GitOrigin-RevId: e65b2ce856
release-1.8
@@ -19,6 +19,7 @@ using namespace cuda; | |||
ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||
non_cudnn_algos.push_back(&chanwise); | |||
non_cudnn_algos.push_back(&chanwise_small); | |||
non_cudnn_algos.push_back(&depthwise_large_filter); | |||
non_cudnn_algos.push_back(&inplace_matmul); | |||
non_cudnn_algos.push_back(&matmul); | |||
@@ -34,6 +35,7 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||
std::vector<AlgoBase*> conv_algos; | |||
conv_algos.push_back(&chanwise); | |||
conv_algos.push_back(&chanwise_small); | |||
conv_algos.push_back(&depthwise_large_filter); | |||
conv_algos.push_back(&chanwise8x8x32); | |||
for (auto&& algo : cudnn_convs) { | |||
conv_algos.push_back(&algo); | |||
@@ -22,7 +22,6 @@ | |||
#include "src/cuda/conv_bias/opr_impl.h" | |||
#include "src/cuda/convolution_helper/parameter.cuh" | |||
#include "src/cuda/cudnn_wrapper.h" | |||
#include "src/cuda/handle.h" | |||
#include <cuda.h> | |||
#include <memory> | |||
@@ -57,6 +56,7 @@ public: | |||
CUDA_CUDNN_CONVBIAS, | |||
CUDA_CHANWISE, | |||
CUDA_CHANWISE_SMALL, | |||
CUDA_DEPTHWISE_LARGE_FILTER, | |||
CUDA_CHANWISE_INT8X8X32, | |||
CUDA_CUDNN_CONV, | |||
CUDA_INPLACE_MATMUL, | |||
@@ -257,6 +257,26 @@ private: | |||
mutable std::string m_name; | |||
}; | |||
class ConvBiasForwardImpl::AlgoDepthwiseLargeFilter final : public AlgoBase { | |||
public: | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasForward::algo_name<DirectParam>( | |||
"DEPTHWISE_LARGE_FILTER", {}); | |||
} | |||
return m_name.c_str(); | |||
} | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_DEPTHWISE_LARGE_FILTER) | |||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
private: | |||
mutable std::string m_name; | |||
}; | |||
class ConvBiasForwardImpl::AlgoChanwise8x8x32 final : public AlgoBase { | |||
public: | |||
bool is_available(const SizeArgs& args) const override; | |||
@@ -1084,6 +1104,7 @@ public: | |||
AlgoFallbackNCHWQS8 fallback_nchw_qs8; | |||
AlgoChanwise chanwise; | |||
AlgoChanwiseSmall chanwise_small; | |||
AlgoDepthwiseLargeFilter depthwise_large_filter; | |||
AlgoChanwise8x8x32 chanwise8x8x32; | |||
AlgoInplaceMatmul inplace_matmul; | |||
AlgoMatmul matmul; | |||
@@ -0,0 +1,446 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/chanwise/fwd_depthwise_large_filter.inl | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "src/cuda/cuda_shfl_compat.cuh" | |||
namespace { | |||
enum DepthwiseConv2dDirection { DIRECTION_FORWARD, DIRECTION_BACKWARD }; | |||
template <typename ThreadConfig_, int oh_, int ow_> | |||
struct OutTileConfig { | |||
using ThreadConfig = ThreadConfig_; | |||
static int const unroll_h = oh_; | |||
static int const unroll_w = ThreadConfig::thread_x * ow_; | |||
static int const unroll_size = unroll_h * unroll_w; | |||
static int const block_h = unroll_h * ThreadConfig::thread_y; | |||
static int const block_w = unroll_w; | |||
}; | |||
template <int fh_, int fw_> | |||
struct FilterTileConfig { | |||
static int const unroll_h = fh_; | |||
static int const unroll_w = fw_; | |||
static int const unroll_size = unroll_h * unroll_w; | |||
}; | |||
template <int x_, int y_> | |||
struct ThreadConfig { | |||
static int const thread_x = x_; | |||
static_assert((thread_x & (thread_x - 1)) == 0, "thread_x must be pow of 2!"); | |||
static int const thread_y = y_; | |||
static int const nr_threads = x_ * y_; | |||
}; | |||
template < | |||
typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
typename TileCount_> | |||
struct Global2SharedMem { | |||
using TileCount = TileCount_; | |||
using ThreadConfig = ThreadConfig_; | |||
T reg[TileCount::reg_w]; | |||
const int tidx = threadIdx.x; | |||
const int tidy = threadIdx.y; | |||
const int tid = tidy * ThreadConfig::thread_x + tidx; | |||
const int gl_load_y = tid / TileCount::load_w; | |||
const int gl_load_x = tid - gl_load_y * TileCount::load_w; | |||
const bool is_fwd = (kDirection == DIRECTION_FORWARD); | |||
int w_offset; | |||
T* smem; | |||
int stride; | |||
int start_h, start_w, bound_h, bound_w, ring_smem_h, ring_src_h; | |||
const T* g_ptr; | |||
__device__ __forceinline__ | |||
Global2SharedMem(T* smem_, int stride_, int s_h, int s_w, int b_h, int b_w); | |||
__device__ __forceinline__ void first_copy(); | |||
__device__ __forceinline__ void copy(); | |||
__device__ __forceinline__ void commit(); | |||
__device__ __forceinline__ void iter_forward(); | |||
__device__ __forceinline__ T* sh_ptr(int y, int x) { | |||
return &smem[y * TileCount::smem_w + x]; | |||
} | |||
__device__ __forceinline__ T* sh_ptr_as_copy_t(int y, int x) { | |||
return reinterpret_cast<T*>(sh_ptr(y, x)); | |||
} | |||
}; | |||
template < | |||
typename ldg_dtype, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
typename OutTileConfig_, typename FilterTileConfig_> | |||
struct ConvTrait { | |||
using ThreadConfig = ThreadConfig_; | |||
using OutTileConfig = OutTileConfig_; | |||
using FilterTileConfig = FilterTileConfig_; | |||
using CompType = ldg_dtype; | |||
struct SrcTileConfig { | |||
static int const unroll_h = | |||
OutTileConfig::unroll_h + FilterTileConfig::unroll_h - 1; | |||
static int const unroll_w = | |||
OutTileConfig::unroll_w + FilterTileConfig::unroll_w - 1; | |||
static int const unroll_size = unroll_h * unroll_w; | |||
}; | |||
struct SrcTileCount { | |||
static int const smem_src_h = | |||
OutTileConfig::block_h + FilterTileConfig::unroll_h - 1; | |||
static int const smem_buff_h = FilterTileConfig::unroll_h; | |||
static int const smem_load_h = smem_src_h + smem_buff_h; | |||
static int const smem_h = smem_load_h + smem_buff_h; | |||
static int const smem_w = OutTileConfig::block_w + | |||
FilterTileConfig::unroll_w * ThreadConfig::thread_x - | |||
1; | |||
static int const smem_size = smem_h * smem_w; | |||
static int const load_w = | |||
smem_w > ThreadConfig::nr_threads ? ThreadConfig::nr_threads : smem_w; | |||
static int const load_h = 1; | |||
static int const reg_h = 1; | |||
static int const reg_w = DIVUP(smem_w, load_w); | |||
static bool constexpr check_bounds_h = smem_h % load_h != 0; | |||
static bool constexpr check_bounds_w = smem_w % load_w != 0; | |||
}; | |||
struct FilterTileCount { | |||
static int const smem_flt_h = FilterTileConfig::unroll_h; | |||
static int const smem_buff_h = FilterTileConfig::unroll_h; | |||
static int const smem_load_h = smem_flt_h + smem_buff_h; | |||
static int const smem_h = smem_load_h + smem_buff_h; | |||
static int const smem_w = FilterTileConfig::unroll_w * ThreadConfig::thread_x; | |||
static int const smem_size = smem_h * smem_w; | |||
static int const load_w = smem_w > 32 ? 32 : smem_w; | |||
static int const load_h = ThreadConfig::nr_threads / load_w; | |||
static int const reg_h = 1; | |||
static int const reg_w = DIVUP(smem_w, load_w); | |||
static bool constexpr check_bounds_h = smem_h % load_h != 0; | |||
static bool constexpr check_bounds_w = smem_w % load_w != 0; | |||
}; | |||
using SrcGlobal2ShareVisitor = Global2SharedMem< | |||
CompType, DepthwiseConv2dDirection::DIRECTION_FORWARD, ThreadConfig, | |||
SrcTileCount>; | |||
using FilterGlobal2ShareVisitor = | |||
Global2SharedMem<CompType, kDirection, ThreadConfig, FilterTileCount>; | |||
}; | |||
template < | |||
typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
typename TileCount_> | |||
__device__ __forceinline__ | |||
Global2SharedMem<T, kDirection, ThreadConfig_, TileCount_>::Global2SharedMem( | |||
T* smem_, int stride_, int s_h, int s_w, int b_h, int b_w) | |||
: smem(smem_), | |||
stride(stride_), | |||
start_h(s_h), | |||
start_w(s_w), | |||
bound_h(b_h), | |||
bound_w(b_w), | |||
ring_smem_h(TileCount::smem_load_h) { | |||
if (is_fwd) { | |||
ring_src_h = s_h + TileCount::smem_load_h; | |||
w_offset = 0; | |||
} else { | |||
ring_src_h = s_h - 1; | |||
w_offset = TileCount::smem_w - b_w; | |||
} | |||
} | |||
template < | |||
typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
typename TileCount_> | |||
__device__ __forceinline__ void Global2SharedMem< | |||
T, kDirection, ThreadConfig_, TileCount_>::first_copy() { | |||
static int const load_w = TileCount::smem_w > 32 ? 32 : TileCount::smem_w; | |||
static int const load_h = ThreadConfig::nr_threads / load_w; | |||
static int const h_per_thread = DIVUP(TileCount::smem_load_h, load_h); | |||
static int const w_per_thread = DIVUP(TileCount::smem_w, load_w); | |||
static bool constexpr check_bounds_h = TileCount::smem_load_h % load_h != 0; | |||
static bool constexpr check_bounds_w = TileCount::smem_w % load_w != 0; | |||
const int y_base_idx = tid / load_w; | |||
const int x_base_idx = tid - y_base_idx * load_w; | |||
#pragma unroll | |||
for (int i = 0; i < h_per_thread; ++i) { | |||
int smem_h_idx = y_base_idx + i * load_h; | |||
int src_h_idx; | |||
if (is_fwd) { | |||
src_h_idx = start_h + smem_h_idx; | |||
} else { | |||
src_h_idx = start_h + TileCount::smem_load_h - smem_h_idx - 1; | |||
} | |||
if (check_bounds_h && smem_h_idx >= TileCount::smem_load_h) | |||
continue; | |||
#pragma unroll | |||
for (int j = 0; j < w_per_thread; ++j) { | |||
int smem_w_idx = x_base_idx + j * load_w; | |||
int src_w_idx; | |||
if (is_fwd) { | |||
src_w_idx = start_w + smem_w_idx; | |||
} else { | |||
src_w_idx = start_w + TileCount::smem_w - w_offset - smem_w_idx - 1; | |||
} | |||
if (check_bounds_w && smem_w_idx >= TileCount::smem_w) | |||
continue; | |||
T val = 0.0f; | |||
if (src_h_idx >= 0 && src_h_idx < bound_h && src_w_idx >= 0 && | |||
src_w_idx < bound_w && | |||
(is_fwd || (TileCount::smem_load_h - smem_h_idx - 1 >= 0 && | |||
TileCount::smem_w - w_offset - smem_w_idx - 1 >= 0))) { | |||
val = g_ptr[src_h_idx * stride + src_w_idx]; | |||
} | |||
*(sh_ptr_as_copy_t(smem_h_idx, smem_w_idx)) = val; | |||
} | |||
} | |||
} | |||
template < | |||
typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
typename TileCount_> | |||
__device__ __forceinline__ void Global2SharedMem< | |||
T, kDirection, ThreadConfig_, TileCount_>::copy() { | |||
#pragma unroll | |||
for (int j = 0; j < TileCount::reg_w; ++j) { | |||
int smem_w_idx = gl_load_x + j * TileCount::load_w; | |||
int src_w_idx; | |||
if (is_fwd) { | |||
src_w_idx = start_w + smem_w_idx; | |||
} else { | |||
src_w_idx = start_w + TileCount::smem_w - w_offset - smem_w_idx - 1; | |||
} | |||
if (TileCount::check_bounds_w && smem_w_idx >= TileCount::smem_w) | |||
continue; | |||
T val = 0.0f; | |||
if (ring_src_h >= 0 && ring_src_h < bound_h && src_w_idx >= 0 && | |||
src_w_idx < bound_w && | |||
(is_fwd || TileCount::smem_w - w_offset - smem_w_idx - 1 >= 0)) { | |||
val = g_ptr[ring_src_h * stride + src_w_idx]; | |||
} | |||
reg[j] = val; | |||
} | |||
} | |||
template < | |||
typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
typename TileCount_> | |||
__device__ __forceinline__ void Global2SharedMem< | |||
T, kDirection, ThreadConfig_, TileCount_>::commit() { | |||
#pragma unroll | |||
for (int j = 0; j < TileCount::reg_w; ++j) { | |||
int smem_w_idx = gl_load_x + j * TileCount::load_w; | |||
if (TileCount::check_bounds_w && smem_w_idx >= TileCount::smem_w) | |||
continue; | |||
*(sh_ptr_as_copy_t(ring_smem_h, smem_w_idx)) = reg[j]; | |||
} | |||
} | |||
template < | |||
typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
typename TileCount_> | |||
__device__ __forceinline__ void Global2SharedMem< | |||
T, kDirection, ThreadConfig_, TileCount_>::iter_forward() { | |||
if (is_fwd) { | |||
ring_src_h++; | |||
} else { | |||
ring_src_h--; | |||
} | |||
ring_smem_h = (ring_smem_h + 1) % TileCount::smem_h; | |||
} | |||
// CUDA kernel to compute the depthwise convolution forward pass in NCHW format, | |||
// tailored for small images up to 32x32. Stride and depth multiplier must be 1. | |||
// Padding must be 'SAME', which allows to reuse the index computation. Only | |||
// use this kernel if CanLaunchDepthwiseConv2dGPUSmall(args) returns true. | |||
// Tiles of the input and filter tensors are loaded into shared memory before | |||
// performing the convolution. Each thread handles two elements per iteration, | |||
// one each in the lower and upper half of a tile. | |||
// Backprop input direction is the same as forward direction with the filter | |||
// rotated by 180°. | |||
template <typename T, typename ConvTrait, DepthwiseConv2dDirection kDirection> | |||
__global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||
const Param param, const T* input, const T* filter, T* output) { | |||
using ThreadConfig = typename ConvTrait::ThreadConfig; | |||
using SrcTileConfig = typename ConvTrait::SrcTileConfig; | |||
using FilterTileConfig = typename ConvTrait::FilterTileConfig; | |||
using OutTileConfig = typename ConvTrait::OutTileConfig; | |||
using SrcTileCount = typename ConvTrait::SrcTileCount; | |||
using FilterTileCount = typename ConvTrait::FilterTileCount; | |||
using SrcGlobal2ShareVisitor = typename ConvTrait::SrcGlobal2ShareVisitor; | |||
using FilterGlobal2ShareVisitor = typename ConvTrait::FilterGlobal2ShareVisitor; | |||
const bool is_fwd = (kDirection == DepthwiseConv2dDirection::DIRECTION_FORWARD); | |||
int off_ochannel = blockIdx.x, off_obw = blockIdx.y, off_obh = blockIdx.z, | |||
off_oh = threadIdx.y, off_ow = threadIdx.x; | |||
extern __shared__ __align__(8) unsigned char smem[]; | |||
static_assert(sizeof(T) <= 8, "Insufficient alignment detected"); | |||
T* smem_src = reinterpret_cast<T*>(smem); | |||
T* smem_flt = reinterpret_cast<T*>(&smem_src[SrcTileCount::smem_size]); | |||
int off_ichannel = off_ochannel / param.chl_mul, | |||
off_fchannel = off_ichannel % param.src_chl, | |||
out_start_h = off_obh * OutTileConfig::block_h, | |||
out_start_w = off_obw * OutTileConfig::block_w, | |||
src_start_h = out_start_h - param.pad_h, | |||
src_start_w = out_start_w - param.pad_w, | |||
out_base_h_idx = out_start_h + off_oh * OutTileConfig::unroll_h; | |||
T* smem_src_ptr = smem_src + off_ow * FilterTileConfig::unroll_w; | |||
T* smem_flt_ptr = smem_flt + off_ow * FilterTileConfig::unroll_w; | |||
T* out_base_ptr = output + off_ochannel * param.out_h * param.out_w; | |||
SrcGlobal2ShareVisitor gl2sh_src( | |||
smem_src, param.src_w, src_start_h, src_start_w, param.src_h, param.src_w); | |||
FilterGlobal2ShareVisitor gl2sh_flt = { | |||
smem_flt, param.flt_w, is_fwd ? 0 : param.flt_h - 2, | |||
0, param.flt_h, param.flt_w}; | |||
gl2sh_src.g_ptr = input + off_ichannel * param.src_h * param.src_w; | |||
gl2sh_flt.g_ptr = filter + off_fchannel * param.flt_h * param.flt_w; | |||
gl2sh_src.first_copy(); | |||
gl2sh_flt.first_copy(); | |||
__syncthreads(); | |||
T reg_src[SrcTileConfig::unroll_h * SrcTileConfig::unroll_w], | |||
reg_flt[FilterTileConfig::unroll_h * FilterTileConfig::unroll_w]; | |||
T sum[OutTileConfig::unroll_size] = {0.0}; | |||
for (int fh = 0; fh < param.flt_h; fh += FilterTileConfig::unroll_h) { | |||
gl2sh_src.copy(); | |||
gl2sh_flt.copy(); | |||
#pragma unroll | |||
for (int s_h = 0; s_h < SrcTileConfig::unroll_h; ++s_h) { | |||
#pragma unroll | |||
for (int s_w = 0; s_w < SrcTileConfig::unroll_w; ++s_w) { | |||
reg_src[s_h * SrcTileConfig::unroll_w + s_w] = smem_src_ptr | |||
[(off_oh + fh + s_h) % SrcTileCount::smem_h * | |||
SrcTileCount::smem_w + | |||
s_w]; | |||
} | |||
} | |||
#pragma unroll | |||
for (int f_h = 0; f_h < FilterTileConfig::unroll_h; ++f_h) { | |||
#pragma unroll | |||
for (int f_w = 0; f_w < FilterTileConfig::unroll_w; ++f_w) { | |||
reg_flt[f_h * FilterTileConfig::unroll_w + f_w] = smem_flt_ptr | |||
[(fh + f_h) % FilterTileCount::smem_h * | |||
FilterTileCount::smem_w + | |||
f_w]; | |||
} | |||
} | |||
#pragma unroll | |||
for (int inner_fh = 0; inner_fh < FilterTileConfig::unroll_h; ++inner_fh) { | |||
#pragma unroll | |||
for (int oh = 0; oh < OutTileConfig::unroll_h; ++oh) { | |||
#pragma unroll | |||
for (int fw = 0; fw < FilterTileConfig::unroll_w; ++fw) { | |||
#pragma unroll | |||
for (int ow = 0; ow < OutTileConfig::unroll_w; ++ow) { | |||
sum[oh * OutTileConfig::unroll_w + ow] += | |||
reg_flt[inner_fh * FilterTileConfig::unroll_w + fw] * | |||
reg_src[(inner_fh + oh) * SrcTileConfig::unroll_w + fw + | |||
ow]; | |||
} | |||
} | |||
} | |||
} | |||
__syncthreads(); | |||
gl2sh_src.commit(); | |||
gl2sh_flt.commit(); | |||
gl2sh_src.iter_forward(); | |||
gl2sh_flt.iter_forward(); | |||
__syncthreads(); | |||
} | |||
for (int o = 0; o < OutTileConfig::unroll_size; ++o) { | |||
for (int i = 1; i < ThreadConfig::thread_x; i = i << 1) { | |||
sum[o] += __shfl_xor(sum[o], i, 32); | |||
} | |||
} | |||
if (threadIdx.x == 0) { | |||
#pragma unroll | |||
for (int i = 0; i < OutTileConfig::unroll_h; ++i) { | |||
int out_h_idx = out_base_h_idx + i; | |||
if (out_h_idx < param.out_h) { | |||
#pragma unroll | |||
for (int j = 0; j < OutTileConfig::unroll_w; ++j) { | |||
int out_w_idx = out_start_w + j; | |||
if (out_w_idx >= param.out_w) | |||
return; | |||
out_base_ptr[out_h_idx * param.out_w + out_w_idx] = | |||
sum[i * OutTileConfig::unroll_w + j]; | |||
} | |||
} | |||
} | |||
} | |||
} | |||
template < | |||
typename T, typename T2, DepthwiseConv2dDirection kDirection, int unroll_fw, | |||
int unroll_ow> | |||
void LaunchDepthwiseConv2dGPUSmall( | |||
const Param& param, const T* input, const T* filter, T* output, | |||
cudaStream_t stream) { | |||
static int const unroll_oh = 1, unroll_fh = 1; | |||
using FilterTileConfig = FilterTileConfig<unroll_fh, unroll_fw>; | |||
using ThreadConfig = ThreadConfig<4, 32>; | |||
using OutTileConfig = OutTileConfig<ThreadConfig, unroll_oh, unroll_ow>; | |||
using IConvTrait = | |||
ConvTrait<T, kDirection, ThreadConfig, OutTileConfig, FilterTileConfig>; | |||
using SrcTileCount = typename IConvTrait::SrcTileCount; | |||
using FilterTileCount = typename IConvTrait::FilterTileCount; | |||
dim3 block(ThreadConfig::thread_x, ThreadConfig::thread_y); | |||
dim3 grid; | |||
grid.x = param.batch * param.src_chl * param.chl_mul; | |||
grid.y = DIVUP(param.out_w, OutTileConfig::block_w); | |||
grid.z = DIVUP(param.out_h, OutTileConfig::block_h); | |||
const int shared_storage = | |||
(SrcTileCount::smem_size + FilterTileCount::smem_size) * sizeof(T); | |||
void (*kernel)(const Param, const T*, const T*, T*); | |||
kernel = DepthwiseConv2dGPUKernelNCHWSmall<T, IConvTrait, kDirection>; | |||
kernel<<<grid, block, shared_storage, stream>>>(param, input, filter, output); | |||
after_kernel_launch(); | |||
} | |||
#define INSTANCE_AB(a, b, direction) \ | |||
if (param.out_w > b * 4) { \ | |||
LaunchDepthwiseConv2dGPUSmall<float, float2, direction, a + 1, b + 1>( \ | |||
param, src, flt, dst, stream); \ | |||
} | |||
#define INSTANCE_A(a, direction) \ | |||
if (param.flt_w > 0) { \ | |||
INSTANCE_AB(a, 15, direction) \ | |||
else INSTANCE_AB(a, 14, direction) else INSTANCE_AB(a, 13, direction) else INSTANCE_AB( \ | |||
a, 12, direction) else INSTANCE_AB(a, 11, direction) else INSTANCE_AB(a, 10, direction) else INSTANCE_AB(a, 9, direction) else INSTANCE_AB(a, 8, direction) else INSTANCE_AB(a, 7, direction) else INSTANCE_AB(a, 6, direction) else INSTANCE_AB(a, 5, direction) else INSTANCE_AB(a, 4, direction) else INSTANCE_AB(a, 3, direction) else INSTANCE_AB(a, 2, direction) else INSTANCE_AB(a, 1, direction) else INSTANCE_AB(a, 0, direction) \ | |||
} | |||
#define INSTANCE(direction) \ | |||
INSTANCE_A(7, direction) \ | |||
else INSTANCE_A(6, direction) else INSTANCE_A(5, direction) else INSTANCE_A(4, direction) else INSTANCE_A( \ | |||
3, \ | |||
direction) else INSTANCE_A(2, direction) else INSTANCE_A(1, direction) else INSTANCE_A(0, direction) | |||
} // anonymous namespace |
@@ -0,0 +1,48 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/chanwise/fwd_depthwise_large_filter.cu | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "cuda.h" | |||
#include "cuda_fp16.h" | |||
// #include "src/cuda/conv_bias/chanwise/fwd_depthwise_large_filter.cuh" | |||
#include "src/cuda/conv_bias/chanwise/kern.cuh" | |||
#include "src/cuda/conv_bias/chanwise/kern_helper.cuh" | |||
#include "src/cuda/conv_bias/chanwise/launch_config.cuh" | |||
#include "src/cuda/fp16_help.cuh" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
using namespace conv_bias; | |||
using namespace chanwise; | |||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.inl" | |||
namespace megdnn { | |||
namespace cuda { | |||
namespace conv_bias { | |||
namespace chanwise { | |||
// =====================================fwd===================================== | |||
#define check | |||
template <> | |||
void run_fwd_depthwise_large_filter( | |||
float* dst, const float* src, const float* flt, const Param& param, | |||
cudaStream_t stream) { | |||
INSTANCE(DepthwiseConv2dDirection::DIRECTION_FORWARD) | |||
} | |||
} // namespace chanwise | |||
} // namespace conv_bias | |||
} // namespace cuda | |||
} // namespace megdnn | |||
// vim: syntax=cuda.doxygen |
@@ -61,6 +61,10 @@ template <typename T> | |||
void run_fwd_small( | |||
T* dst, const T* src, const T* flt, const Param& param, cudaStream_t stream); | |||
template <typename T> | |||
void run_fwd_depthwise_large_filter( | |||
T* dst, const T* src, const T* flt, const Param& param, cudaStream_t stream); | |||
// implemented in fwd_8x8x32.cu | |||
void run_fwd_8x8x32( | |||
int32_t* dst, const int8_t* src, const int8_t* flt, const Param& param, | |||
@@ -0,0 +1,109 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/depthwise_large_filter.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "src/common/conv_bias.h" | |||
#include "src/cuda/conv_bias/algo.h" | |||
#include "src/cuda/conv_bias/chanwise/kern.cuh" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
using namespace conv_bias; | |||
namespace { | |||
inline bool is_available_depthwise_large_filter(const chanwise::Param& param) { | |||
auto&& device_prop = cuda::current_device_prop(); | |||
int flt_smem_w = (param.flt_w + 3) / 4 * 4; | |||
int flt_smem_h = 3; | |||
int flt_reg_per_thread = | |||
flt_smem_w > 32 ? (flt_smem_w + 31) / 32 : 1 + flt_smem_w / 4; | |||
int ow = param.out_w > 64 ? 64 : param.out_w; | |||
int src_smem_w = ow + flt_smem_w - 1; | |||
int src_smem_h = flt_smem_h + param.flt_h - 1; | |||
int src_reg_per_thread = src_smem_w > 128 ? (flt_smem_w + 127) / 128 | |||
: 1 + (ow + 3) / 4 + flt_smem_w / 4 - 1; | |||
int out_reg_per_thread = (ow + 3) / 4 * 4; | |||
if (device_prop.regsPerBlock < 4 * 32 * | |||
(flt_reg_per_thread + src_reg_per_thread + | |||
out_reg_per_thread) || | |||
device_prop.sharedMemPerBlock < | |||
static_cast<size_t>( | |||
flt_smem_w * flt_smem_h + src_smem_w * src_smem_h)) { | |||
return false; | |||
} | |||
return param.stride_h == 1 && param.stride_w == 1 && param.src_h == param.out_h && | |||
param.src_w == param.out_w; | |||
} | |||
} // anonymous namespace | |||
bool ConvBiasForwardImpl::AlgoDepthwiseLargeFilter::is_available( | |||
const SizeArgs& args) const { | |||
if (!args.src_layout->is_contiguous() || !args.dst_layout->is_contiguous()) { | |||
return false; | |||
} | |||
if (args.src_layout->dtype != args.filter_layout->dtype && | |||
args.src_layout->dtype != dtype::Float32()) { | |||
return false; | |||
} | |||
if (args.z_layout->ndim > 0) | |||
return false; | |||
auto param = chanwise::Param::from_fwd_args(args); | |||
auto&& fm = args.filter_meta; | |||
return fm.group > 1 && args.filter_meta.format == Param::Format::NCHW && | |||
args.src_layout->dtype.category() == DTypeCategory::FLOAT && | |||
args.opr->param().compute_mode == Param::ComputeMode::DEFAULT && | |||
fm.spatial_ndim == 2 && fm.icpg == 1 && fm.dilation[0] == 1 && | |||
fm.dilation[1] == 1 && !fm.should_flip && | |||
is_available_depthwise_large_filter(param); | |||
} | |||
size_t ConvBiasForwardImpl::AlgoDepthwiseLargeFilter::get_workspace_in_bytes( | |||
const SizeArgs& args) const { | |||
auto dst_layout = *args.dst_layout; | |||
if (dst_layout.dtype.enumv() != args.bias_layout->dtype.enumv()) { | |||
dst_layout.dtype = DType(); | |||
args.opr->check_or_deduce_dtype_fwd( | |||
args.src_layout->dtype, args.filter_layout->dtype, dst_layout.dtype); | |||
return dst_layout.span().dist_byte(); | |||
} | |||
return 0; | |||
} | |||
void ConvBiasForwardImpl::AlgoDepthwiseLargeFilter::exec(const ExecArgs& args) const { | |||
WorkspaceBundle bundle{args.workspace.raw_ptr, {get_workspace_in_bytes(args)}}; | |||
TensorND conv_dst_tensor = *args.dst_tensor; | |||
if (args.dst_layout->dtype.enumv() != args.bias_layout->dtype.enumv()) { | |||
conv_dst_tensor = TensorND{bundle.get(0), conv_dst_tensor.layout}; | |||
conv_dst_tensor.layout.dtype = DType(); | |||
args.opr->check_or_deduce_dtype_fwd( | |||
args.src_layout->dtype, args.filter_layout->dtype, | |||
conv_dst_tensor.layout.dtype); | |||
} | |||
{ | |||
auto kparam = chanwise::Param::from_fwd_args(args); | |||
auto stream = cuda_stream(args.handle); | |||
switch (args.src_layout->dtype.enumv()) { | |||
case DTypeEnum::Float32: | |||
chanwise::run_fwd_depthwise_large_filter( | |||
conv_dst_tensor.ptr<float>(), args.src_tensor->ptr<float>(), | |||
args.filter_tensor->ptr<float>(), kparam, stream); | |||
break; | |||
default: | |||
megdnn_assert_internal(0); | |||
} | |||
} | |||
handle_bias_and_nonlinear( | |||
args.handle, args.nonlinear_mode, &conv_dst_tensor, args.dst_tensor, | |||
args.bias_tensor); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -45,6 +45,7 @@ public: | |||
class AlgoCUDNNConvBiasActivation; | |||
class AlgoChanwise; | |||
class AlgoChanwiseSmall; | |||
class AlgoDepthwiseLargeFilter; | |||
class AlgoChanwise8x8x32; | |||
class AlgoCUDNNConv; | |||
class AlgoFallbackNCHWQS8; | |||
@@ -695,6 +695,59 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_CHANWISE_SMALL) { | |||
} | |||
} | |||
TEST_F(CUDA, CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER) { | |||
Checker<ConvBiasForward> checker(handle_cuda()); | |||
checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>( | |||
ConvBiasForward::algo_name<ConvBias::DirectParam>( | |||
"DEPTHWISE_LARGE_FILTER", {}) | |||
.c_str())); | |||
auto run = [&checker](size_t n, size_t g, size_t h, size_t fh) { | |||
param::ConvBias cur_param; | |||
cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION; | |||
cur_param.sparse = ConvBias::Param::Sparse::GROUP; | |||
checker.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.set_dtype(2, dtype::Float32()) | |||
.set_dtype(3, dtype::Float32()) | |||
.set_dtype(4, dtype::Float32()); | |||
cur_param.pad_h = cur_param.pad_w = fh / 2; | |||
cur_param.stride_h = cur_param.stride_w = 1; | |||
checker.set_param(cur_param).execs( | |||
{{n, g, h, h}, {g, 1, 1, fh, fh}, {}, {}, {}}); | |||
}; | |||
run(4, 8, 32, 5); | |||
run(4, 8, 32, 7); | |||
run(4, 8, 32, 9); | |||
run(4, 8, 32, 11); | |||
run(4, 8, 32, 13); | |||
run(4, 8, 32, 15); | |||
run(4, 8, 32, 17); | |||
run(4, 8, 32, 19); | |||
run(4, 8, 32, 21); | |||
run(4, 8, 32, 23); | |||
run(4, 8, 32, 25); | |||
run(4, 8, 32, 27); | |||
run(4, 8, 32, 29); | |||
run(4, 8, 32, 31); | |||
run(4, 8, 64, 5); | |||
run(4, 8, 64, 7); | |||
run(4, 8, 64, 9); | |||
run(4, 8, 64, 11); | |||
run(4, 8, 64, 13); | |||
run(4, 8, 64, 15); | |||
run(4, 8, 64, 17); | |||
run(4, 8, 64, 19); | |||
run(4, 8, 64, 21); | |||
run(4, 8, 64, 23); | |||
run(4, 8, 64, 25); | |||
run(4, 8, 64, 27); | |||
run(4, 8, 64, 29); | |||
run(4, 8, 64, 31); | |||
run(1, 2, 128, 31); | |||
run(1, 2, 256, 31); | |||
} | |||
TEST_F(CUDA, CONV_BIAS_FORWARD_CHANWISE_8x8x32) { | |||
require_compute_capability(6, 1); | |||
Checker<ConvBiasForward> checker(handle_cuda()); | |||
@@ -1474,6 +1527,69 @@ TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_TENSORCORE_INT8) { | |||
run_bench(256, 512, 7, 7, 512, 3, 3, 1, 1, 1000); | |||
run_bench(256, 512, 7, 7, 2048, 1, 1, 1, 1, 1000); | |||
} | |||
TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER) { | |||
require_compute_capability(7, 5); | |||
Benchmarker<ConvBiasForward> bencher(handle_cuda()); | |||
bencher.set_display(false); | |||
bencher.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBiasForward>( | |||
ConvBiasForward::algo_name<ConvBiasForward::DirectParam>( | |||
"DEPTHWISE_LARGE_FILTER", {}) | |||
.c_str())); | |||
ConvBias::Param param; | |||
param.format = ConvBias::Param::Format::NCHW; | |||
using NonlineMode = ConvBias::Param::NonlineMode; | |||
param.nonlineMode = NonlineMode::IDENTITY; | |||
param.sparse = ConvBias::Param::Sparse::GROUP; | |||
auto run_bench = [&](size_t batch, size_t g, size_t hi, size_t wi, size_t fh, | |||
size_t fw, size_t sh, size_t sw, size_t nr_times) { | |||
param.pad_h = fh / 2; | |||
param.pad_w = fw / 2; | |||
param.stride_h = sh; | |||
param.stride_w = sw; | |||
bencher.set_param(param) | |||
.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.set_dtype(2, dtype::Float32()) | |||
.set_dtype(4, dtype::Float32()); | |||
bencher.set_times(nr_times); | |||
size_t ho = infer_conv_shape(hi, fh, sh, param.pad_h); | |||
size_t wo = infer_conv_shape(wi, fw, sw, param.pad_w); | |||
TensorShape inp{batch, g, hi, wi}, kern{g, 1, 1, fh, fw}, out{batch, g, ho, wo}; | |||
float bandwith = static_cast<float>( | |||
inp.total_nr_elems() + kern.total_nr_elems() + | |||
out.total_nr_elems()) / | |||
(1024 * 1024 * 1024) * 1e3; | |||
auto time_in_ms = bencher.execs({inp, kern, {}, {}, out}) / nr_times; | |||
auto ops = 2.0 * batch * g * ho * wo * fh * fw / (time_in_ms * 1e-3) * 1e-12; | |||
printf("chanwise_depthwise_large_filter: inp=%s, kern=%s, out=%s, time: " | |||
"%.2fms, " | |||
"perf: %.2f Tops bandwidth: %.2fGB/s.\n", | |||
inp.to_string().c_str(), kern.to_string().c_str(), | |||
out.to_string().c_str(), time_in_ms, ops, bandwith * 4 / time_in_ms); | |||
}; | |||
run_bench(64, 384, 32, 32, 3, 3, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 5, 5, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 7, 7, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 9, 9, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 11, 11, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 13, 13, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 15, 15, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 17, 17, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 19, 19, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 21, 21, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 23, 23, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 25, 25, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 27, 27, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 29, 29, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 31, 31, 1, 1, 10); | |||
} | |||
#endif | |||
#endif | |||
@@ -901,6 +901,43 @@ TEST_F(CUDA, CONVOLUTION_BWD_DATA_BENCHMARK) { | |||
run(32, 64, 64, 56, 56, 1, 1, 0); | |||
} | |||
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_CHANWISE_SMALL_FEAT_LARGE_FILTER) { | |||
CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()}; | |||
std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{ | |||
new OprProxy<ConvolutionBackwardData>{true}}; | |||
size_t RUNS = 10; | |||
bench.set_proxy(proxy).set_times(RUNS); | |||
auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH, | |||
size_t SH, size_t PH) { | |||
bench.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.set_dtype(2, dtype::Float32()); | |||
param::Convolution param; | |||
param.stride_h = param.stride_w = SH; | |||
param.pad_h = param.pad_w = FH / 2; | |||
param.sparse = param::Convolution::Sparse::GROUP; | |||
bench.set_param(param); | |||
bench.proxy()->target_execution_policy.algo.reset(); | |||
TensorLayout src{{N, g, IH, IW}, dtype::Float32()}, | |||
filter{{g, 1, 1, FH, FH}, dtype::Float32()}; | |||
TensorLayout dst; | |||
{ | |||
auto&& opr = handle_cuda()->create_operator<Convolution>(); | |||
opr->param() = param; | |||
opr->deduce_layout(src, filter, dst); | |||
} | |||
auto time_ms_fp32 = bench.execl({filter, dst, src}) / RUNS; | |||
float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH; | |||
printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(), | |||
filter.to_string().c_str(), dst.to_string().c_str()); | |||
printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp32, | |||
(flo / (time_ms_fp32 * 1e9))); | |||
}; | |||
run(64, 384, 384, 32, 32, 31, 1, 15); | |||
} | |||
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_BF16) { | |||
CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()}; | |||
std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{ | |||
@@ -1065,6 +1102,46 @@ TEST_F(CUDA, CONVOLUTION_BWD_FILTER_BENCHMARK) { | |||
run(32, 512, 1024, 14, 14, 1, 2, 0); | |||
run(32, 64, 64, 56, 56, 1, 1, 0); | |||
} | |||
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_FILTER_CHANWISE_SMALL_FEAT_LARGE_FILTER) { | |||
CUBenchmarker<ConvolutionBackwardFilter> bench{handle_cuda()}; | |||
std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{ | |||
new OprProxy<ConvolutionBackwardFilter>{true}}; | |||
size_t RUNS = 10; | |||
bench.set_proxy(proxy).set_times(RUNS); | |||
bench.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>( | |||
"CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFTv7.6.3")); | |||
auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH, | |||
size_t SH, size_t PH) { | |||
bench.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.set_dtype(2, dtype::Float32()); | |||
param::Convolution param; | |||
param.stride_h = param.stride_w = SH; | |||
param.pad_h = param.pad_w = FH / 2; | |||
param.sparse = param::Convolution::Sparse::GROUP; | |||
bench.set_param(param); | |||
bench.proxy()->target_execution_policy.algo.reset(); | |||
TensorLayout src{{N, g, IH, IW}, dtype::Float32()}, | |||
filter{{g, 1, 1, FH, FH}, dtype::Float32()}; | |||
TensorLayout dst; | |||
{ | |||
auto&& opr = handle_cuda()->create_operator<Convolution>(); | |||
opr->param() = param; | |||
opr->deduce_layout(src, filter, dst); | |||
} | |||
auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS; | |||
float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH; | |||
printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(), | |||
filter.to_string().c_str(), dst.to_string().c_str()); | |||
printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp32, | |||
(flo / (time_ms_fp32 * 1e9))); | |||
}; | |||
run(64, 384, 384, 32, 32, 31, 1, 15); | |||
} | |||
#endif | |||
#undef CUDNN_VERSION_STRING | |||