArray& layouts, const OperatorBase* opr) const {
const DeformableConvForwardImpl* deformable_conv =
static_cast<const DeformableConvForwardImpl*>(opr);
CanonizedFilterMeta fm = deformable_conv->make_canonized_filter_meta(
layouts[0].ndim, layouts[1], layouts[2]);
layouts[0].ndim, layouts[1], layouts[2]);
auto&& config = sub_opr_config(fm, layouts[0], layouts[4]);

std::string param_str;
@@ -95,7 +108,6 @@ Algo::get_subopr_list(
config.first}};
}


bool Algo::is_available(const SizeArgs&) const {
return true;
}
@@ -106,20 +118,10 @@ WorkspaceBundle Algo::get_bundle(const SizeArgs& args) {
OC = args.dst_layout[1], OH = args.dst_layout[2],
OW = args.dst_layout[3], FH = fm.spatial[0], FW = fm.spatial[1];

auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>();
if (args.opr->execution_policy().algo.valid() &&
!args.opr->execution_policy().sub_policy.empty()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
bmatmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config =
sub_opr_config(args.filter_meta, args.im_layout, args.dst_layout);
bmatmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

size_t col_ws = batch_sz * IC * FH * FW * OH * OW * sizeof(float);
size_t bmm_ws = bmatmul_opr->get_workspace_in_bytes(
size_t bmm_ws = config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]);
size_t result_ws = batch_sz * OC * OH * OW * sizeof(float);

@@ -154,16 +156,7 @@ void Algo::exec(const ExecArgs& args) const {
deformable_conv::im2col(dev_im, dev_offset, dev_mask,
static_cast<float*>(col_ws), p);

auto bmatmul_opr = args.handle->create_operator<BatchedMatrixMulForward>();
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
bmatmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

auto&& config =
sub_opr_config(args.filter_meta, args.im_layout, args.dst_layout);
bmatmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

// matmul
TensorND A(static_cast<void*>(dev_filter), config.first[0]),
@@ -171,7 +164,7 @@ void Algo::exec(const ExecArgs& args) const {
C(static_cast<void*>(result_ws), config.first[2]);

size_t bmm_ws_size = bundle.get_size(1);
bmatmul_opr->exec(
config.second->exec(
A, B, C,
Workspace(static_cast<megdnn::dt_byte*>(bmm_ws), bmm_ws_size));
// relayout


+ 18
- 28
dnn/src/cuda/matrix_mul/bfloat16.cpp View File

@@ -14,6 +14,7 @@
#include "src/cuda/matrix_mul/algos.h"
#include "src/cuda/utils.h"
#include "src/common/algo_chooser.h"
#include "src/common/algo_base.h"

using namespace megdnn;
using namespace cuda;
@@ -37,6 +38,15 @@ std::pair<TensorLayoutArray, MatrixMulForwardImpl::Param> sub_opr_config(
ret.second.compute_mode = MatrixMulForwardImpl::Param::ComputeMode::DEFAULT;
return ret;
}

std::pair<TensorLayoutArray, std::unique_ptr<MatrixMulForward>> prepare_sub_opr(
const MatrixMulForwardImpl::AlgoBase::SizeArgs& args) {
auto&& config = sub_opr_config(
{args.layout_a, args.layout_b, args.layout_c}, args.opr);
auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>();
matmul_opr->param() = config.second;
return {config.first, std::move(matmul_opr)};
}
} // namespace

std::vector<Algorithm::SearchItem>
@@ -52,27 +62,16 @@ MatrixMulForwardImpl::AlgoBFloat16::get_subopr_list(

bool MatrixMulForwardImpl::AlgoBFloat16::is_available(
const SizeArgs& args) const {
auto&& config = sub_opr_config(
{args.layout_a, args.layout_b, args.layout_c}, args.opr);
auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>();
matmul_opr->param() = config.second;

auto config = prepare_sub_opr(args);
return args.layout_a.dtype == dtype::BFloat16() &&
get_algorithm(static_cast<MatrixMulForwardImpl*>(matmul_opr.get()),
config.first[0], config.first[1], config.first[2]);
get_algorithm(
static_cast<MatrixMulForwardImpl*>(config.second.get()),
config.first[0], config.first[1], config.first[2]);
}

WorkspaceBundle MatrixMulForwardImpl::AlgoBFloat16::get_workspace_bundle(
void* ptr, const SizeArgs& args) const {
auto matmul_opr = args.opr->handle()->create_operator<MatrixMulForward>();
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
matmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}
auto&& config = sub_opr_config(
{args.layout_a, args.layout_b, args.layout_c}, args.opr);
matmul_opr->param() = config.second;
auto config = prepare_sub_opr(args);

SmallVector<size_t> sizes;
auto get_workspace = [&sizes](const TensorLayout& src,
@@ -85,7 +84,7 @@ WorkspaceBundle MatrixMulForwardImpl::AlgoBFloat16::get_workspace_bundle(
get_workspace(args.layout_a, config.first[0]);
get_workspace(args.layout_b, config.first[1]);
get_workspace(args.layout_c, config.first[2]);
sizes.push_back(matmul_opr->get_workspace_in_bytes(
sizes.push_back(config.second->get_workspace_in_bytes(
config.first[0], config.first[1], config.first[2]));
return {ptr, std::move(sizes)};
}
@@ -106,17 +105,8 @@ void MatrixMulForwardImpl::AlgoBFloat16::exec(const ExecArgs& args) const {
.src_to_comp_type(args.tensor_b, b)
.src_to_comp_type(args.tensor_c, c);
{
auto matmul_opr =
args.opr->handle()->create_operator<MatrixMulForward>();
matmul_opr->param() = args.opr->param();
matmul_opr->param().compute_mode = Param::ComputeMode::DEFAULT;
if (args.opr->execution_policy().algo.valid()) {
megdnn_assert(args.opr->execution_policy().sub_policy.size() == 1);
matmul_opr->execution_policy() =
args.opr->execution_policy().sub_policy[0];
}

matmul_opr->exec(a, b, c, ctypecvt.workspace());
auto config = prepare_sub_opr(args);
config.second->exec(a, b, c, ctypecvt.workspace());
}
ctypecvt.comp_to_dst_type(c, args.tensor_c);
}


Loading…
Cancel
Save