Browse Source

docs(docstring): add pad docstring

GitOrigin-RevId: eaf6a87456
tags/v1.9.0
Megvii Engine Team 3 years ago
parent
commit
90c8a58cca
2 changed files with 84 additions and 6 deletions
  1. +40
    -3
      imperative/python/megengine/functional/nn.py
  2. +44
    -3
      imperative/python/megengine/module/padding.py

+ 40
- 3
imperative/python/megengine/functional/nn.py View File

@@ -1894,9 +1894,46 @@ def pad(
mode: str = "constant",
constant_value: float = 0.0,
) -> Tensor:
"""
Pad is python warpper for padding opr in megbrain, can padding in random one of the max 7 dimensions.
Supported constant, edge(replicate) and reflect mode, constatnt is the default mode.
r"""Pads the input tensor.

Args:
pad_width: A tuple. Each element in the tuple is the tuple of 2-elements,
the 2 elements represent the padding size on both sides of the current dimension, ``(front_offset, back_offset)``
mode: One of the following string values. Default: ``'constant'``

* ``'constant'``: Pads with a constant value.
* ``'reflect'``: Pads with the edge values of tensor.
* ``'replicate'``: Pads with the reflection of the tensor mirrored on the first and last values of the tensor along each axis.
constant_val: Fill value for ``'constant'`` padding. Default: 0

Examples:

>>> import numpy as np
>>> inp = Tensor([[1., 2., 3.],[4., 5., 6.]])
>>> inp
Tensor([[1. 2. 3.]
[4. 5. 6.]], device=xpux:0)
>>> F.nn.pad(inp, pad_width=((1, 1),), mode="constant")
Tensor([[0. 0. 0.]
[1. 2. 3.]
[4. 5. 6.]
[0. 0. 0.]], device=xpux:0)
>>> F.nn.pad(inp, pad_width=((1, 1),), mode="constant", constant_value=9)
Tensor([[9. 9. 9.]
[1. 2. 3.]
[4. 5. 6.]
[9. 9. 9.]], device=xpux:0)
>>> F.nn.pad(inp, pad_width=((1, 1), (1, 2)), mode="reflect")
Tensor([[5. 4. 5. 6. 5. 4.]
[2. 1. 2. 3. 2. 1.]
[5. 4. 5. 6. 5. 4.]
[2. 1. 2. 3. 2. 1.]], device=xpux:0)
>>> F.nn.pad(inp, pad_width=((1, 1), (1, 2)), mode="replicate")
Tensor([[1. 1. 2. 3. 3. 3.]
[1. 1. 2. 3. 3. 3.]
[4. 4. 5. 6. 6. 6.]
[4. 4. 5. 6. 6. 6.]], device=xpux:0)

"""
p_offsets = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]



+ 44
- 3
imperative/python/megengine/module/padding.py View File

@@ -5,9 +5,50 @@ from .module import Module


class Pad(Module):
"""
Pad is python warpper for padding opr in megbrain, can padding in random one of the max 7 dimensions.
Supported constant, edge(replicate) and reflect mode, constatnt is the default mode.
r"""Pads the input tensor.

Args:
pad_width: A tuple. Each element in the tuple is the tuple of 2-elements,
the 2 elements represent the padding size on both sides of the current dimension, ``(front_offset, back_offset)``
mode: One of the following string values. Default: ``'constant'``

* ``'constant'``: Pads with a constant value.
* ``'reflect'``: Pads with the edge values of tensor.
* ``'replicate'``: Pads with the reflection of the tensor mirrored on the first and last values of the tensor along each axis.
constant_val: Fill value for ``'constant'`` padding. Default: 0

Examples:

>>> import numpy as np
>>> inp = Tensor([[1., 2., 3.],[4., 5., 6.]])
>>> inp
Tensor([[1. 2. 3.]
[4. 5. 6.]], device=xpux:0)
>>> m = M.Pad(pad_width=((1, 1),), mode="constant")
>>> m(inp)
Tensor([[0. 0. 0.]
[1. 2. 3.]
[4. 5. 6.]
[0. 0. 0.]], device=xpux:0)
>>> m = M.Pad(pad_width=((1, 1),), mode="constant", constant_val=9)
>>> m(inp)
Tensor([[9. 9. 9.]
[1. 2. 3.]
[4. 5. 6.]
[9. 9. 9.]], device=xpux:0)
>>> m = M.Pad(pad_width=((1, 1), (1, 2)), mode="reflect")
>>> m(inp)
Tensor([[5. 4. 5. 6. 5. 4.]
[2. 1. 2. 3. 2. 1.]
[5. 4. 5. 6. 5. 4.]
[2. 1. 2. 3. 2. 1.]], device=xpux:0)
>>> m = M.Pad(pad_width=((1, 1), (1, 2)), mode="replicate")
>>> m(inp)
Tensor([[1. 1. 2. 3. 3. 3.]
[1. 1. 2. 3. 3. 3.]
[4. 4. 5. 6. 6. 6.]
[4. 4. 5. 6. 6. 6.]], device=xpux:0)

"""

def __init__(


Loading…
Cancel
Save