@@ -72,7 +72,7 @@ DeviceTensorND BlobManagerImpl::alloc_workspace_with_defrag( | |||
dev_tensor.reset(storage, layout); | |||
return dev_tensor; | |||
} | |||
MGB_TRY { return alloc_workspace(cn, layout); } | |||
MGB_TRY { dev_tensor = alloc_workspace(cn, layout); } | |||
MGB_CATCH(MemAllocError&, { | |||
mgb_log_warn("memory allocation failed for workspace; try defragmenting"); | |||
defrag(cn); | |||
@@ -583,9 +583,7 @@ TensorInfo* ChannelImpl::alloc() { | |||
auto& state = get_channel_state(); | |||
auto info = [this] { | |||
MGB_LOCK_GUARD(m_pool_spin); | |||
auto* ptr = m_pool.alloc_raw(); | |||
new (ptr) TensorInfo(); | |||
return (TensorInfo*)ptr; | |||
return m_pool.alloc(); | |||
}(); | |||
info->id = Profiler::next_id(); | |||
if (Profiler::is_profiling()) { | |||
@@ -816,7 +814,8 @@ void ChannelImpl::do_apply_op(const ApplyOp& cmd, std::string reason) { | |||
for (auto&& [device, kernel_id] : kernels) { | |||
MGB_RECORD_EVENT(KernelLaunchEvent, apply_id, kernel_id, device); | |||
MGB_RECORD_EVENT_IF( | |||
profiling_device, RecordDeviceEvent, Timer::record_device(device)); | |||
(Profiler::get_option("profile_device", 0)), RecordDeviceEvent, | |||
Timer::record_device(device)); | |||
} | |||
// Apply op | |||
SmallVector<LogicalTensorDesc> output_descs; | |||
@@ -830,7 +829,8 @@ void ChannelImpl::do_apply_op(const ApplyOp& cmd, std::string reason) { | |||
// After execute | |||
for (auto&& [device, kernel_id] : kernels) { | |||
MGB_RECORD_EVENT_IF( | |||
profiling_device, RecordDeviceEvent, Timer::record_device(device)); | |||
(Profiler::get_option("profile_device", 0)), RecordDeviceEvent, | |||
Timer::record_device(device)); | |||
MGB_RECORD_EVENT(KernelLaunchFinishEvent, apply_id, kernel_id, device); | |||
} | |||
// End profiling operator | |||
@@ -847,9 +847,7 @@ void ChannelImpl::do_apply_op(const ApplyOp& cmd, std::string reason) { | |||
MGB_RECORD_EVENT(OpOutputEvent, output->id); | |||
produce_tensor(output, outputs[i]); | |||
MGB_RECORD_EVENT(OpOutputFinishEvent, output->id); | |||
if (Profiler::is_profiling()) { | |||
sample_on_device(output->desc.comp_node, false); | |||
} | |||
sample_on_device(output->desc.comp_node, false); | |||
} | |||
} | |||
@@ -0,0 +1,88 @@ | |||
#include "megbrain/imperative/opr_utility.h" | |||
#include "megbrain/imperative/ops/autogen.h" | |||
#include "megbrain/imperative/utils/stats.h" | |||
#include "megbrain/opr/basic_arith.h" | |||
#include "megbrain/opr/blas.h" | |||
#include "megbrain/opr/utility.h" | |||
#include "../blob_manager_impl.h" | |||
#include "../dnn_op_helper.h" | |||
#include "../op_trait.h" | |||
namespace mgb { | |||
namespace imperative { | |||
namespace { | |||
namespace dot { | |||
auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { | |||
auto&& op = def.cast_final_safe<Dot>(); | |||
mgb_assert(inputs.size() == 2); | |||
OperatorNodeConfig config{op.make_name()}; | |||
return opr::Dot::make(inputs[0], inputs[1], config); | |||
} | |||
SmallVector<TensorPtr> apply_on_physical_tensor( | |||
const OpDef& def, const SmallVector<TensorPtr>& inputs, | |||
SmallVector<LogicalTensorDesc>& output_descs, const bool& validated) { | |||
auto comp_node = inputs[0]->comp_node(); | |||
using TensorND = megdnn::TensorND; | |||
SmallVector<TensorND> inp_tensornds; | |||
inp_tensornds.reserve(inputs.size()); | |||
auto&& dnn_opr = opr::intl::create_megdnn_opr<megdnn::Dot>(comp_node); | |||
for (unsigned i = 0; i < inputs.size(); ++i) { | |||
auto dnn_ten = inputs[i]->dnn_tensor(); | |||
inp_tensornds.push_back(dnn_ten); | |||
} | |||
TensorLayout oup_layout{inputs[0]->dtype()}; | |||
auto inp1_tensor = inputs[0]->dnn_tensor(); | |||
auto inp2_tensor = inputs[1]->dnn_tensor(); | |||
dnn_opr->deduce_layout(inp1_tensor.layout, inp2_tensor.layout, oup_layout); | |||
if (inputs[0]->layout().is_empty() || inputs[1]->layout().is_empty()) { | |||
auto fill_opr = opr::intl::create_megdnn_opr<megdnn::Fill>(comp_node); | |||
DeviceTensorND out = | |||
BlobManager::inst()->alloc_workspace_with_defrag(comp_node, oup_layout); | |||
fill_opr->param() = 0; | |||
fill_opr->exec(out.as_megdnn(), {}); | |||
return {Tensor::make(out)}; | |||
} | |||
auto wk_size = dnn_opr->get_workspace_in_bytes( | |||
inp_tensornds[0].layout, inp_tensornds[1].layout, output_descs[0].layout); | |||
DeviceTensorND out_devtensor = | |||
BlobManager::inst()->alloc_workspace_with_defrag(comp_node, oup_layout); | |||
TensorLayout wk_layout{TensorShape{wk_size}, inputs[0]->dtype()}; | |||
DeviceTensorND workspace = | |||
BlobManager::inst()->alloc_workspace_with_defrag(comp_node, wk_layout); | |||
megdnn::Workspace dnn_wk(workspace.raw_ptr(), wk_size); | |||
dnn_opr->exec( | |||
inp_tensornds[0], inp_tensornds[1], out_devtensor.as_megdnn(), dnn_wk); | |||
return {Tensor::make(out_devtensor)}; | |||
} | |||
std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible( | |||
const OpDef& def, const SmallVector<LogicalTensorDesc>& inputs) { | |||
mgb_assert( | |||
inputs.size() == 2, "Dot expects 2 inputs; got %lu actually", | |||
inputs.size()); | |||
SmallVector<LogicalTensorDesc> dests(1); | |||
dests[0].layout = TensorLayout(TensorShape{1}, inputs[0].layout.dtype); | |||
dests[0].comp_node = inputs[0].comp_node; | |||
bool validated = inputs[0].layout.ndim != 0 && inputs[1].layout.ndim != 0; | |||
return {dests, validated}; | |||
} | |||
OP_TRAIT_REG(Dot, Dot, mgb::opr::Dot) | |||
.apply_on_var_node(apply_on_var_node) | |||
.infer_output_attrs_fallible(infer_output_attrs_fallible) | |||
.apply_on_physical_tensor(apply_on_physical_tensor) | |||
.fallback(); | |||
} // namespace dot | |||
} // anonymous namespace | |||
} // namespace imperative | |||
} // namespace mgb |
@@ -373,81 +373,6 @@ OP_TRAIT_REG(BatchedMatrixMul, BatchedMatrixMul) | |||
} // namespace | |||
namespace { | |||
namespace dot { | |||
auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { | |||
auto&& op = def.cast_final_safe<Dot>(); | |||
mgb_assert(inputs.size() == 2); | |||
OperatorNodeConfig config{op.make_name()}; | |||
return opr::Dot::make(inputs[0], inputs[1], config); | |||
} | |||
// std::shared_ptr<OpDef> make_from_op_node(cg::OperatorNodeBase* node_) { | |||
// auto* node = &node_->cast_final_safe<opr::Dot>(); | |||
// return Dot::make(node->param()); | |||
// } | |||
SmallVector<TensorPtr> apply_on_physical_tensor( | |||
const OpDef& def, const SmallVector<TensorPtr>& inputs, | |||
SmallVector<LogicalTensorDesc>& output_descs, const bool& validated) { | |||
auto a = inputs[0]->layout(); | |||
auto comp_node = inputs[0]->comp_node(); | |||
using TensorND = megdnn::TensorND; | |||
SmallVector<TensorND> inp_tensornds; | |||
inp_tensornds.reserve(inputs.size()); | |||
auto dnn_opr = opr::intl::create_megdnn_opr<megdnn::Dot>(comp_node); | |||
for (unsigned i = 0; i < inputs.size(); ++i) { | |||
auto dnn_ten = inputs[i]->dnn_tensor(); | |||
inp_tensornds.push_back(dnn_ten); | |||
} | |||
TensorLayout oup_layout{inputs[0]->dtype()}; | |||
auto inp1_tensor = inputs[0]->dnn_tensor(); | |||
auto inp2_tensor = inputs[1]->dnn_tensor(); | |||
dnn_opr->deduce_layout(inp1_tensor.layout, inp2_tensor.layout, oup_layout); | |||
if (inputs[0]->layout().is_empty() || inputs[1]->layout().is_empty()) { | |||
auto fill_opr = opr::intl::create_megdnn_opr<megdnn::Fill>(comp_node); | |||
DeviceTensorND out = | |||
BlobManager::inst()->alloc_workspace_with_defrag(comp_node, oup_layout); | |||
fill_opr->param() = 0; | |||
fill_opr->exec(out.as_megdnn(), {}); | |||
return {Tensor::make(out)}; | |||
} | |||
auto wk_size = dnn_opr->get_workspace_in_bytes( | |||
inp_tensornds[0].layout, inp_tensornds[1].layout, output_descs[0].layout); | |||
DeviceTensorND out_devtensor = | |||
BlobManager::inst()->alloc_workspace_with_defrag(comp_node, oup_layout); | |||
TensorLayout wk_layout{TensorShape{wk_size}, inputs[0]->dtype()}; | |||
DeviceTensorND workspace = | |||
BlobManager::inst()->alloc_workspace_with_defrag(comp_node, wk_layout); | |||
megdnn::Workspace dnn_wk(workspace.raw_ptr(), wk_size); | |||
dnn_opr->exec( | |||
inp_tensornds[0], inp_tensornds[1], out_devtensor.as_megdnn(), dnn_wk); | |||
return {Tensor::make(out_devtensor)}; | |||
} | |||
std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible( | |||
const OpDef& def, const SmallVector<LogicalTensorDesc>& inputs) { | |||
auto&& op_def = def.cast_final_safe<Dot>(); | |||
SmallVector<LogicalTensorDesc> dests(1); | |||
dests[0].layout = TensorLayout(TensorShape{1}, inputs[0].layout.dtype); | |||
dests[0].comp_node = inputs[0].comp_node; | |||
return {dests, true}; | |||
} | |||
OP_TRAIT_REG(Dot, Dot, opr::Dot) | |||
.apply_on_var_node(apply_on_var_node) | |||
.infer_output_attrs_fallible(infer_output_attrs_fallible) | |||
.apply_on_physical_tensor(apply_on_physical_tensor) | |||
.fallback(); | |||
} // namespace dot | |||
} // namespace | |||
namespace { | |||
namespace argsort { | |||
auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { | |||
auto&& argsort = static_cast<const Argsort&>(def); | |||