GitOrigin-RevId: ddc8af79af
tags/v1.0.0-rc1
@@ -43,6 +43,7 @@ add_library(megbrain OBJECT EXCLUDE_FROM_ALL ${SOURCES}) | |||
target_link_libraries(megbrain PUBLIC mgb_opr_param_defs) | |||
target_include_directories(megbrain | |||
PUBLIC $<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}> | |||
PRIVATE ${PROJECT_SOURCE_DIR}/third_party/midout/src | |||
) | |||
foreach (INCPATH IN LISTS MGB_INC) | |||
target_include_directories(megbrain | |||
@@ -15,6 +15,20 @@ | |||
#include <deque> | |||
//! TODO: here has to be know some megdnn::opr when there is produced midout.h | |||
//! fix it if there is another graceful way. | |||
#include "megdnn/oprs.h" | |||
#include "megbrain/utils/hash_ct.h" | |||
#include "midout.h" | |||
MIDOUT_DECL(megbrain_chain) | |||
#define MIDOUT_B(tag) \ | |||
MIDOUT_BEGIN(megbrain_chain, midout_iv(MGB_HASH_STR(tag))) { | |||
#define MIDOUT_E \ | |||
} \ | |||
MIDOUT_END(); | |||
using namespace mgb; | |||
using namespace gopt; | |||
using namespace opr; | |||
@@ -132,6 +146,7 @@ const char* ExpandFusedArithPass::name() const { | |||
} | |||
void ExpandFusedArithPass::apply(OptState &opt) const { | |||
MIDOUT_B("ExpandFusedArithPass::apply") | |||
auto rewriter = opt.graph().make_rewriter(); | |||
auto on_opr = [&](OperatorNodeBase *opr) { | |||
using Mode = Elemwise::Mode; | |||
@@ -172,6 +187,7 @@ void ExpandFusedArithPass::apply(OptState &opt) const { | |||
opt.graph().iter(on_opr); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
/* ================ NormalizeArithChainPass ================ */ | |||
@@ -529,7 +545,9 @@ const char* NormalizeArithChainPass::name() const { | |||
} | |||
void NormalizeArithChainPass::apply(OptState &opt) const { | |||
MIDOUT_B("NormalizeArithChainPass::apply") | |||
Impl{opt}; | |||
MIDOUT_E | |||
} | |||
/* ================ ReorderArithChainPass ================ */ | |||
@@ -737,7 +755,9 @@ const char* ReorderArithChainPass::name() const { | |||
} | |||
void ReorderArithChainPass::apply(OptState &opt) const { | |||
MIDOUT_B("ReorderArithChainPass::apply") | |||
Impl{*this, opt}; | |||
MIDOUT_E | |||
} | |||
/* ================ ArithFusePass ================ */ | |||
@@ -944,8 +964,9 @@ const char* ArithFusePass::name() const { | |||
} | |||
void ArithFusePass::apply(OptState &opt) const { | |||
MIDOUT_B("ArithFusePass::apply") | |||
Impl{opt}; | |||
MIDOUT_E | |||
} | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
@@ -19,6 +19,16 @@ | |||
#include <cmath> | |||
#include "megbrain/utils/hash_ct.h" | |||
#include "midout.h" | |||
MIDOUT_DECL(megbrain_inplace) | |||
#define MIDOUT_B(tag) \ | |||
MIDOUT_BEGIN(megbrain_inplace, midout_iv(MGB_HASH_STR(tag))) { | |||
#define MIDOUT_E \ | |||
} \ | |||
MIDOUT_END(); | |||
using namespace mgb; | |||
using namespace opr; | |||
using namespace gopt; | |||
@@ -150,8 +160,10 @@ bool gopt::has_inplace_basic_arith_opt(const cg::OperatorNodeBase& opr) { | |||
const inplace_optimize::OptimizerRegistry& | |||
inplace_optimize::optimizer_registry() { | |||
MIDOUT_B("inplace_optimize::optimizer_registry") | |||
static OptimizerRegistry ret = make_optimizer_registry(); | |||
return ret; | |||
MIDOUT_E | |||
} | |||
inplace_optimize::OptimizerRegistry | |||
@@ -13,6 +13,20 @@ | |||
#include "megbrain/gopt/basic_arith.h" | |||
#include "megbrain/serialization/serializer.h" | |||
//! TODO: here has to be know some megdnn::opr when there is produced midout.h | |||
//! fix it if there is another graceful way. | |||
#include "megdnn/oprs.h" | |||
#include "megbrain/utils/hash_ct.h" | |||
#include "midout.h" | |||
MIDOUT_DECL(megbrain_trans) | |||
#define MIDOUT_B(tag) \ | |||
MIDOUT_BEGIN(megbrain_trans, midout_iv(MGB_HASH_STR(tag))) { | |||
#define MIDOUT_E \ | |||
} \ | |||
MIDOUT_END(); | |||
using namespace mgb; | |||
using namespace gopt; | |||
@@ -284,7 +298,9 @@ const char* ArithMulDistributePass::name() const { | |||
} | |||
void ArithMulDistributePass::apply(OptState &opt) const { | |||
MIDOUT_B("ArithMulDistributePass::apply") | |||
Impl{*this, opt}; | |||
MIDOUT_E | |||
} | |||
/* ================ FinalArithTransformPass ================ */ | |||
@@ -488,7 +504,9 @@ const char* FinalArithTransformPass::name() const { | |||
} | |||
void FinalArithTransformPass::apply(OptState &opt) const { | |||
MIDOUT_B("FinalArithTransformPass::apply") | |||
Impl{*this, opt}; | |||
MIDOUT_E | |||
} | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
@@ -27,6 +27,7 @@ | |||
#include "megbrain/opr/imgproc.h" | |||
#include "megbrain/opr/nn_int.h" | |||
#include "megbrain/opr/tensor_gen.h" | |||
#include "megbrain/utils/hash_ct.h" | |||
#include "megdnn/tensor_format.h" | |||
@@ -36,6 +37,16 @@ | |||
#include "megbrain/gopt/misc.h" | |||
#include "megbrain/utils/hash_ct.h" | |||
#include "midout.h" | |||
MIDOUT_DECL(megbrain_inference) | |||
#define MIDOUT_B(tag) \ | |||
MIDOUT_BEGIN(megbrain_inference, midout_iv(MGB_HASH_STR(tag))) { | |||
#define MIDOUT_E \ | |||
} \ | |||
MIDOUT_END(); | |||
using namespace mgb; | |||
using namespace gopt; | |||
@@ -430,7 +441,9 @@ ParamRedistributePass::Impl::Impl(OptState &state): | |||
} | |||
void ParamRedistributePass::apply(OptState &state) const { | |||
MIDOUT_B("ParamRedistributePass::apply") | |||
Impl{state}; | |||
MIDOUT_E | |||
} | |||
/* ================ ParamFusePass ================ */ | |||
@@ -512,6 +525,7 @@ const char* ParamFusePass::name() const { | |||
} | |||
void ParamFusePass::apply(OptState &state) const { | |||
MIDOUT_B("ParamFusePass::apply") | |||
auto rewriter = state.graph().make_rewriter(); | |||
auto cg = state.graph().comp_graph(); | |||
@@ -613,6 +627,7 @@ void ParamFusePass::apply(OptState &state) const { | |||
state.graph().iter(replace_opr); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
/* ================ One2OneOprReplacePass ================ */ | |||
@@ -621,6 +636,7 @@ const char* ConvertF32ToF16Pass::name() const { | |||
} | |||
void ConvertF32ToF16Pass::apply(OptState& state) const { | |||
MIDOUT_B("ConvertF32ToF16Pass::apply") | |||
state.set_var_replace_check_flag(m_var_replace_check_flag); | |||
auto rewriter = state.graph().make_rewriter(); | |||
VarNodeArray new_inp_cache; | |||
@@ -674,6 +690,7 @@ void ConvertF32ToF16Pass::apply(OptState& state) const { | |||
auto opr = endpoints[0].node()->owner_opr(); | |||
state.call_with_opr(opr, replace_output, OprPropertyFlag::NONE); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
std::unique_ptr<ConvertF32ToF16Pass> ConvertF32ToF16Pass::make( | |||
@@ -940,6 +957,7 @@ std::unique_ptr<ConvertF32ToF16Pass> ConvertF32ToF16Pass::make( | |||
/* ================ ConvertFormatPass ================ */ | |||
void ConvertFormatPass::apply(OptState& state) const { | |||
MIDOUT_B("ConvertFormatPass::apply") | |||
state.set_var_replace_check_flag(m_var_replace_check_flag); | |||
auto rewriter = state.graph().make_rewriter(); | |||
VarNodeArray new_inp_cache; | |||
@@ -994,9 +1012,11 @@ void ConvertFormatPass::apply(OptState& state) const { | |||
}; | |||
state.graph().iter(on_opr); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
std::unique_ptr<ConvertFormatPass> ConvertFormatPass::make_nhwcd4_converter() { | |||
MIDOUT_B("ConvertFormatPass::make") | |||
auto filter_mode = | |||
[](const megdnn::param::Convolution::Sparse conv_mode, | |||
const VarNode* filter) -> megdnn::param::RelayoutFormat::Mode { | |||
@@ -1551,6 +1571,7 @@ std::unique_ptr<ConvertFormatPass> ConvertFormatPass::make_nhwcd4_converter() { | |||
replace_func[opr::GroupLocalForward::typeinfo()] = | |||
relayout_first_inp_to_chw; | |||
return ret; | |||
MIDOUT_E | |||
} | |||
/* ================ ConvertBatchNormPass ================ */ | |||
@@ -1559,6 +1580,7 @@ const char* ConvertBatchNormToElemwisePass::name() const { | |||
} | |||
void ConvertBatchNormToElemwisePass::apply(OptState& state) const { | |||
MIDOUT_B("ConvertBatchNormToElemwisePass::apply") | |||
auto rewriter = state.graph().make_rewriter(); | |||
auto on_opr = [&](OperatorNodeBase* opr) { | |||
if (auto bn = try_cast_as_op<opr::BatchNorm>(opr)) { | |||
@@ -1586,6 +1608,7 @@ void ConvertBatchNormToElemwisePass::apply(OptState& state) const { | |||
state.graph().iter(on_opr); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
/* ================ FuseConvBiasNonlinPass ================ */ | |||
@@ -1594,6 +1617,7 @@ const char* FuseConvBiasNonlinPass::name() const { | |||
} | |||
void FuseConvBiasNonlinPass::apply(OptState& state) const { | |||
MIDOUT_B("FuseConvBiasNonlinPass::apply") | |||
std::unordered_map<VarNode*, std::vector<OperatorNodeBase*>> m_deps; | |||
state.graph().iter([&m_deps](OperatorNodeBase* opr) { | |||
for (auto& inp : opr->input()) { | |||
@@ -1843,6 +1867,7 @@ void FuseConvBiasNonlinPass::apply(OptState& state) const { | |||
state.graph().iter(on_opr); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
/* ================ FuseConvBiasZPass ================ */ | |||
@@ -1851,6 +1876,7 @@ const char* FuseConvBiasZPass::name() const { | |||
} | |||
void FuseConvBiasZPass::apply(OptState& state) const { | |||
MIDOUT_B("FuseConvBiasZPass::apply") | |||
UniqReaderCheck uniq_reader_check{state.graph()}; | |||
auto rewriter = state.graph().make_rewriter(); | |||
@@ -1977,6 +2003,7 @@ void FuseConvBiasZPass::apply(OptState& state) const { | |||
state.graph().iter(on_opr); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
/* ================ FuseDeconvCvtPass ================ */ | |||
@@ -1986,6 +2013,7 @@ const char* FuseDeconvCvtPass::name() const { | |||
void FuseDeconvCvtPass::apply(OptState& state) const { | |||
MIDOUT_B("FuseDeconvCvtPass::apply") | |||
std::unordered_map<VarNode*, std::vector<OperatorNodeBase*>> m_deps; | |||
state.graph().iter([&m_deps](OperatorNodeBase* opr) { | |||
for (auto& inp : opr->input()) { | |||
@@ -2036,6 +2064,7 @@ void FuseDeconvCvtPass::apply(OptState& state) const { | |||
state.graph().iter(on_opr); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
/* ================ ParamMergePass ================ */ | |||
@@ -2044,10 +2073,12 @@ const char* ParamMergePass::name() const { | |||
} | |||
void ParamMergePass::apply(OptState& opt_state) const { | |||
MIDOUT_B("ParamMergePass::apply") | |||
param_merge<opr::SharedDeviceTensor, opr::MultipleDeviceTensorHolder>( | |||
opt_state); | |||
param_merge<opr::SharedDeviceTensorWithFormat, | |||
opr::MultipleDeviceTensorWithFormatHolder>(opt_state); | |||
MIDOUT_E | |||
} | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -19,6 +19,16 @@ | |||
#include "megbrain/serialization/opr_shallow_copy.h" | |||
#include "../../core/impl/graph/cg_impl.h" | |||
#include "megbrain/utils/hash_ct.h" | |||
#include "midout.h" | |||
MIDOUT_DECL(megbrain_misc) | |||
#define MIDOUT_B(tag) \ | |||
MIDOUT_BEGIN(megbrain_misc, midout_iv(MGB_HASH_STR(tag))) { | |||
#define MIDOUT_E \ | |||
} \ | |||
MIDOUT_END(); | |||
using namespace mgb; | |||
using namespace gopt; | |||
@@ -29,6 +39,7 @@ const char* RemoveNonComputingOprPass::name() const { | |||
} | |||
void RemoveNonComputingOprPass::apply(OptState& opt) const { | |||
MIDOUT_B("RemoveNonComputingOprPass::apply") | |||
auto rewriter = opt.graph().make_rewriter(); | |||
auto on_opr = [&](OperatorNodeBase* opr) { | |||
auto type = opr->dyn_typeinfo(); | |||
@@ -75,6 +86,7 @@ void RemoveNonComputingOprPass::apply(OptState& opt) const { | |||
opt.graph().iter(on_opr); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
/* ================ ExpandVirtualGradPass ================ */ | |||
@@ -84,6 +96,7 @@ const char* ExpandVirtualGradPass::name() const { | |||
} | |||
void ExpandVirtualGradPass::apply(OptState& opt) const { | |||
MIDOUT_B("ExpandVirtualGradPass::apply") | |||
#if MGB_ENABLE_GRAD | |||
opt.set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); | |||
auto rewriter = opt.graph().make_rewriter(); | |||
@@ -111,6 +124,7 @@ void ExpandVirtualGradPass::apply(OptState& opt) const { | |||
#else | |||
MGB_MARK_USED_VAR(opt); | |||
#endif | |||
MIDOUT_E | |||
} | |||
/* ================= DelayBroadcastPass ================ */ | |||
@@ -144,6 +158,7 @@ void DelayBroadcastPass::apply(OptState& opt) const { | |||
// remove them from the chain, and add them back right after the endpoint. | |||
// TypeCvt's order may change, so disable the check. | |||
MIDOUT_B("DelayBroadcastPass::apply") | |||
opt.set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); | |||
auto unique_reader_chk = UniqReaderCheck{opt.graph()}; | |||
@@ -325,6 +340,7 @@ void DelayBroadcastPass::apply(OptState& opt) const { | |||
opt.graph().iter(on_opr); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
/* ======================= RecompTypeCvtPass ====================== */ | |||
@@ -334,6 +350,7 @@ const char* RecompTypeCvtPass::name() const { | |||
} | |||
void RecompTypeCvtPass::apply(OptState& opt) const { | |||
MIDOUT_B("RecompTypeCvtPass::apply") | |||
auto rewriter = opt.graph().make_rewriter(); | |||
auto allowed_typecvt = [](OperatorNodeBase* opr) -> OperatorNodeBase* { | |||
@@ -399,6 +416,7 @@ void RecompTypeCvtPass::apply(OptState& opt) const { | |||
}; | |||
opt.graph().iter(on_opr); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
/* ======================= CombineAstypeAndReducePass ====================== */ | |||
@@ -408,6 +426,7 @@ const char* CombineAstypeAndReducePass::name() const { | |||
} | |||
void CombineAstypeAndReducePass::apply(OptState& opt) const { | |||
MIDOUT_B("CombineAstypeAndReducePass::apply") | |||
auto rewriter = opt.graph().make_rewriter(); | |||
using DataType = opr::Reduce::Param::DataType; | |||
@@ -453,6 +472,7 @@ void CombineAstypeAndReducePass::apply(OptState& opt) const { | |||
opt.graph().iter(on_opr); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
/* ================ CondExecConstPredicateFolding ================ */ | |||
@@ -462,6 +482,7 @@ const char* CondExecConstPredicateFolding::name() const { | |||
void CondExecConstPredicateFolding::apply(OptState& opt) const { | |||
#if MGB_ENABLE_COND_EXEC | |||
MIDOUT_B("CondExecConstPredicateFolding::apply") | |||
if (!cg::ExecutionMask::have_alive_instance()) { | |||
return; | |||
} | |||
@@ -605,6 +626,7 @@ void CondExecConstPredicateFolding::apply(OptState& opt) const { | |||
} | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
#endif // MGB_ENABLE_COND_EXEC | |||
} | |||
@@ -632,6 +654,7 @@ bool RemoveRedundantTypeCvtPass::should_remove(DType A, DType B) { | |||
} | |||
void RemoveRedundantTypeCvtPass::apply(OptState& opt) const { | |||
MIDOUT_B("RemoveRedundantTypeCvtPass::apply") | |||
auto rewriter = opt.graph().make_rewriter(); | |||
auto on_opr = [&](OperatorNodeBase* opr) { | |||
@@ -656,6 +679,7 @@ void RemoveRedundantTypeCvtPass::apply(OptState& opt) const { | |||
opt.graph().iter(on_opr); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
#if MGB_ENABLE_OPR_MM | |||
@@ -668,6 +692,7 @@ const char* PackAllReduceScanPass::name() const { | |||
} | |||
void PackAllReduceScanPass::apply(OptState& opt) const { | |||
MIDOUT_B("PackAllReduceScanPass::apply") | |||
auto comp_graph = opt.graph().comp_graph(); | |||
if (comp_graph->options().allreduce_pack_max_size == 0) return; | |||
auto cb_scan = [this] (OperatorNodeBase* opr) { | |||
@@ -682,6 +707,7 @@ void PackAllReduceScanPass::apply(OptState& opt) const { | |||
} | |||
}; | |||
opt.graph().iter(cb_scan); | |||
MIDOUT_E | |||
} | |||
bool PackAllReduceScanPass::check_pattern(OperatorNodeBase* opr) { | |||
@@ -856,6 +882,7 @@ void PackAllReduceReplacePass::insert_packed_oprs( | |||
} | |||
void PackAllReduceReplacePass::apply(OptState& opt) const { | |||
MIDOUT_B("PackAllReduceReplacePass::apply") | |||
// get graph options | |||
auto comp_graph = opt.graph().comp_graph(); | |||
size_t max_size = comp_graph->options().allreduce_pack_max_size * 1024 * 1024; | |||
@@ -917,6 +944,7 @@ void PackAllReduceReplacePass::apply(OptState& opt) const { | |||
}; | |||
opt.graph().iter(cb_replace); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
#else | |||
@@ -36,6 +36,16 @@ | |||
#endif | |||
#include "megbrain/gopt/misc.h" | |||
#include "megbrain/utils/hash_ct.h" | |||
#include "midout.h" | |||
MIDOUT_DECL(megbrain_tensor_reformat) | |||
#define MIDOUT_B(tag) \ | |||
MIDOUT_BEGIN(megbrain_tensor_reformat, midout_iv(MGB_HASH_STR(tag))) { | |||
#define MIDOUT_E \ | |||
} \ | |||
MIDOUT_END(); | |||
using namespace mgb; | |||
using namespace gopt; | |||
@@ -755,8 +765,10 @@ void TensorReformatPass::translate_pass(OptState& opt) const { | |||
} | |||
void TensorReformatPass::apply(OptState& opt) const { | |||
MIDOUT_B("TensorReformatPass::apply") | |||
insert_pass(opt); | |||
translate_pass(opt); | |||
MIDOUT_E | |||
} | |||
/* ================ EnableTensorCorePass =============== */ | |||
@@ -773,6 +785,7 @@ VarNode* EnableTensorCorePass::on_graph_endpoint_var(VarNode* new_var, | |||
std::unique_ptr<EnableTensorCorePass> | |||
EnableTensorCorePass::make_tensorcore_converter() { | |||
MIDOUT_B("EnableTensorCorePass::make") | |||
// replace rule for conv bias opr | |||
auto replace_conv_bias_opr = [](OperatorNodeBase* opr, | |||
const VarNodeArray& new_inp) { | |||
@@ -1111,6 +1124,7 @@ EnableTensorCorePass::make_tensorcore_converter() { | |||
replace_func[opr::GetVarShape::typeinfo()] = replace_inps_to_nchw4; | |||
replace_func[opr::Dimshuffle::typeinfo()] = replace_inps_to_nchw4; | |||
return ret; | |||
MIDOUT_E | |||
} | |||
/* ================ EnableCHWN4Pass =============== */ | |||
@@ -1125,6 +1139,7 @@ VarNode* EnableCHWN4Pass::on_graph_endpoint_var(VarNode* new_var, | |||
} | |||
std::unique_ptr<EnableCHWN4Pass> EnableCHWN4Pass::make_chwn4_converter() { | |||
MIDOUT_B("EnableCHWN4Pass::make") | |||
auto ret = std::make_unique<EnableCHWN4Pass>(); | |||
ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); | |||
auto&& replace_func = ret->m_opr_replace_func; | |||
@@ -1381,6 +1396,7 @@ std::unique_ptr<EnableCHWN4Pass> EnableCHWN4Pass::make_chwn4_converter() { | |||
replace_func[opr::Dimshuffle::typeinfo()] = replace_inps_to_nchw4; | |||
replace_func[opr::BatchConvBias::typeinfo()] = replace_inps_to_nchw4; | |||
return ret; | |||
MIDOUT_E | |||
} | |||
/* ================ EnableNCHW4Pass ================ */ | |||
@@ -1395,6 +1411,7 @@ VarNode* EnableNCHW4Pass::on_graph_endpoint_var(VarNode* new_var, | |||
} | |||
std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter(){ | |||
MIDOUT_B("EnableNCHW4Pass::make") | |||
auto ret = std::make_unique<EnableNCHW4Pass>(); | |||
ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); | |||
using RelayoutMode = RelayoutPlaceholder::LayoutType; | |||
@@ -1772,6 +1789,7 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter(){ | |||
replace_func[opr::IncrSubtensor::typeinfo()] = relayout_inp_to_nchw; | |||
replace_func[opr::WarpAffineForward::typeinfo()] = relayout_inp_to_nchw; | |||
return ret; | |||
MIDOUT_E | |||
} | |||
/* ================ EnableNchwxxPass =============== */ | |||
@@ -2140,6 +2158,7 @@ void EnableNchwxxPass::fill_opr_convert_fun(size_t pack_c_size){ | |||
std::unique_ptr<EnableNchwxxPass> EnableNchwxxPass::make_nchwxx_converter( | |||
size_t pack_c_size) { | |||
MIDOUT_B("EnableNchwxxPass::make") | |||
auto ret = std::make_unique<EnableNchwxxPass>(pack_c_size); | |||
ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); | |||
std::string convter_pass_name = "conv_format_nchw88"; | |||
@@ -2149,6 +2168,7 @@ std::unique_ptr<EnableNchwxxPass> EnableNchwxxPass::make_nchwxx_converter( | |||
ret->fill_opr_convert_fun(pack_c_size); | |||
ret->set_name(convter_pass_name); | |||
return ret; | |||
MIDOUT_E | |||
} | |||
/* ================ EnableNchw44DotPass =============== */ | |||
@@ -2164,6 +2184,7 @@ VarNode* EnableNchw44DotPass::on_graph_endpoint_var(VarNode* new_var, | |||
std::unique_ptr<EnableNchw44DotPass> | |||
EnableNchw44DotPass::make_nchw44_dot_converter() { | |||
MIDOUT_B("EnableNchw44DotPass::make") | |||
auto ret = std::make_unique<EnableNchw44DotPass>(); | |||
ret->set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK); | |||
//! First is whether the conv can trans to nchwxx, second is the filter | |||
@@ -2384,6 +2405,7 @@ EnableNchw44DotPass::make_nchw44_dot_converter() { | |||
replace_func[opr::Convolution::typeinfo()] = replace_conv_opr; | |||
replace_func[opr::ConvBias::typeinfo()] = replace_conv_bias_opr; | |||
return ret; | |||
MIDOUT_E | |||
} | |||
/* ==================== ShuffleShuffleRemovePass ================= */ | |||
@@ -2961,9 +2983,11 @@ const char* ShuffleShuffleRemovePass::name() const { | |||
} | |||
void ShuffleShuffleRemovePass::apply(OptState& opt) const { | |||
MIDOUT_B("ShuffleShuffleRemovePass::apply") | |||
opt.set_var_replace_check_flag(VarReplaceCheckFlag::CHECK_SHAPE | | |||
VarReplaceCheckFlag::CHECK_DTYPE); | |||
Impl{opt}; | |||
MIDOUT_E | |||
} | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -14,6 +14,16 @@ | |||
#include "megbrain/opr/dnn/convolution.h" | |||
#include "megbrain/opr/tensor_manip.h" | |||
#include "megbrain/utils/hash_ct.h" | |||
#include "midout.h" | |||
MIDOUT_DECL(megbrain_weight_preprocess) | |||
#define MIDOUT_B(tag) \ | |||
MIDOUT_BEGIN(megbrain_weight_preprocess, midout_iv(MGB_HASH_STR(tag))) { | |||
#define MIDOUT_E \ | |||
} \ | |||
MIDOUT_END(); | |||
using namespace mgb; | |||
using namespace gopt; | |||
using namespace cg; | |||
@@ -23,6 +33,7 @@ const char* WinogradTransformReplacePass::name() const { | |||
} | |||
void WinogradTransformReplacePass::apply(OptState& opt) const { | |||
MIDOUT_B("WinogradTransformReplacePass::apply") | |||
auto rewriter = opt.graph().make_rewriter(); | |||
ConstVarPropogate cvprop{ConstVarType::IMMUTABLE_AND_PARAM}; | |||
opt.graph().iter([&cvprop](OperatorNodeBase *opr) { | |||
@@ -174,6 +185,7 @@ void WinogradTransformReplacePass::apply(OptState& opt) const { | |||
opt.graph().iter(on_opr); | |||
rewriter.apply_inplace(); | |||
MIDOUT_E | |||
} | |||
/** | |||
@@ -855,10 +855,12 @@ VarNode* CollectiveComm::grad(VarNode* out_grad) const { | |||
return ModeTrait::from_mode(m_param.mode).grad(out_grad, this); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(CollectiveComm) { | |||
mgb_assert(out_grad.size() == 1, "CollectiveComm should only have one grad"); | |||
return opr.grad(out_grad[0]); | |||
} | |||
#endif | |||
/* ===================== shallow copy ===================== */ | |||
@@ -109,6 +109,7 @@ cg::OperatorNodeBase::NodeProp* RemoteSend::do_make_node_prop() const { | |||
return prop; | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(RemoteSend) { | |||
mgb_assert(opr.is_grad()); | |||
return RemoteRecv::make(opr.key() + ":grad", | |||
@@ -118,6 +119,7 @@ MGB_IMPL_OPR_GRAD(RemoteSend) { | |||
opr.input(0)->shape(), opr.input(0)->dtype()) | |||
.node(); | |||
} | |||
#endif | |||
/* ===================== RemoteRecv ===================== */ | |||
@@ -552,6 +552,7 @@ void Elemwise::call_megdnn_opr_exec( | |||
opr->exec(inp, out); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Elemwise) { | |||
SymbolVar i[5]; | |||
SymbolVar i0(opr.input(0)), i1, i2, out(opr.output(0)), | |||
@@ -730,6 +731,7 @@ MGB_IMPL_OPR_GRAD(Elemwise) { | |||
result = -result; | |||
return result.node(); | |||
} | |||
#endif | |||
VarNode* Elemwise::sum_grad_list(VarNode *wrt, VarNodeArray &grads) { | |||
mgb_assert(!grads.empty()); | |||
@@ -814,6 +816,7 @@ TypeCvt::NodeProp* TypeCvt::do_make_node_prop() const { | |||
return ret; | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(TypeCvt) { | |||
MGB_MARK_USED_VAR(wrt_idx); | |||
auto itype = opr.input(0)->dtype(), otype = opr.output(0)->dtype(); | |||
@@ -826,6 +829,7 @@ MGB_IMPL_OPR_GRAD(TypeCvt) { | |||
} | |||
return TypeCvt::make(out_grad[0], opr.input(0)->dtype()).node(); | |||
} | |||
#endif | |||
void TypeCvt::mem_plan_fwd_in2out_writable() { | |||
if (input(0)->dtype().size() == output(0)->dtype().size() && | |||
@@ -963,10 +967,12 @@ void AddUpdate::record_execute_deps(ExecDependencyArray& deps) { | |||
record_megdnn_opr(deps); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(AddUpdate) { | |||
// actually valid, just not implemented | |||
return InvalidGrad::make(opr, wrt_idx); | |||
} | |||
#endif | |||
/* =========================== Reduce =========================== */ | |||
@@ -1698,6 +1704,7 @@ void Reduce::create_megdnn_opr() { | |||
create_operator<megdnn::Reduce>()); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Reduce) { | |||
for (size_t i = 1; i < opr.output().size(); ++ i) | |||
mgb_assert(!out_grad[i]); | |||
@@ -1733,7 +1740,7 @@ MGB_IMPL_OPR_GRAD(Reduce) { | |||
grad = TypeCvt::make(grad, iv.dtype()); | |||
return grad.node(); | |||
} | |||
#endif | |||
void Reduce::record_execute_deps(ExecDependencyArray& deps) { | |||
record_megdnn_opr(deps); | |||
@@ -1783,11 +1790,13 @@ void PowC::init_output_static_infer_desc() { | |||
{SourceType::DEP, {{input(0), DepType::VALUE}}, infer_value}); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(PowC) { | |||
auto exp = opr.param().exp; | |||
return (exp * SymbolVar{out_grad[0]} * | |||
PowC::make(opr.input(0), exp - 1, opr.config())) | |||
.node(); | |||
} | |||
#endif | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -106,6 +106,7 @@ void MatrixMul::scn_do_execute() { | |||
MGB_FINALLY({ tparam = this->param(); }); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(MatrixMul) { | |||
mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT, | |||
"only float data type supported for grad"); | |||
@@ -128,6 +129,7 @@ MGB_IMPL_OPR_GRAD(MatrixMul) { | |||
} | |||
return grad.node(); | |||
} | |||
#endif | |||
/* ================= BatchedMatrixMul ================= */ | |||
@@ -224,6 +226,7 @@ void BatchedMatrixMul::scn_do_execute() { | |||
MGB_FINALLY({ tparam = this->param(); }); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(BatchedMatrixMul) { | |||
mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT, | |||
"only float data type supported for grad"); | |||
@@ -251,6 +254,7 @@ MGB_IMPL_OPR_GRAD(BatchedMatrixMul) { | |||
} | |||
return grad.node(); | |||
} | |||
#endif | |||
/* ================= Dot ================= */ | |||
@@ -327,6 +331,7 @@ void Dot::add_input_layout_constraint() { | |||
input(1)->add_layout_constraint(check); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Dot) { | |||
auto other_input = opr.input(wrt_idx == 0 ? 1 : 0); | |||
auto ishp0 = opr::GetVarShape::make(opr.input(0)), | |||
@@ -336,6 +341,7 @@ MGB_IMPL_OPR_GRAD(Dot) { | |||
Broadcast::make(mul(out_grad[0], other_input), max_ishp), | |||
wrt_idx ? ishp1 : ishp0).node(); | |||
} | |||
#endif | |||
SymbolVar Dot::make(SymbolVar opr0, SymbolVar opr1, | |||
const OperatorNodeConfig &config) { | |||
@@ -350,6 +356,8 @@ void Dot::record_execute_deps(ExecDependencyArray &deps) { | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(MatrixInverse); | |||
MEGDNN_OPR_INIT1(MatrixInverse, "matrix_inv") | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(MatrixInverse) { | |||
SymbolVar a = opr.output(0); | |||
// TODO: use unified MatrixMul interface when we have it | |||
@@ -364,6 +372,7 @@ MGB_IMPL_OPR_GRAD(MatrixInverse) { | |||
a_bnn); | |||
return da.reshape(a.symshape()).node(); | |||
} | |||
#endif | |||
/* ================= SVD ================= */ | |||
@@ -386,6 +395,7 @@ SVD::SVD(VarNode* src, const Param& param, const OperatorNodeConfig& config) : | |||
} | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
namespace { | |||
/*! | |||
@@ -477,7 +487,9 @@ OP(*, {}, {}) | |||
#undef OP | |||
} // anonymous namespace | |||
#endif | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(SVD) { | |||
/** | |||
* The formula is copied from | |||
@@ -555,6 +567,7 @@ MGB_IMPL_OPR_GRAD(SVD) { | |||
I_n - matmul(v, v, param01))); | |||
return ret.reshape(a.symshape()).node(); | |||
} | |||
#endif | |||
SymbolVarArray SVD::make(const SymbolVar& src, const Param& param, | |||
const OperatorNodeConfig& config) { | |||
@@ -818,6 +818,7 @@ SymbolVar CondExecMark::mark_if_need(SymbolVar maybe_ppv, SymbolVar input, | |||
return input; | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(CondExecMark) { | |||
if (wrt_idx == opr.input().size() - 1 || !out_grad.at(wrt_idx)) { | |||
return nullptr; | |||
@@ -841,6 +842,7 @@ MGB_IMPL_OPR_GRAD(CondExecMark) { | |||
{1, grad_mode}, OperatorNodeConfig{}) | |||
->output(0); | |||
} | |||
#endif | |||
/* ============================= CondExecMerge ============================= */ | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(CondExecMerge); | |||
@@ -1225,6 +1227,7 @@ CondExecMerge::NodeProp* CondExecMerge::do_make_node_prop() const { | |||
return ret; | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(CondExecMerge) { | |||
using Mode = CondExecMerge::Param::Mode; | |||
if (opr.param().mode == Mode::SUM_COND_OUT && | |||
@@ -1259,6 +1262,7 @@ MGB_IMPL_OPR_GRAD(CondExecMerge) { | |||
OperatorNodeConfig{og->comp_node()}) | |||
->output(0); | |||
} | |||
#endif | |||
void CondExecMerge::modify_grad_sum_list(VarNode* wrt, VarNodeArray& grads) { | |||
if (!ExecutionMask::have_alive_instance()) { | |||
@@ -230,6 +230,7 @@ void BatchNormForward::mem_plan_fwd_in2out_writable() { | |||
} | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(BatchNormForward) { | |||
mgb_assert(wrt_idx < 5); | |||
if (wrt_idx < 3) { | |||
@@ -242,6 +243,7 @@ MGB_IMPL_OPR_GRAD(BatchNormForward) { | |||
return nullptr; | |||
} | |||
} | |||
#endif | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(BatchNormBackward); | |||
@@ -18,6 +18,19 @@ | |||
#include "megdnn/oprs/utils.h" | |||
//! TODO: here has to be know some megdnn::opr when there is produced midout.h | |||
//! fix it if there is another graceful way. | |||
#include "megdnn/oprs.h" | |||
#include "midout.h" | |||
MIDOUT_DECL(megbrain_opr_convolution) | |||
#define MIDOUT_B(...) \ | |||
MIDOUT_BEGIN(megbrain_opr_convolution, __VA_ARGS__) { | |||
#define MIDOUT_E \ | |||
} \ | |||
MIDOUT_END(); | |||
#include "../internal/megdnn_opr_wrapper.inl" | |||
#include <array> | |||
@@ -230,6 +243,7 @@ class TimedProfiler { | |||
static constexpr int arity_in = OprArityTrait<Opr>::arity_in; | |||
static constexpr int arity_out = OprArityTrait<Opr>::arity_out; | |||
static constexpr int arity = OprArityTrait<Opr>::arity; | |||
using ConvTensorShapes = std::array<TensorShape, arity>; | |||
public: | |||
@@ -295,6 +309,7 @@ double TimedProfiler<Opr>::init_timeout_setting() { | |||
template <typename Opr> | |||
typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl( | |||
const TParam& raw_param) { | |||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_impl"))) | |||
auto&& param = raw_param.as_single_pod<Param>(); | |||
CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc); | |||
auto megdnn_opr = intl::create_megdnn_opr<Opr>(cn); | |||
@@ -401,14 +416,17 @@ typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl( | |||
mgb_assert(ev_start->finished()); | |||
return TResult::from_pod(Result{ev_start->elapsed_time_until(*ev_end)}); | |||
MIDOUT_E | |||
}; | |||
template <typename Opr> | |||
void TimedProfiler<Opr>::prof_init_device(const TParam& raw_param) { | |||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_init_device"))) | |||
auto&& param = raw_param.as_single_pod<Param>(); | |||
CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc); | |||
// wait for cuda init, so its time does not get accounted in timeout | |||
cn.sync(); | |||
MIDOUT_E | |||
} | |||
/* =================== AlgoChooser =================== */ | |||
@@ -426,6 +444,7 @@ class AlgoChooser { | |||
static constexpr int arity_in = OprArityTrait<Opr>::arity_in; | |||
static constexpr int arity_out = OprArityTrait<Opr>::arity_out; | |||
static constexpr int arity = OprArityTrait<Opr>::arity; | |||
using ImplAlgo = typename Opr::Algorithm*; | |||
using MGBOpr = typename MegDNNOpr2MGBOpr<Opr>::MGBOpr; | |||
using ConvTensorLayouts = std::array<TensorLayout, arity>; | |||
@@ -473,8 +492,8 @@ class AlgoChooser { | |||
//! put first | |||
std::vector<ImplAlgo> get_all_candidates() const { | |||
auto heu = choose_by_heuristic(); | |||
auto&& ret = OprArityTrait<Opr>::get_all_algorithms( | |||
m_megdnn_opr, m_layouts); | |||
auto&& ret = OprArityTrait<Opr>::get_all_algorithms(m_megdnn_opr, | |||
m_layouts); | |||
bool found = false; | |||
for (size_t i = 0; i < ret.size(); ++i) { | |||
if (ret[i] == heu) { | |||
@@ -491,7 +510,7 @@ class AlgoChooser { | |||
//! get candidate algos with workspace limit. | |||
std::vector<ImplAlgo> get_all_candidates_with_workspace_limit() const { | |||
auto && all_algos = get_all_candidates(); | |||
auto&& all_algos = get_all_candidates(); | |||
auto opr = m_mgb_opr; | |||
auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit( | |||
opr->owner_graph(), opr->comp_node(), | |||
@@ -633,16 +652,16 @@ AlgoChooserProfileCache::Result AlgoChooser<Opr>::get_profile_result( | |||
algo->name(), str_on_inp_shape.c_str()); | |||
timer.reset(); | |||
MGB_TRY { cur_rst = ctx.profile_single_algo(algo, cur_timeout); } | |||
MGB_CATCH(std::exception & exc, | |||
{ | |||
mgb_log_warn("caught exception during %s: %s", | |||
msg.c_str(), exc.what()); | |||
continue; | |||
}) | |||
MGB_CATCH(std::exception & exc, { | |||
mgb_log_warn("caught exception during %s: %s", msg.c_str(), | |||
exc.what()); | |||
continue; | |||
}) | |||
MGB_CATCH(..., { | |||
mgb_log_warn("caught exception during %s", msg.c_str()); | |||
continue; | |||
}) if (!cur_rst.valid()) { | |||
}) | |||
if (!cur_rst.valid()) { | |||
mgb_log_warn("timeout when %s; timeout setting: %.3fsec", | |||
msg.c_str(), cur_timeout); | |||
continue; | |||
@@ -680,6 +699,7 @@ void AlgoChooser<megdnn::ConvBias>::get_origin_param_and_layouts( | |||
template <typename Opr> | |||
typename AlgoChooser<Opr>::ImplAlgo AlgoChooser<Opr>::choose_by_profile( | |||
ExeContext& ctx, bool require_reproducible, bool enable_update) { | |||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("AlgoChooser::choose_by_profile"))) | |||
auto opr = ctx.mgb_opr(); | |||
if (opr->owner_graph()->options().no_profiling_on_shape_change) { | |||
auto algo = ctx.megdnn_opr()->execution_policy().algorithm; | |||
@@ -720,6 +740,7 @@ typename AlgoChooser<Opr>::ImplAlgo AlgoChooser<Opr>::choose_by_profile( | |||
opr->owner_graph(), opr->comp_node(), | |||
opr->execution_policy().workspace_limit)); | |||
mgb_trap(); | |||
MIDOUT_E | |||
} | |||
template <> | |||
@@ -748,7 +769,7 @@ void AlgoChooser<megdnn::ConvBias>::ExeContext:: | |||
if (m_layouts[1].dtype.enumv() == DTypeEnum::QuantizedS8 && | |||
param.opr_param.format == megdnn::ConvBias::Param::Format::NCHW44) { | |||
if (winograd_preprocess_opr->param().format == | |||
megdnn::param::MatrixMul::Format::MK4){ | |||
megdnn::param::MatrixMul::Format::MK4) { | |||
winograd_preprocess_opr->param().compute_mode = | |||
ConvBias::Param::ComputeMode::FLOAT32; | |||
param.opr_param.compute_mode = | |||
@@ -941,6 +962,7 @@ void ConvolutionForward::init_output_dtype() { | |||
output(0)->dtype(output_dtype); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(ConvolutionForward) { | |||
mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT, | |||
"only float data type supported for grad"); | |||
@@ -960,6 +982,7 @@ MGB_IMPL_OPR_GRAD(ConvolutionForward) { | |||
return grad.node(); | |||
} | |||
} | |||
#endif | |||
size_t ConvolutionForward::get_workspace_size_bytes( | |||
const TensorShapeArray& input_shapes, | |||
@@ -1086,6 +1109,7 @@ void ConvolutionBackwardData::scn_do_execute() { | |||
intl::get_megdnn_workspace_from_var(output(1))); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(ConvolutionBackwardData) { | |||
mgb_assert(!out_grad[1]); | |||
if (wrt_idx == 0) { | |||
@@ -1101,6 +1125,7 @@ MGB_IMPL_OPR_GRAD(ConvolutionBackwardData) { | |||
} | |||
return nullptr; | |||
} | |||
#endif | |||
/* ==================== ConvolutionBackwardFilter ==================== */ | |||
IMPL_CONV(ConvolutionBackwardFilter, "conv_bwd_filter"); | |||
@@ -1138,6 +1163,7 @@ size_t ConvolutionBackwardFilter::get_workspace_size_bytes( | |||
megdnn_opr(), this); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(ConvolutionBackwardFilter) { | |||
mgb_assert(!out_grad[1]); | |||
if (wrt_idx == 0) { | |||
@@ -1153,6 +1179,7 @@ MGB_IMPL_OPR_GRAD(ConvolutionBackwardFilter) { | |||
} | |||
return nullptr; | |||
} | |||
#endif | |||
/* ==================== Convolution3DForward ==================== */ | |||
IMPL_CONV(Convolution3DForward, "conv3d_fwd"); | |||
@@ -1192,6 +1219,7 @@ void Convolution3DForward::init_output_dtype() { | |||
} | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Convolution3DForward) { | |||
mgb_assert(opr.param().data_type == | |||
Convolution3DForward::Param::DataType::FLOAT, | |||
@@ -1212,6 +1240,7 @@ MGB_IMPL_OPR_GRAD(Convolution3DForward) { | |||
return grad.node(); | |||
} | |||
} | |||
#endif | |||
size_t Convolution3DForward::get_workspace_size_bytes( | |||
const TensorShapeArray& input_shapes, | |||
@@ -1285,6 +1314,7 @@ void Convolution3DBackwardData::scn_do_execute() { | |||
intl::get_megdnn_workspace_from_var(output(1))); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Convolution3DBackwardData) { | |||
mgb_assert(!out_grad[1]); | |||
if (wrt_idx == 0) { | |||
@@ -1300,6 +1330,7 @@ MGB_IMPL_OPR_GRAD(Convolution3DBackwardData) { | |||
} | |||
return nullptr; | |||
} | |||
#endif | |||
/* ==================== Convolution3DBackwardFilter ==================== */ | |||
IMPL_CONV(Convolution3DBackwardFilter, "conv3d_bwd_filter"); | |||
@@ -1658,6 +1689,7 @@ size_t LocalShareForward::get_workspace_size_bytes( | |||
megdnn_opr(), this); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(LocalShareForward) { | |||
mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT, | |||
"only float data type supported for grad"); | |||
@@ -1677,6 +1709,7 @@ MGB_IMPL_OPR_GRAD(LocalShareForward) { | |||
return grad.node(); | |||
} | |||
} | |||
#endif | |||
/* ===================== LocalShareBackwardData ==================== */ | |||
@@ -1737,6 +1770,7 @@ void LocalShareBackwardData::scn_do_execute() { | |||
intl::get_megdnn_workspace_from_var(output(1))); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(LocalShareBackwardData) { | |||
mgb_assert(!out_grad[1]); | |||
if (wrt_idx == 0) { | |||
@@ -1752,6 +1786,7 @@ MGB_IMPL_OPR_GRAD(LocalShareBackwardData) { | |||
} | |||
return nullptr; | |||
} | |||
#endif | |||
/* ==================== LocalShareBackwardFilter ==================== */ | |||
@@ -1792,6 +1827,7 @@ size_t LocalShareBackwardFilter::get_workspace_size_bytes( | |||
megdnn_opr(), this); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(LocalShareBackwardFilter) { | |||
mgb_assert(!out_grad[1]); | |||
if (wrt_idx == 0) { | |||
@@ -1805,6 +1841,7 @@ MGB_IMPL_OPR_GRAD(LocalShareBackwardFilter) { | |||
} | |||
return nullptr; | |||
} | |||
#endif | |||
/* ===================== DeformableConvForward ==================== */ | |||
@@ -1869,6 +1906,7 @@ size_t DeformableConvForward::get_workspace_size_bytes( | |||
megdnn_opr(), this); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(DeformableConvForward) { | |||
mgb_assert(opr.input(0)->dtype() == dtype::Float32(), | |||
"only float data type supported for grad"); | |||
@@ -1888,6 +1926,7 @@ MGB_IMPL_OPR_GRAD(DeformableConvForward) { | |||
SymbolVarArray grads = {grad_arr[0], filter_grad, grad_arr[1], grad_arr[2]}; | |||
return grads[wrt_idx].node(); | |||
} | |||
#endif | |||
/* ==================== DeformableConvBackwardData ==================== */ | |||
@@ -2265,4 +2304,4 @@ void BatchConvBiasForward::init_output_format() { | |||
#undef IMPL_CONV | |||
#undef MGB_FOREACH_FASTRUN_OPR | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -20,11 +20,13 @@ using namespace opr; | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(Images2NeibsForward); | |||
MEGDNN_OPR_INIT1(Images2NeibsForward, "images2neibs") | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Images2NeibsForward) { | |||
mgb_assert(wrt_idx == 0 && out_grad.size() == 2 && !out_grad[1]); | |||
return Images2NeibsBackward::make( | |||
out_grad[0], opr.input(0), opr.param()).node(); | |||
} | |||
#endif | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(Images2NeibsBackward); | |||
MEGDNN_OPR_INIT2(Images2NeibsBackward, "images2neibs_grad", 1, false); | |||
@@ -20,10 +20,13 @@ using namespace opr; | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(LocalForward); | |||
MEGDNN_OPR_INIT2(LocalForward, "local") | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(LocalForward) { | |||
return intl::conv_grad<LocalBackwardData, LocalBackwardFilter>( | |||
opr, wrt_idx, out_grad); | |||
} | |||
#endif | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(LocalBackwardData); | |||
MEGDNN_OPR_INIT3(LocalBackwardData, "local_bwd_data", 2, false); | |||
@@ -34,10 +37,13 @@ MEGDNN_OPR_INIT3(LocalBackwardFilter, "local_bwd_filter", 2, false); | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(GroupLocalForward); | |||
MEGDNN_OPR_INIT2(GroupLocalForward, "glocal") | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(GroupLocalForward) { | |||
return intl::conv_grad<GroupLocalBackwardData, GroupLocalBackwardFilter>( | |||
opr, wrt_idx, out_grad); | |||
} | |||
#endif | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(GroupLocalBackwardData); | |||
MEGDNN_OPR_INIT3(GroupLocalBackwardData, "glocal_bwd_data", 2, false); | |||
@@ -20,12 +20,14 @@ using namespace opr; | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(LRNForward); | |||
MEGDNN_OPR_INIT1(LRNForward, "lrn") | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(LRNForward) { | |||
mgb_assert(wrt_idx == 0); | |||
SymbolVar grad = LRNBackward::make( | |||
opr.input(0), opr.output(0), out_grad[0], opr.param()); | |||
return grad.node(); | |||
} | |||
#endif | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(LRNBackward); | |||
MEGDNN_OPR_INIT3(LRNBackward, "lrn_bwd", 0, true); | |||
@@ -19,12 +19,14 @@ using namespace opr; | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(PoolingForward); | |||
MEGDNN_OPR_INIT1(PoolingForward, "pooling") | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(PoolingForward) { | |||
mgb_assert(wrt_idx == 0); | |||
SymbolVar grad = PoolingBackward::make( | |||
opr.input(0), opr.output(0), out_grad[0], opr.param()); | |||
return grad.node(); | |||
} | |||
#endif | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(PoolingBackward); | |||
MEGDNN_OPR_INIT3(PoolingBackward, "pooling_bwd", 0, true); | |||
@@ -40,6 +40,7 @@ SymbolVar ROIAlignForward::make(SymbolVar src, SymbolVar rois, | |||
src.node(), rois.node(), param, config); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(ROIAlignForward) { | |||
if (out_grad[1]) { | |||
return InvalidGrad::make(opr, wrt_idx); | |||
@@ -55,6 +56,7 @@ MGB_IMPL_OPR_GRAD(ROIAlignForward) { | |||
return nullptr; | |||
} | |||
} | |||
#endif | |||
/* ==================== ROIAlignBackward ==================== */ | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(ROIAlignBackward); | |||
@@ -84,6 +84,7 @@ size_t ROIPoolingForward::get_workspace_size_bytes( | |||
input_shapes, output_shapes); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(ROIPoolingForward) { | |||
if (out_grad[1] || wrt_idx == 2) { | |||
return InvalidGrad::make(opr, wrt_idx); | |||
@@ -98,6 +99,7 @@ MGB_IMPL_OPR_GRAD(ROIPoolingForward) { | |||
return nullptr; | |||
} | |||
} | |||
#endif | |||
void ROIPoolingForward::scn_do_execute() { | |||
return intl::MegDNNOprMethInvoker<megdnn::ROIPoolingForward>:: | |||
@@ -146,6 +148,7 @@ SymbolVar DeformablePSROIPoolingForward::make( | |||
return all[0]; | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(DeformablePSROIPooling) { | |||
mgb_assert(wrt_idx <= 2); // wrt_idx = 0 or 1 or 2 | |||
@@ -168,6 +171,7 @@ MGB_IMPL_OPR_GRAD(DeformablePSROIPooling) { | |||
} | |||
return nullptr; | |||
} | |||
#endif | |||
/* ==================== DeformablePSROIPoolingBackward ==================== */ | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(DeformablePSROIPoolingBackward); | |||
@@ -127,6 +127,7 @@ void WarpPerspectiveForward::record_execute_deps(ExecDependencyArray& deps) { | |||
record_megdnn_opr(deps); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(WarpPerspectiveForward) { | |||
mgb_assert(opr.input().size() == 3, | |||
"backward with mat_idx is currently unsupported"); | |||
@@ -145,6 +146,7 @@ MGB_IMPL_OPR_GRAD(WarpPerspectiveForward) { | |||
} else | |||
return InvalidGrad::make(opr, wrt_idx); | |||
} | |||
#endif | |||
/* ====================== WarpPerspectiveBackwardData ====================== */ | |||
@@ -234,6 +236,7 @@ void ResizeForward::record_execute_deps(ExecDependencyArray &deps) { | |||
record_megdnn_opr(deps); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(ResizeForward) { | |||
mgb_assert(opr.input().size() == 2); | |||
if (wrt_idx == 0) { | |||
@@ -243,6 +246,7 @@ MGB_IMPL_OPR_GRAD(ResizeForward) { | |||
} else | |||
return InvalidGrad::make(opr, wrt_idx); | |||
} | |||
#endif | |||
/* ====================== ResizeBackward ====================== */ | |||
@@ -83,6 +83,7 @@ void IndexingOneHot::init_output_dtype() { | |||
output(0)->dtype(input(0)->dtype()); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(IndexingOneHot) { | |||
if (wrt_idx == 0) { | |||
return IndexingSetOneHot::make( | |||
@@ -91,6 +92,7 @@ MGB_IMPL_OPR_GRAD(IndexingOneHot) { | |||
} | |||
return InvalidGrad::make(opr, wrt_idx); | |||
} | |||
#endif | |||
/* ==================== IndexingSetOneHot ==================== */ | |||
@@ -133,6 +135,7 @@ void IndexingSetOneHot::scn_do_execute() { | |||
intl::get_megdnn_workspace_from_var(output(1))); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(IndexingSetOneHot) { | |||
SymbolVar index{opr.input(1)}, sub{opr.input(2)}, og{out_grad.at(0)}; | |||
if (wrt_idx == 0) { | |||
@@ -144,6 +147,7 @@ MGB_IMPL_OPR_GRAD(IndexingSetOneHot) { | |||
} | |||
return InvalidGrad::make(opr, wrt_idx); | |||
} | |||
#endif | |||
size_t IndexingSetOneHot::get_workspace_size_bytes( | |||
const TensorShapeArray &input_shapes, | |||
@@ -165,6 +169,7 @@ void IndexingRemap::init_output_dtype() { | |||
output(0)->dtype(input(0)->dtype()); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(IndexingRemap) { | |||
if (wrt_idx == 1) | |||
return InvalidGrad::make(opr, wrt_idx); | |||
@@ -172,6 +177,7 @@ MGB_IMPL_OPR_GRAD(IndexingRemap) { | |||
return IndexingRemapBackward::make( | |||
out_grad[0], opr.input(1), opr.input(0), opr.param()).node(); | |||
} | |||
#endif | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(IndexingRemapBackward); | |||
MEGDNN_OPR_INIT3(IndexingRemapBackward, "indexing_remap_bwd", 2, false); | |||
@@ -460,6 +466,7 @@ MGB_IMPL_FANCY_INDEXING_OPR_MODIFY( | |||
MGB_IMPL_FANCY_INDEXING_OPR_MODIFY( | |||
IndexingIncrMultiAxisVec, "indexing_incr_multi_axis_vec", false); | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(IndexingMultiAxisVec) { | |||
if (wrt_idx) | |||
return InvalidGrad::make(opr, wrt_idx); | |||
@@ -468,7 +475,9 @@ MGB_IMPL_OPR_GRAD(IndexingMultiAxisVec) { | |||
SymbolVar{opr.input(0)}.fill_retain_dtype(0), | |||
out_grad.at(0), opr.index_desc()).node(); | |||
} | |||
#endif | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(IndexingSetMultiAxisVec) { | |||
if (wrt_idx >= 2) | |||
return InvalidGrad::make(opr, wrt_idx); | |||
@@ -479,7 +488,9 @@ MGB_IMPL_OPR_GRAD(IndexingSetMultiAxisVec) { | |||
} | |||
return IndexingMultiAxisVec::make(out_grad.at(0), opr.index_desc()).node(); | |||
} | |||
#endif | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(IndexingIncrMultiAxisVec) { | |||
if (wrt_idx >= 2) | |||
return InvalidGrad::make(opr, wrt_idx); | |||
@@ -488,6 +499,7 @@ MGB_IMPL_OPR_GRAD(IndexingIncrMultiAxisVec) { | |||
} | |||
return IndexingMultiAxisVec::make(out_grad.at(0), opr.index_desc()).node(); | |||
} | |||
#endif | |||
/* ============================= Mesh Indexing ============================ */ | |||
@@ -498,6 +510,7 @@ MGB_IMPL_FANCY_INDEXING_OPR_GET( | |||
BatchedMeshIndexing, "batched_mesh_indexing", false, | |||
output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);); | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(MeshIndexing) { | |||
if (wrt_idx != 0) { | |||
return InvalidGrad::make(opr, wrt_idx); | |||
@@ -507,6 +520,9 @@ MGB_IMPL_OPR_GRAD(MeshIndexing) { | |||
opr.index_desc()) | |||
.node(); | |||
} | |||
#endif | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(BatchedMeshIndexing) { | |||
if (wrt_idx != 0) { | |||
return InvalidGrad::make(opr, wrt_idx); | |||
@@ -516,11 +532,14 @@ MGB_IMPL_OPR_GRAD(BatchedMeshIndexing) { | |||
opr.index_desc()) | |||
.node(); | |||
} | |||
#endif | |||
/* ========================= IncrMeshIndexing ========================= */ | |||
MGB_IMPL_FANCY_INDEXING_OPR_MODIFY(IncrMeshIndexing, "incr_mesh_indexing", | |||
false); | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(IncrMeshIndexing) { | |||
if (wrt_idx > 2) { | |||
return opr::InvalidGrad::make(opr, wrt_idx); | |||
@@ -530,9 +549,11 @@ MGB_IMPL_OPR_GRAD(IncrMeshIndexing) { | |||
} | |||
return MeshIndexing::make(out_grad.at(0), opr.index_desc()).node(); | |||
} | |||
#endif | |||
MGB_IMPL_FANCY_INDEXING_OPR_MODIFY(BatchedIncrMeshIndexing, | |||
"batched_incr_mesh_indexing", false); | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(BatchedIncrMeshIndexing) { | |||
if (wrt_idx > 2) { | |||
return opr::InvalidGrad::make(opr, wrt_idx); | |||
@@ -542,10 +563,12 @@ MGB_IMPL_OPR_GRAD(BatchedIncrMeshIndexing) { | |||
} | |||
return BatchedMeshIndexing::make(out_grad.at(0), opr.index_desc()).node(); | |||
} | |||
#endif | |||
/* ======================== SetMeshIndexing =========================== */ | |||
MGB_IMPL_FANCY_INDEXING_OPR_MODIFY(SetMeshIndexing, "set_mesh_indexing", false); | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(SetMeshIndexing) { | |||
if (wrt_idx >= 2) { | |||
return opr::InvalidGrad::make(opr, wrt_idx); | |||
@@ -560,9 +583,11 @@ MGB_IMPL_OPR_GRAD(SetMeshIndexing) { | |||
return MeshIndexing::make(out_grad.at(0), opr.index_desc()).node(); | |||
} | |||
} | |||
#endif | |||
MGB_IMPL_FANCY_INDEXING_OPR_MODIFY(BatchedSetMeshIndexing, | |||
"batched_set_mesh_indexing", false); | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(BatchedSetMeshIndexing) { | |||
if (wrt_idx > 2) { | |||
return opr::InvalidGrad::make(opr, wrt_idx); | |||
@@ -578,5 +603,6 @@ MGB_IMPL_OPR_GRAD(BatchedSetMeshIndexing) { | |||
.node(); | |||
} | |||
} | |||
#endif | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -764,11 +764,13 @@ Copy::NodeProp* Copy::do_make_node_prop() const { | |||
return rst; | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Copy) { | |||
mgb_assert(wrt_idx == 0); | |||
return Copy::make(out_grad[0], | |||
OperatorNodeConfig{}.follow_comp_node(opr.input(0))).node(); | |||
} | |||
#endif | |||
void Copy::add_input_layout_constraint() { | |||
if (input(0)->comp_node() != output(0)->comp_node()) { | |||
@@ -268,9 +268,11 @@ VarNode* Loop::grad(Loop &opr, size_t wrt_idx, const VarNodeArray &out_grad) { | |||
return gopr->get_grad_var(wrt_idx); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Loop) { | |||
return Loop::grad(const_cast<Loop&>(opr), wrt_idx, out_grad); | |||
} | |||
#endif | |||
cg::OperatorNodeBase::NodeProp* Loop::do_make_node_prop() const { | |||
auto prop = LoopImpl::do_make_node_prop(); | |||
@@ -48,23 +48,26 @@ namespace intl { | |||
/* ================= Argmxx ================= */ | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Argmax) { | |||
MGB_MARK_USED_VAR(out_grad); | |||
MGB_MARK_USED_VAR(opr); | |||
mgb_assert(!wrt_idx); | |||
return nullptr; | |||
} | |||
#endif | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(Argmax); | |||
MEGDNN_OPR_INIT1(Argmax, "argmax") | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Argmin) { | |||
MGB_MARK_USED_VAR(out_grad); | |||
MGB_MARK_USED_VAR(opr); | |||
mgb_assert(!wrt_idx); | |||
return nullptr; | |||
} | |||
#endif | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(Argmin); | |||
MEGDNN_OPR_INIT1(Argmin, "argmin") | |||
@@ -84,12 +87,14 @@ std::array<SymbolVar, 2> ArgsortForward::make( | |||
return {node->output(0), node->output(1)}; | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(ArgsortForward) { | |||
mgb_assert(out_grad.size() == 3 && wrt_idx == 0 && !out_grad[2]); | |||
if (!out_grad[0]) | |||
return nullptr; | |||
return ArgsortBackward::make(out_grad[0], opr.output(1)).node(); | |||
} | |||
#endif | |||
/* ================= ArgsortBackward ================= */ | |||
@@ -107,12 +112,14 @@ Cumsum::Cumsum(VarNode* opr, const Param& param, | |||
add_input({opr}, AddInputSortType::CUR_ADDED); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Cumsum) { | |||
mgb_assert(out_grad[0] && !out_grad[1]); | |||
auto param = opr.param(); | |||
param.reverse = !param.reverse; | |||
return Cumsum::make(out_grad[0], param).node(); | |||
} | |||
#endif | |||
SymbolVar Cumsum::make(SymbolVar opr, const Param& param, | |||
const OperatorNodeConfig& config) { | |||
@@ -170,6 +177,7 @@ CondTake::CondTake(VarNode *data, VarNode *mask, | |||
} | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(CondTake) { | |||
mgb_assert(out_grad.size() == 3 && !out_grad[2]); | |||
if (wrt_idx == 0 && out_grad[0]) { | |||
@@ -181,6 +189,7 @@ MGB_IMPL_OPR_GRAD(CondTake) { | |||
} | |||
return nullptr; | |||
} | |||
#endif | |||
std::array<SymbolVar, 2> CondTake::make( | |||
SymbolVar data, SymbolVar mask, | |||
@@ -318,6 +327,7 @@ void TopK::record_execute_deps(ExecDependencyArray& deps) { | |||
record_megdnn_opr(deps); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(TopK) { | |||
if (opr.param().mode == TopK::Param::Mode::KTH_ONLY) { | |||
mgb_assert(out_grad[0] && !out_grad[1] && !out_grad[2]); | |||
@@ -334,5 +344,6 @@ MGB_IMPL_OPR_GRAD(TopK) { | |||
return ArgsortBackward::make(out_grad[0], opr.output(1), opr.input(0)) | |||
.node(); | |||
} | |||
#endif | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -316,9 +316,11 @@ VarNodeArray AllGather::grad(const VarNodeArray &out_grad) { | |||
OperatorNodeConfig().comp_node_arr(sp_cn))); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(AllGather) { | |||
return const_cast<AllGather&>(opr).grad(out_grad); | |||
} | |||
#endif | |||
void AllGather::on_output_comp_node_stream_changed() { | |||
} | |||
@@ -112,19 +112,21 @@ UniqPtrWithCN<megdnn::RNGBase> RNGOpr<MegDNNOpr>::create_megdnn_opr() { | |||
return opr; | |||
} | |||
#define IMPL(_cls) \ | |||
template class RNGOpr<::megdnn::_cls>; \ | |||
MGB_IMPL_OPR_GRAD(_cls) { \ | |||
MGB_MARK_USED_VAR(out_grad); \ | |||
return InvalidGrad::make(opr, wrt_idx); \ | |||
} \ | |||
#define IMPL(_cls) \ | |||
MGB_IMPL_OPR_GRAD(_cls) { \ | |||
MGB_MARK_USED_VAR(out_grad); \ | |||
return InvalidGrad::make(opr, wrt_idx); \ | |||
} | |||
namespace mgb { | |||
namespace opr { | |||
namespace intl { | |||
template class RNGOpr<::megdnn::GaussianRNG>; | |||
template class RNGOpr<::megdnn::UniformRNG>; | |||
#ifdef MGB_ENABLE_GRAD | |||
IMPL(GaussianRNG); | |||
IMPL(UniformRNG); | |||
#endif | |||
} | |||
} | |||
} | |||
@@ -46,11 +46,13 @@ void Alloc::outshape_by_symvar_do_get_output_shape( | |||
void Alloc::scn_do_execute() { | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Alloc) { | |||
MGB_MARK_USED_VAR(wrt_idx); | |||
MGB_MARK_USED_VAR(out_grad); | |||
return InvalidGrad::make(opr, 0); | |||
} | |||
#endif | |||
/* ======================= Linspace ======================= */ | |||
@@ -123,6 +125,7 @@ void Linspace::record_execute_deps(ExecDependencyArray& deps) { | |||
std::make_unique<intl::MegDNNGraphDep>(std::move(m_megdnn_opr))); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Linspace) { | |||
if (wrt_idx == 2) | |||
return InvalidGrad::make(opr, wrt_idx); | |||
@@ -134,6 +137,7 @@ MGB_IMPL_OPR_GRAD(Linspace) { | |||
return opr::Dot::make(og, | |||
opr::Linspace::make(i0, i1, opr.input(2), opr.param())).node(); | |||
} | |||
#endif | |||
/* ======================= Eye ======================= */ | |||
@@ -195,9 +199,10 @@ void Eye::record_execute_deps(ExecDependencyArray& deps) { | |||
std::make_unique<intl::MegDNNGraphDep>(std::move(m_megdnn_opr))); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Eye) { | |||
return InvalidGrad::make(opr, wrt_idx); | |||
} | |||
#endif | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
@@ -165,12 +165,13 @@ void GetVarShape::init_output_static_infer_desc() { | |||
mgr.register_value_infer(output(0), | |||
{SourceType::DEP, deps, infer_value}); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(GetVarShape) { | |||
MGB_MARK_USED_VAR(wrt_idx); | |||
MGB_MARK_USED_VAR(out_grad); | |||
return nullptr; | |||
} | |||
#endif | |||
SymbolVar GetVarShape::make(const VarNodeArrayView& inp, Param param, | |||
const OperatorNodeConfig& config) { | |||
@@ -362,11 +363,13 @@ SymbolVar Reshape::make(SymbolVar inp, SymbolVar tshp, | |||
inp.node(), tshp.node(), unspec_axis, config); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Reshape) { | |||
if (wrt_idx) | |||
return InvalidGrad::make(opr, wrt_idx); | |||
return Reshape::make(out_grad[0], GetVarShape::make(opr.input(0))).node(); | |||
} | |||
#endif | |||
Maybe<TensorLayout> Reshape::reshapebrdcast_get_dest_layout( | |||
const TensorLayout &src, const TensorShape &tshape) const { | |||
@@ -429,12 +432,14 @@ SymbolVar Broadcast::make(SymbolVar inp, SymbolVar tshp, | |||
inp.node(), tshp.node(), config); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Broadcast) { | |||
if (wrt_idx) | |||
return InvalidGrad::make(opr, wrt_idx); | |||
return Reduce::make(out_grad.at(0), Reduce::Mode::SUM, | |||
GetVarShape::make(opr.input(0))).node(); | |||
} | |||
#endif | |||
Maybe<TensorLayout> Broadcast::reshapebrdcast_get_dest_layout( | |||
const TensorLayout &src, const TensorShape &tshape) const { | |||
@@ -562,9 +567,11 @@ VarNode* Dimshuffle::grad( | |||
return Dimshuffle::make(out_grad.at(0), back, m_pattern.size()).node(); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Dimshuffle) { | |||
return opr.grad(wrt_idx, out_grad); | |||
} | |||
#endif | |||
// f}}} | |||
@@ -631,10 +638,12 @@ AxisAddRemove::NodeProp* AxisAddRemove::do_make_node_prop() const { | |||
return ret; | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(AxisAddRemove) { | |||
MGB_MARK_USED_VAR(wrt_idx); | |||
return Reshape::make(out_grad[0], GetVarShape::make(opr.input(0))).node(); | |||
} | |||
#endif | |||
// f}}} | |||
@@ -642,6 +651,7 @@ MGB_IMPL_OPR_GRAD(AxisAddRemove) { | |||
MGB_IMPL_FANCY_INDEXING_OPR_GET(Subtensor, "subtensor", true); | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Subtensor) { | |||
if (wrt_idx) | |||
return InvalidGrad::make(opr, wrt_idx); | |||
@@ -650,6 +660,7 @@ MGB_IMPL_OPR_GRAD(Subtensor) { | |||
SymbolVar{opr.input(0)}.fill_retain_dtype(0), | |||
out_grad.at(0), opr.index_desc()).node(); | |||
} | |||
#endif | |||
void Subtensor::init_output_static_infer_desc() { | |||
using namespace cg::static_infer; | |||
@@ -783,6 +794,7 @@ void SetSubtensor::modify(DeviceTensorND &sub, const DeviceTensorND &val) { | |||
sub.copy_from_fixlayout(val); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(SetSubtensor) { | |||
if (wrt_idx >= 2) | |||
return InvalidGrad::make(opr, wrt_idx); | |||
@@ -793,6 +805,7 @@ MGB_IMPL_OPR_GRAD(SetSubtensor) { | |||
} | |||
return Subtensor::make(out_grad.at(0), opr.index_desc()).node(); | |||
} | |||
#endif | |||
// f}}} | |||
@@ -813,6 +826,7 @@ void IncrSubtensor::modify(DeviceTensorND &sub, const DeviceTensorND &val) { | |||
opr->exec(sub.as_megdnn(), val.as_megdnn()); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(IncrSubtensor) { | |||
if (wrt_idx >= 2) | |||
return InvalidGrad::make(opr, wrt_idx); | |||
@@ -821,6 +835,7 @@ MGB_IMPL_OPR_GRAD(IncrSubtensor) { | |||
} | |||
return Subtensor::make(out_grad.at(0), opr.index_desc()).node(); | |||
} | |||
#endif | |||
// f}}} | |||
@@ -1085,6 +1100,7 @@ void Split::do_execute(ExecEnv &env) { | |||
} | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Split) { | |||
if (wrt_idx) | |||
return InvalidGrad::make(opr, wrt_idx); | |||
@@ -1100,6 +1116,7 @@ MGB_IMPL_OPR_GRAD(Split) { | |||
return Concat::make(grad, opr.options().axis, | |||
OperatorNodeConfig{}.follow_comp_node(opr.input(0))).node(); | |||
} | |||
#endif | |||
void Split::mem_plan_fwd_in2out_readonly() { | |||
m_readonly_fwd_called = true; | |||
@@ -1236,6 +1253,7 @@ SymbolVar Concat::make(const VarNodeArrayView& inp, int axis, | |||
axis, config); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Concat) { | |||
auto axis = opr.axis(); | |||
mgb_assert(out_grad.size() == 1); | |||
@@ -1250,6 +1268,7 @@ MGB_IMPL_OPR_GRAD(Concat) { | |||
OperatorNodeConfig().comp_node_arr(comp_node)); | |||
return cg::to_var_node_array(ret); | |||
} | |||
#endif | |||
void Concat::scn_do_execute() { | |||
auto&& out = output(0)->dev_tensor(); | |||
@@ -1507,6 +1526,7 @@ void ParamPackSplit::init_output_static_infer_desc() { | |||
} | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(ParamPackSplit) { | |||
mgb_assert(out_grad.size() == opr.output().size()); | |||
SmallVector<SymbolVar> grad; | |||
@@ -1531,6 +1551,7 @@ MGB_IMPL_OPR_GRAD(ParamPackSplit) { | |||
OperatorNodeConfig{}.follow_comp_node(opr.input(0))) | |||
.node(); | |||
} | |||
#endif | |||
// f}}} | |||
/* f{{{ ======================= RelayoutFormat ======================= */ | |||
@@ -255,9 +255,11 @@ void MarkDynamicVar::scn_do_execute() { | |||
o->dev_tensor().copy_from_fixlayout(i->dev_tensor()); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(MarkDynamicVar) { | |||
return MarkDynamicVar::make(out_grad.at(0)).node(); | |||
} | |||
#endif | |||
MarkDynamicVar::MarkDynamicVar(VarNode *node, const OperatorNodeConfig &config): | |||
Super{node->owner_graph(), config, "mark_dyn", {node}} | |||
@@ -381,10 +383,12 @@ CallbackInjector::mixin_get_static_infer_desc(OperatorNodeBase &opr) { | |||
} | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(CallbackInjector) { | |||
MGB_MARK_USED_VAR(wrt_idx); | |||
return out_grad.at(0); | |||
} | |||
#endif | |||
/* ===================== MarkNoBroadcastElemwise ===================== */ | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(MarkNoBroadcastElemwise); | |||
@@ -404,9 +408,11 @@ SymbolVar MarkNoBroadcastElemwise::make( | |||
input.node(), config); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(MarkNoBroadcastElemwise) { | |||
return out_grad.at(0); | |||
} | |||
#endif | |||
/* ===================== Identity ===================== */ | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(Identity); | |||
@@ -429,9 +435,11 @@ SymbolVar Identity::make( | |||
return input.insert_single_output_opr<Identity>(input.node(), config); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(Identity) { | |||
return out_grad.at(0); | |||
} | |||
#endif | |||
/* ===================== AssertEqual ===================== */ | |||
@@ -530,6 +538,7 @@ SymbolVar SetGrad::make(SymbolVar input, const GradGetter& grad_getter, | |||
input.node(), grad_getter, config); | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(SetGrad) { | |||
MGB_MARK_USED_VAR(wrt_idx); | |||
MGB_MARK_USED_VAR(out_grad); | |||
@@ -538,6 +547,7 @@ MGB_IMPL_OPR_GRAD(SetGrad) { | |||
"var returned by grad_getter belongs to a different comp graph"); | |||
return grad.node(); | |||
} | |||
#endif | |||
/* ===================== InvalidGrad ===================== */ | |||
@@ -690,6 +700,7 @@ VirtualLoss::NodeProp* VirtualLoss::do_make_node_prop() const { | |||
return ret; | |||
} | |||
#ifdef MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(VirtualLoss) { | |||
mgb_assert(out_grad.size() == 1); | |||
auto mid = opr.input().size() / 2; | |||
@@ -698,6 +709,7 @@ MGB_IMPL_OPR_GRAD(VirtualLoss) { | |||
} | |||
return nullptr; | |||
} | |||
#endif | |||
#else | |||
VarNode* InvalidGrad::make(const OperatorNodeBase&, size_t) { | |||
@@ -24,6 +24,16 @@ | |||
#include "megdnn/opr_param_json.h" | |||
#endif | |||
#include "megbrain/utils/hash_ct.h" | |||
#include "midout.h" | |||
MIDOUT_DECL(megbrain_opr_footprint) | |||
#define MIDOUT_B(...) \ | |||
MIDOUT_BEGIN(megbrain_opr_footprint, __VA_ARGS__) { | |||
#define MIDOUT_E \ | |||
} \ | |||
MIDOUT_END(); | |||
using namespace mgb; | |||
namespace { | |||
@@ -581,9 +591,12 @@ std::shared_ptr<json::Value> opr_param_json_func<opr::Subtensor>( | |||
template <class OprType> | |||
void OprFootprint::add_single_comp_footprint() { | |||
MIDOUT_B(OprType, | |||
midout_iv(MGB_HASH_STR("OprFootprint::add_single_comp_footprint"))) | |||
auto&& record = m_type2comp_footprint.emplace(OprType::typeinfo(), | |||
opr_footprint_func<OprType>); | |||
mgb_assert(record.second, "duplicate opr typeinfo"); | |||
MIDOUT_E | |||
} | |||
#if MGB_ENABLE_JSON | |||