GitOrigin-RevId: eaad25a7ef
release-1.2
@@ -514,6 +514,16 @@ ComputingGraphImpl::CompileState ComputingGraphImpl::compile_prepare( | |||
optimizer.add_passes_for_optimize_options(options().graph_opt, true); | |||
optimizer.apply_inplace(dest_vars); | |||
if (sopr_stat.has_shape_hint) { | |||
// FIXME(zhangxuanrun): strictly speaking, it could and has to remove | |||
// ShapeHints even they were occured in subgraph | |||
mgb_assert(!m_parent_graph, "can not use ShapeHint in subgraph"); | |||
// always need remove shape hint | |||
gopt::GraphOptimizer opt; | |||
opt.add_pass<gopt::RemoveShapeHintPass>(); | |||
opt.apply_inplace(dest_vars); | |||
} | |||
const OprNodeArray* opr_seq = nullptr; | |||
CompSeqExtraInfo extra_info; | |||
cmpnt.seq_comp_node_opt.optimize_comp_nodes(dest_vars); | |||
@@ -564,6 +564,9 @@ void ExtraDependencyMerger::on_opr(OperatorNodeBase* opr) { | |||
sopr_stat->has_virtual_grad = true; | |||
} | |||
#endif | |||
if (sopr_stat && opr->same_type<opr::ShapeHint>()) { | |||
sopr_stat->has_shape_hint = true; | |||
} | |||
} | |||
} | |||
@@ -149,6 +149,7 @@ SymbolVar current_grad_target(ComputingGraph &graph); | |||
struct SpecialOprStat { | |||
bool has_virtual_grad = false; | |||
bool has_shape_hint = false; | |||
}; | |||
/*! | |||
@@ -678,6 +678,11 @@ GraphOptimizer& GraphOptimizer::add_preset_passes( | |||
add_pass<ParamMergePass>(); | |||
add_pass<FuseDeconvCvtPass>(); | |||
} | |||
if (inference_opt) { | |||
// remove shape hint after inference optimization | |||
add_pass<RemoveShapeHintPass>(); | |||
} | |||
return *this; | |||
} | |||
@@ -1055,4 +1055,30 @@ void PackAllReduceReplacePass::insert_packed_oprs( | |||
#endif // MGB_ENABLE_OPR_MM | |||
/* ======================= RemoveShapeHintPass ====================== */ | |||
const char* RemoveShapeHintPass::name() const { | |||
return "remove_shape_hint"; | |||
} | |||
void RemoveShapeHintPass::apply(OptState& opt) const { | |||
MIDOUT_B("RemoveShapeHintPass::apply") | |||
opt.set_var_replace_check_flag(VarReplaceCheckFlag::CHECK_DTYPE); | |||
auto rewriter = opt.graph().make_rewriter(); | |||
auto on_opr = [&](OperatorNodeBase* opr) { | |||
if (auto sh = try_cast_as_op<opr::ShapeHint>(opr)) { | |||
auto inp = rewriter.get_var(sh->input(0)); | |||
rewriter.replace_var(sh->output(0), inp, | |||
mgb_cstr_log("remove shape hint")); | |||
return; | |||
} | |||
rewriter.auto_replace_outputs(opr); | |||
}; | |||
opt.graph().iter(on_opr); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -141,6 +141,12 @@ namespace gopt { | |||
ThinHashMap<VarNode*, VarNode*>& replace_map, int priority); | |||
}; | |||
class RemoveShapeHintPass final : public Pass { | |||
public: | |||
const char* name() const override; | |||
void apply(OptState& opt) const override; | |||
}; | |||
} // namespace gopt | |||
} // namespace mgb | |||
@@ -840,4 +840,57 @@ SymbolVar RequireInputDynamicStorage::make(const SymbolVar input, | |||
input.node(), config); | |||
} | |||
/* ===================== ShapeHint ===================== */ | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(ShapeHint); | |||
void ShapeHint::scn_do_execute() { | |||
mgb_assert(0); | |||
} | |||
void ShapeHint::init_output_static_infer_desc() { | |||
using namespace cg::static_infer; | |||
auto infer_shp = [this](TensorShape& dest, const InpVal&) -> bool { | |||
const TensorShape* inferred = nullptr; | |||
if (cg::is_static_var_shape(input(0))) { | |||
inferred = owner_graph()->static_infer_manager().infer_shape_fallible(input(0)); | |||
} | |||
if (inferred) { | |||
dest = *inferred; | |||
if (!dest.eq_shape(m_shape)) { | |||
mgb_log_warn( | |||
"given shape hint on var %s is different from inferred shape, " | |||
"hint %s vs inferred %s", cg::dump_var_info({input(0)}).c_str(), | |||
m_shape.to_string().c_str(), dest.to_string().c_str()); | |||
} | |||
} else { | |||
dest = m_shape; | |||
} | |||
return dest.ndim; | |||
}; | |||
owner_graph()->static_infer_manager().register_shape_infer( | |||
output(0), {m_is_const ? SourceType::CONSTANT : SourceType::MUTABLE, {}, infer_shp}); | |||
} | |||
ShapeHint::ShapeHint(VarNode* inp, TensorShape shape, | |||
bool is_const, const OperatorNodeConfig& config) | |||
: Super{inp->owner_graph(), config, "shape_hint", {inp}}, | |||
m_shape(shape), m_is_const(is_const) { | |||
add_input({inp}); | |||
add_output(None); | |||
} | |||
SymbolVar ShapeHint::make(SymbolVar inp, TensorShape shape, | |||
bool is_const, const OperatorNodeConfig& config) { | |||
return inp.insert_single_output_opr<ShapeHint>(inp.node(), shape, is_const, config); | |||
} | |||
#if MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(ShapeHint) { | |||
// since the shape of output(0) could be inferred, no need to | |||
// give hint on out_grad(0) | |||
return out_grad.at(0); | |||
} | |||
#endif | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -90,4 +90,15 @@ decl_opr( | |||
params='Empty' | |||
) | |||
decl_raw_opr( | |||
'shape_hint', | |||
desc='a special op providing shape hint only used in graph compilation', | |||
inputs=[Doc('input', 'input var the shape hint was on'), | |||
Doc('shape', 'given hint shape', 'list of int'), | |||
Doc('is_const', 'whether treat given shape as constant', 'bool', 'False')], | |||
body=[ | |||
'output = _mgb._Opr.shape_hint(input, shape, is_const, config)' | |||
] | |||
) | |||
# vim: ft=python |
@@ -153,6 +153,17 @@ namespace opr { | |||
#endif | |||
MGB_SEREG_OPR(PersistentOutputStorage, 1); | |||
cg::OperatorNodeBase* opr_shallow_copy_shape_hint( | |||
const serialization::OprShallowCopyContext &ctx, | |||
const cg::OperatorNodeBase &opr_, const VarNodeArray &inputs, | |||
const OperatorNodeConfig &config) { | |||
auto &&opr = opr_.cast_final_safe<ShapeHint>(); | |||
mgb_assert(inputs.size() == 1); | |||
return ShapeHint::make(inputs[0], opr.shape(), opr.is_const(), config) | |||
.node()->owner_opr(); | |||
} | |||
MGB_REG_OPR_SHALLOW_COPY(ShapeHint, opr_shallow_copy_shape_hint); | |||
} // namespace opr | |||
} // namespace mgb | |||
@@ -512,6 +512,27 @@ public: | |||
const OperatorNodeConfig& config = {}); | |||
}; | |||
/* | |||
* \brief a special op providing shape hint only used in graph compilation (gopt) | |||
*/ | |||
MGB_DEFINE_OPR_CLASS(ShapeHint, cg::SingleCNOperatorNodeBase) // { | |||
TensorShape m_shape; | |||
bool m_is_const; | |||
void scn_do_execute() override; | |||
void init_output_static_infer_desc() override; | |||
public: | |||
ShapeHint(VarNode* inp, const TensorShape shape, | |||
bool is_const, const OperatorNodeConfig& config); | |||
static SymbolVar make(SymbolVar inp, const TensorShape shape, | |||
bool is_const=false, const OperatorNodeConfig& config = {}); | |||
TensorShape shape() const { return m_shape; } | |||
bool is_const() const { return m_is_const; } | |||
}; | |||
} // namespace opr | |||
} // namespace mgb | |||
@@ -12,6 +12,7 @@ | |||
#include "megbrain/opr/utility.h" | |||
#include "megbrain/gopt/framework.h" | |||
#include "megbrain/opr/io.h" | |||
#include "megbrain/serialization/opr_shallow_copy.h" | |||
#include "megbrain/test/helper.h" | |||
using namespace mgb; | |||
@@ -467,4 +468,64 @@ TEST(TestOprUtility, RequireInputDynamicStorage) { | |||
ASSERT_LT(nr_opr(func), nr0); | |||
} | |||
TEST(TestOprUtility, ShapeHint) { | |||
HostTensorGenerator<> gen; | |||
HostTensorGenerator<dtype::Int32> gen_int; | |||
constexpr size_t length = 233; | |||
{ // basic | |||
for (bool dynamic : {false, true}) { | |||
auto host_x = gen_int({length}); | |||
auto graph = ComputingGraph::make(); | |||
SymbolVar x = opr::Host2DeviceCopy::make(*graph, host_x), x_shape_hint, y; | |||
if (dynamic) { | |||
x_shape_hint = opr::ShapeHint::make(opr::MarkDynamicVar::make(x), TensorShape{length * 2}); | |||
} else { | |||
x_shape_hint = opr::ShapeHint::make(x, TensorShape{length * 2}); | |||
} | |||
y = x_shape_hint * 2 + 1; | |||
if (dynamic) { | |||
ASSERT_TRUE(y.shape().eq_shape({length * 2})); | |||
} else { | |||
ASSERT_TRUE(y.shape().eq_shape({length})); | |||
} | |||
HostTensorND host_y; | |||
auto func = graph->compile({make_callback_copy(y, host_y)}); | |||
func->execute(); | |||
ASSERT_TRUE(host_y.shape().eq_shape({length})); | |||
for (size_t i = 0; i < length; ++ i) { | |||
ASSERT_EQ((*host_x->ptr<int32_t>()) * 2 + 1, *host_y.ptr<int32_t>()); | |||
} | |||
} | |||
} | |||
{ // shallow copy | |||
auto graph = ComputingGraph::make(); | |||
auto host_x = gen({length}); | |||
SymbolVar x = opr::Host2DeviceCopy::make(*graph, host_x), | |||
y = opr::ShapeHint::make(x, TensorShape{length * 2}), | |||
x_unknown = opr::MarkDynamicVar::make(x), | |||
y_copy = serialization::copy_opr_shallow( | |||
*y.node()->owner_opr(), {x_unknown.node()})->output(0); | |||
ASSERT_TRUE(y.shape().eq_shape({length})); | |||
ASSERT_TRUE(y_copy.shape().eq_shape({length * 2})); | |||
} | |||
{ // grad | |||
auto host_x = gen({1}), host_y = gen({1}); | |||
auto graph = ComputingGraph::make(); | |||
auto x = opr::Host2DeviceCopy::make(*graph, host_x), | |||
y = opr::Host2DeviceCopy::make(*graph, host_y), | |||
x_shape_hint = opr::ShapeHint::make(opr::MarkDynamicVar::make(x), TensorShape{1}), | |||
y_shape_hint = opr::ShapeHint::make(y, TensorShape{1}), | |||
t = x_shape_hint * y_shape_hint; | |||
HostTensorND host_gx, host_gy; | |||
auto func = graph->compile({ | |||
make_callback_copy(cg::grad(t, x), host_gx), | |||
make_callback_copy(cg::grad(t, y), host_gy) | |||
}); | |||
func->execute(); | |||
ASSERT_TRUE(host_gx.shape().is_scalar()); | |||
ASSERT_TRUE(host_gy.shape().is_scalar()); | |||
ASSERT_FLOAT_EQ(*host_x->ptr<float>(), *host_gy.ptr<float>()); | |||
ASSERT_FLOAT_EQ(*host_y->ptr<float>(), *host_gx.ptr<float>()); | |||
} | |||
} | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |