@@ -659,9 +659,9 @@ if(MGE_WITH_CUDA) | |||
if(MGE_WITH_TRT) | |||
if(MSVC OR WIN32) | |||
message(STATUS "windows TRT_LIBRARY: ${TRT_LIBRARY}") | |||
list(APPEND MGE_CUDA_LIBS ${TRT_LIBRARY}) | |||
list(APPEND MGE_CUDA_LIBS ${TRT_LIBRARY} ${TRT_PLUGIN_LIBRARY}) | |||
else() | |||
list(APPEND MGE_CUDA_LIBS -Wl,--whole-archive libnvinfer -Wl,--no-whole-archive) | |||
list(APPEND MGE_CUDA_LIBS -Wl,--whole-archive libnvinfer libnvinfer_plugin -Wl,--no-whole-archive) | |||
endif() | |||
if(TensorRT_VERSION_MAJOR GREATER_EQUAL 7) | |||
message(STATUS "handle trt myelin lib after trt7") | |||
@@ -738,7 +738,7 @@ if(MGE_WITH_CUDA) | |||
endif() | |||
else() | |||
if(MGE_WITH_TRT) | |||
list(APPEND MGE_CUDA_LIBS libnvinfer) | |||
list(APPEND MGE_CUDA_LIBS libnvinfer libnvinfer_plugin) | |||
if(TensorRT_VERSION_MAJOR GREATER_EQUAL 7) | |||
message(STATUS "handle trt myelin lib after trt7") | |||
list(APPEND MGE_CUDA_LIBS libmyelin) | |||
@@ -9,6 +9,12 @@ if(MGE_CUDA_USE_STATIC) | |||
HINTS ${ALTER_LIBRARY_PATHS} | |||
PATH_SUFFIXES lib lib64 | |||
DOC "TRT library." ) | |||
find_library(TRT_PLUGIN_LIBRARY | |||
NAMES libnvinfer_plugin_static.a nvinfer_plugin.lib | |||
PATHS ${ALTER_LD_LIBRARY_PATHS} ${TRT_ROOT_DIR} ${CMAKE_INSTALL_PREFIX} | |||
HINTS ${ALTER_LIBRARY_PATHS} | |||
PATH_SUFFIXES lib lib64 | |||
DOC "TRT plugin library." ) | |||
else() | |||
find_library(TRT_LIBRARY | |||
NAMES libnvinfer.so libnvinfer.dylib nvinfer.dll | |||
@@ -16,11 +22,20 @@ else() | |||
HINTS ${ALTER_LIBRARY_PATHS} | |||
PATH_SUFFIXES lib lib64 | |||
DOC "TRT library." ) | |||
find_library(TRT_PLUGIN_LIBRARY | |||
NAMES libnvinfer_plugin.so libnvinfer_plugin.dylib nvinfer_plugin.dll | |||
PATHS ${ALTER_LD_LIBRARY_PATHS} ${TRT_ROOT_DIR} ${CMAKE_INSTALL_PREFIX} | |||
HINTS ${ALTER_LIBRARY_PATHS} | |||
PATH_SUFFIXES lib lib64 | |||
DOC "TRT plugin library." ) | |||
endif() | |||
if(TRT_LIBRARY STREQUAL "TRT_LIBRARY-NOTFOUND") | |||
message(FATAL_ERROR "Can not find TensorRT Library, please refer to scripts/cmake-build/BUILD_README.md to init TRT env") | |||
endif() | |||
if(TRT_PLUGIN_LIBRARY STREQUAL "TRT_PLUGIN_LIBRARY-NOTFOUND") | |||
message(FATAL_ERROR "Can not find TensorRT Plugin Library, please refer to scripts/cmake-build/BUILD_README.md to init TRT env") | |||
endif() | |||
get_filename_component(__found_trt_root ${TRT_LIBRARY}/../.. REALPATH) | |||
find_path(TRT_INCLUDE_DIR | |||
@@ -28,10 +43,18 @@ find_path(TRT_INCLUDE_DIR | |||
HINTS ${TRT_ROOT_DIR} ${CUDA_TOOLKIT_INCLUDE} ${__found_trt_root} | |||
PATH_SUFFIXES include | |||
DOC "Path to TRT include directory." ) | |||
find_path(TRT_PLUGIN_INCLUDE_DIR | |||
NAMES NvInferPlugin.h | |||
HINTS ${TRT_ROOT_DIR} ${CUDA_TOOLKIT_INCLUDE} ${__found_trt_root} | |||
PATH_SUFFIXES include | |||
DOC "Path to TRT plugin include directory." ) | |||
if(TRT_INCLUDE_DIR STREQUAL "TRT_INCLUDE_DIR-NOTFOUND") | |||
message(FATAL_ERROR "Can not find TensorRT INCLUDE, please refer to scripts/cmake-build/BUILD_README.md to init TRT env") | |||
endif() | |||
if(TRT_PLUGIN_INCLUDE_DIR STREQUAL "TRT_PLUGIN_INCLUDE_DIR-NOTFOUND") | |||
message(FATAL_ERROR "Can not find TensorRT Plugin INCLUDE, please refer to scripts/cmake-build/BUILD_README.md to init TRT env") | |||
endif() | |||
file(STRINGS "${TRT_INCLUDE_DIR}/NvInfer.h" TensorRT_MAJOR REGEX "^#define NV_TENSORRT_MAJOR [0-9]+.*$") | |||
file(STRINGS "${TRT_INCLUDE_DIR}/NvInfer.h" TensorRT_MINOR REGEX "^#define NV_TENSORRT_MINOR [0-9]+.*$") | |||
@@ -50,14 +73,20 @@ set(TRT_VERSION_STRING "${TensorRT_VERSION_MAJOR}.${TensorRT_VERSION_MINOR}.${Te | |||
if(MGE_CUDA_USE_STATIC) | |||
add_library(libnvinfer STATIC IMPORTED) | |||
add_library(libnvinfer_plugin STATIC IMPORTED) | |||
else() | |||
add_library(libnvinfer SHARED IMPORTED) | |||
add_library(libnvinfer_plugin SHARED IMPORTED) | |||
endif() | |||
set_target_properties(libnvinfer PROPERTIES | |||
IMPORTED_LOCATION ${TRT_LIBRARY} | |||
INTERFACE_INCLUDE_DIRECTORIES ${TRT_INCLUDE_DIR} | |||
) | |||
set_target_properties(libnvinfer_plugin PROPERTIES | |||
IMPORTED_LOCATION ${TRT_PLUGIN_LIBRARY} | |||
INTERFACE_INCLUDE_DIRECTORIES ${TRT_PLUGIN_INCLUDE_DIR} | |||
) | |||
message(STATUS "Found TensorRT: ${__found_trt_root} (found version: ${TRT_VERSION_STRING})") | |||
@@ -70,6 +70,7 @@ fi | |||
# config NVIDIA libs | |||
TRT_LIB="/c/Program Files/NVIDIA GPU Computing Toolkit/TensorRT-6.0.1.5/lib/nvinfer.dll" | |||
TRT_PLUGIN_LIB="/c/Program Files/NVIDIA GPU Computing Toolkit/TensorRT-6.0.1.5/lib/nvinfer_plugin.dll" | |||
CUDNN_LIB="/c/Program Files/NVIDIA GPU Computing Toolkit/cudnn-10.1-windows10-x64-v7.6.5.32/cuda/bin/cudnn64_7.dll" | |||
CUSOLVER_LIB="/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.1/bin/cusolver64_10.dll" | |||
CUBLAS_LIB="/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.1/bin/cublas64_10.dll" | |||
@@ -86,6 +87,7 @@ function depend_real_copy() { | |||
if [ ${BUILD_WHL_CPU_ONLY} = "OFF" ]; then | |||
echo "copy nvidia lib...." | |||
cp "${TRT_LIB}" ${REAL_DST} | |||
cp "${TRT_PLUGIN_LIB}" ${REAL_DST} | |||
cp "${CUDNN_LIB}" ${REAL_DST} | |||
cp "${CUSOLVER_LIB}" ${REAL_DST} | |||
cp "${CUBLAS_LIB}" ${REAL_DST} | |||
@@ -19,6 +19,7 @@ | |||
#include <cinttypes> | |||
#if MGB_ENABLE_TENSOR_RT | |||
#include <NvInferPlugin.h> | |||
using namespace mgb; | |||
using namespace opr; | |||
@@ -208,6 +209,7 @@ SymbolVarArray TensorRTRuntimeOpr::make( | |||
!CompNode::get_device_count(CompNode::DeviceType::CUDA), SystemError, | |||
"can not create TensorRTRuntimeOpr when CUDA is not available"); | |||
mgb_assert(!src.empty(), "no inputs provided"); | |||
initLibNvInferPlugins(&TensorRTOpr::Logger::instance(), ""); | |||
TensorRTUniquePtr<nvinfer1::IRuntime> runtime{ | |||
nvinfer1::createInferRuntime(TensorRTOpr::Logger::instance()), {}}; | |||
auto gpu_allocator = std::make_shared<GpuAllocator>(src[0].node()->comp_node()); | |||
@@ -25,6 +25,7 @@ | |||
#include "make_trt_net.h" | |||
#include "megbrain/tensorrt/tensorrt_opr.h" | |||
#include <NvInferPlugin.h> | |||
#include <random> | |||
using namespace mgb; | |||
@@ -404,6 +405,84 @@ std::pair<nvinfer1::IBuilder*, INetworkDefinition*> intl::ConcatConvTensorRTNetw | |||
return std::make_pair(builder, network); | |||
} | |||
intl::ReshapeConcatTensorRTNetwork::ReshapeConcatTensorRTNetwork() { | |||
host_x0 = gen({2, 2, 2, 2}); | |||
host_y0 = gen({2, 3, 2, 2}); | |||
graph = ComputingGraph::make(); | |||
x0 = Host2DeviceCopy::make(*graph, host_x0); | |||
y0 = Host2DeviceCopy::make(*graph, host_y0); | |||
auto x1 = opr::Reshape::make(x0, {2, 8, 1, 1}), | |||
y1 = opr::Reshape::make(y0, {2, 12, 1, 1}); | |||
z = opr::Concat::make({x1, y1}, 1); | |||
} | |||
std::pair<nvinfer1::IBuilder*, INetworkDefinition*> intl::ReshapeConcatTensorRTNetwork:: | |||
create_trt_network(bool has_batch_dim) { | |||
initLibNvInferPlugins(&TensorRTOpr::Logger::instance(), ""); | |||
CompNode::load("xpu0").activate(); | |||
auto builder = createInferBuilder(TensorRTOpr::Logger::instance()); | |||
#if NV_TENSOR_RT_VERSION >= 6001 | |||
nvinfer1::NetworkDefinitionCreationFlags flags; | |||
::memset(&flags, 0, sizeof(nvinfer1::NetworkDefinitionCreationFlags)); | |||
if (has_batch_dim) | |||
flags = 1 << static_cast<int>( | |||
nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH); | |||
auto network = builder->createNetworkV2(flags); | |||
#else | |||
auto network = builder->createNetwork(); | |||
#endif | |||
nvinfer1::ITensor *data0, *data1; | |||
#if NV_TENSOR_RT_VERSION >= 6001 | |||
if (has_batch_dim) { | |||
data0 = network->addInput("x0", DataType::kFLOAT, Dims4{2, 2, 2, 2}); | |||
data1 = network->addInput("y0", DataType::kFLOAT, Dims4{2, 3, 2, 2}); | |||
} else { | |||
data0 = network->addInput("x0", DataType::kFLOAT, Dims3{2, 2, 2}); | |||
data1 = network->addInput("y0", DataType::kFLOAT, Dims3{3, 2, 2}); | |||
} | |||
{ | |||
nvinfer1::TensorFormats formats = | |||
1 << static_cast<int>(nvinfer1::TensorFormat::kLINEAR); | |||
data0->setAllowedFormats(formats); | |||
data1->setAllowedFormats(formats); | |||
} | |||
#else | |||
if (has_batch_dim) { | |||
data0 = network->addInput("x0", DataType::kFLOAT, DimsNCHW{2, 2, 2, 2}); | |||
data1 = network->addInput("y0", DataType::kFLOAT, DimsNCHW{2, 3, 2, 2}); | |||
} else { | |||
data0 = network->addInput("x0", DataType::kFLOAT, DimsCHW{2, 2, 2}); | |||
data1 = network->addInput("y0", DataType::kFLOAT, DimsCHW{3, 2, 2}); | |||
} | |||
#endif | |||
int axis = 1; | |||
bool ignoreBatch = false; | |||
nvinfer1::PluginField fields[2] = { | |||
nvinfer1::PluginField{"axis", &axis, nvinfer1::PluginFieldType::kINT32, 1}, | |||
nvinfer1::PluginField{ | |||
"ignoreBatch", &ignoreBatch, nvinfer1::PluginFieldType::kINT32, 1}, | |||
}; | |||
nvinfer1::PluginFieldCollection fc{2, fields}; | |||
auto creator = getPluginRegistry()->getPluginCreator("FlattenConcat_TRT", "1", ""); | |||
TensorRTUniquePtr<nvinfer1::IPluginV2> plugin( | |||
creator->createPlugin("FlattenConcat_TRT", &fc)); | |||
ITensor* inputTensors[] = {data0, data1}; | |||
auto flt_cct = network->addPluginV2(inputTensors, 2, *plugin); | |||
mgb_assert(flt_cct != nullptr, "FlattenConcat_TRT is invalid"); | |||
network->markOutput(*flt_cct->getOutput(0)); | |||
#if NV_TENSOR_RT_VERSION >= 6001 | |||
{ | |||
nvinfer1::TensorFormats formats = | |||
1 << static_cast<int>(nvinfer1::TensorFormat::kLINEAR); | |||
flt_cct->getOutput(0)->setAllowedFormats(formats); | |||
} | |||
#endif | |||
return std::make_pair(builder, network); | |||
} | |||
#pragma GCC diagnostic pop | |||
#endif // MGB_ENABLE_TENSOR_RT | |||
@@ -92,6 +92,18 @@ struct ConcatConvTensorRTNetwork { | |||
bool has_batch_dim); | |||
}; | |||
struct ReshapeConcatTensorRTNetwork { | |||
HostTensorGenerator<> gen; | |||
std::shared_ptr<HostTensorND> host_x0, host_y0; | |||
std::shared_ptr<ComputingGraph> graph; | |||
SymbolVar x0, y0, z; | |||
ReshapeConcatTensorRTNetwork(); | |||
std::pair<nvinfer1::IBuilder*, INetworkDefinition*> create_trt_network( | |||
bool has_batch_dim); | |||
}; | |||
} // namespace intl | |||
} // namespace opr | |||
} // namespace mgb | |||
@@ -23,6 +23,7 @@ | |||
#include "megbrain/tensorrt/tensorrt_opr.h" | |||
#include "megbrain/tensorrt/tensorrt_runtime_opr.h" | |||
#include <fstream> | |||
#include <random> | |||
using namespace mgb; | |||
@@ -244,6 +245,68 @@ TEST(TestOprTensorRT, IOFormatFree) { | |||
} | |||
#endif | |||
TEST(TestOprTensorRT, FlattenConcatPlugin) { | |||
REQUIRE_GPU(1); | |||
intl::ReshapeConcatTensorRTNetwork net; | |||
auto make_trt = [&net]() { | |||
auto p = net.create_trt_network(false); | |||
TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}}; | |||
TensorRTUniquePtr<IBuilder> builder{p.first, {}}; | |||
builder->setMaxBatchSize(5); | |||
#if NV_TENSOR_RT_VERSION >= 6001 | |||
TensorRTUniquePtr<IBuilderConfig> build_config{builder->createBuilderConfig()}; | |||
TensorRTUniquePtr<ICudaEngine> cuda_engine{ | |||
builder->buildEngineWithConfig(*trt_net, *build_config)}; | |||
#else | |||
TensorRTUniquePtr<ICudaEngine> cuda_engine{builder->buildCudaEngine(*trt_net)}; | |||
#endif | |||
TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}}; | |||
return TensorRTRuntimeOpr::make(mem->data(), mem->size(), {net.x0, net.y0})[0]; | |||
}; | |||
auto z2 = make_trt(); | |||
HostTensorND host_z1; | |||
HostTensorND host_z2; | |||
auto func = net.graph->compile( | |||
{make_callback_copy(net.z, host_z1), make_callback_copy(z2, host_z2)}); | |||
func->execute(); | |||
MGB_ASSERT_TENSOR_EQ(host_z1, host_z2); | |||
} | |||
TEST(TestOprTensorRT, ICudaEngine) { | |||
REQUIRE_GPU(1); | |||
CompNode::load("xpu0").activate(); | |||
std::ifstream engineFile("model.trt", std::ios::binary); | |||
if (!engineFile) | |||
return; | |||
engineFile.seekg(0, engineFile.end); | |||
long int fsize = engineFile.tellg(); | |||
engineFile.seekg(0, engineFile.beg); | |||
std::vector<char> engineData(fsize); | |||
engineFile.read(engineData.data(), fsize); | |||
if (!engineFile) | |||
return; | |||
std::shared_ptr<ComputingGraph> graph; | |||
graph = ComputingGraph::make(); | |||
HostTensorGenerator<> gen; | |||
std::shared_ptr<HostTensorND> host_x0, host_y0; | |||
host_x0 = gen({2, 3, 375, 500}); | |||
host_y0 = gen({2, 1, 1, 3}); | |||
SymbolVar x0 = Host2DeviceCopy::make(*graph, host_x0); | |||
SymbolVar y0 = Host2DeviceCopy::make(*graph, host_y0); | |||
auto z = TensorRTRuntimeOpr::make(engineData.data(), fsize, {x0, y0})[0]; | |||
HostTensorND host_z; | |||
auto func = graph->compile({make_callback_copy(z, host_z)}); | |||
func->execute(); | |||
} | |||
#endif // MGB_ENABLE_TENSOR_RT | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |