GitOrigin-RevId: 0dba39f56b
tags/v0.4.0
@@ -1,145 +0,0 @@ | |||
/** | |||
* \file dnn/src/cuda/group_local/cuda_interface.cu | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "./cuda_interface.h" | |||
#include "src/cuda/utils.cuh" | |||
namespace megdnn { | |||
namespace cuda { | |||
// src layout is (N, G, IC, IH, IW) | |||
// filter layout is (G, OH, OW, IC, FH, FW, OC) | |||
// dst layout is (N, G, OC, OH, OW) | |||
// NR_THREADS is 256 | |||
// gridDim.z is G | |||
// gridDim.y is OC*OH*OW/NR_THREADS | |||
// gridDim.x is N/NB | |||
// blockDim.x is NR_THREADS | |||
// INs and ONs are the stride on the src/dst batch size dim | |||
// IC and OC are nr. channels per group | |||
// Each thread tackles with NB (actually NB_cur if non-multiple-of-NB N is considered). | |||
// Let oid = blockIdx.y*NR_THREADS + threadIdx.x (global thread ID along block | |||
// axis y), and we flatten (OC, OH, OW) into one dimension, then each thread | |||
// calculates the answer at dst position (n, blockIdx.z, oid), where n ranges | |||
// from blockDim.x*NB + 0 to blockDim.x*NB + (NB-1). | |||
// IC is processed at stride of ICB. On entrance of each iteration of the loop, | |||
// NB * ICB spatial src planes are loaded into shared memory (presumably src | |||
// spatial size is small). | |||
template <uint32_t NB, uint32_t ICB, bool is_xcorr> | |||
__global__ void forward_kernel(const float * __restrict__ src, | |||
const float * __restrict__ filter, | |||
float * __restrict__ dst, | |||
uint32_t N, | |||
uint32_t IC, uint32_t IH, uint32_t IW, | |||
uint32_t OC, uint32_t OH, uint32_t OW, | |||
uint32_t FH, uint32_t FW, | |||
uint32_t G, | |||
uint32_t INs, uint32_t ONs, | |||
uint32_t PH, uint32_t PW, | |||
uint32_t SH, uint32_t SW) | |||
{ | |||
// NB * ICB * sizeof(float) * IH * IW | |||
extern __shared__ float shared_mem[]; | |||
float *src_cache = shared_mem; | |||
uint32_t tid = threadIdx.x; | |||
uint32_t tstride = blockDim.x; | |||
uint32_t oid = tid + blockIdx.y * tstride; | |||
src += blockIdx.x*NB * INs + blockIdx.z*IC*IH*IW; | |||
dst += blockIdx.x*NB * ONs + blockIdx.z*OC*OH*OW; | |||
filter += blockIdx.z*OH*OW*IC*FH*FW*OC; | |||
uint32_t op = oid / OC; | |||
uint32_t oc = oid % OC; | |||
uint32_t oh = op / OW; | |||
uint32_t ow = op % OW; | |||
float dst_reg[NB]; | |||
for (uint32_t nb = 0; nb < NB; ++nb) dst_reg[nb] = 0.0f; | |||
uint32_t NB_cur = min(N-blockIdx.x*NB, NB); | |||
for (uint32_t ic = 0; ic < IC; ic += ICB) { | |||
// read ICB-channel src | |||
// (NB, ICB, IHs, IWs) | |||
uint32_t ICB_cur = min(ICB, IC-ic); | |||
for (uint32_t i = tid; i < NB_cur*ICB*IH*IW; i += tstride) { | |||
uint32_t ip = i % (IH*IW); | |||
uint32_t icb = i / (IH*IW) % ICB; | |||
uint32_t nb = i / (IH*IW) / ICB; | |||
src_cache[i] = | |||
(icb < ICB_cur) * src[nb*INs + min(IC-1, (ic+icb))*IH*IW + ip]; | |||
} | |||
__syncthreads(); | |||
if (oid < OC*OH*OW) | |||
for (uint32_t fh = 0; fh < FH; ++fh) | |||
{ | |||
uint32_t ih; | |||
if (is_xcorr) ih = oh*SH + fh - PH; else ih = oh*SH + (FH-fh-1) - PH; | |||
if (ih < IH) | |||
for (uint32_t fw = 0; fw < FW; ++fw) | |||
{ | |||
uint32_t iw; | |||
if (is_xcorr) iw = ow*SW + fw - PW; else iw = ow*SW + (FW-fw-1) - PW; | |||
if (iw < IW) | |||
for (uint32_t icb = 0; icb < ICB_cur; ++icb) { | |||
uint32_t fid = op*IC*FH*FW*OC + (ic+icb)*FH*FW*OC + | |||
fh*FW*OC + fw*OC + oc; | |||
float fval = filter[fid]; | |||
float src_reg[NB]; | |||
#pragma unroll | |||
for (uint32_t nb = 0; nb < NB; ++nb) { | |||
src_reg[nb] = src_cache[nb*ICB*IH*IW + icb*IH*IW + ih*IW + iw]; | |||
} | |||
#pragma unroll | |||
for (uint32_t nb = 0; nb < NB; ++nb) { | |||
dst_reg[nb] += src_reg[nb]*fval; | |||
} | |||
} | |||
} | |||
} | |||
__syncthreads(); | |||
} | |||
if (oid < OC*OH*OW) { | |||
for (uint32_t nb = 0; nb < NB_cur; ++nb) { | |||
dst[nb*ONs + oc*OH*OW + op] = dst_reg[nb]; | |||
} | |||
} | |||
} | |||
void run_inference_kernel(const float *src, const float *filter, float *dst, | |||
float *wptr, | |||
uint32_t N, uint32_t IC, uint32_t IH, uint32_t IW, | |||
uint32_t OC, uint32_t OH, uint32_t OW, | |||
uint32_t FH, uint32_t FW, | |||
uint32_t G, | |||
uint32_t PH, uint32_t PW, | |||
uint32_t SH, uint32_t SW, | |||
cudaStream_t stream) | |||
{ | |||
MEGDNN_MARK_USED_VAR(wptr); | |||
size_t threads = 256; | |||
const size_t NB = 4, ICB = 4; | |||
dim3 blocks = dim3(DIVUP(N, NB), DIVUP(OC*OH*OW, threads), G); | |||
uint32_t INs = G*IC*IH*IW, ONs = G*OC*OH*OW; | |||
forward_kernel<NB, ICB, true><<<blocks, threads, | |||
NB*ICB*sizeof(float)*IH*IW, stream>>>(src, filter, dst, | |||
N, | |||
IC, IH, IW, | |||
OC, OH, OW, | |||
FH, FW, | |||
G, | |||
INs, ONs, | |||
PH, PW, | |||
SH, SW); | |||
after_kernel_launch(); | |||
} | |||
} // namespace cuda | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,146 @@ | |||
/** | |||
* \file dnn/src/cuda/group_local/forward/kern.cu | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/cuda/group_local/forward/kern.cuh" | |||
#include "src/cuda/utils.cuh" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
namespace { | |||
constexpr size_t NB = 4, ICB = 4; | |||
// src layout is (N, G, IC, IH, IW) | |||
// filter layout is (G, OH, OW, IC, FH, FW, OC) | |||
// dst layout is (N, G, OC, OH, OW) | |||
// NR_THREADS is 256 | |||
// gridDim.z is G | |||
// gridDim.y is OC*OH*OW/NR_THREADS | |||
// gridDim.x is N/NB | |||
// blockDim.x is NR_THREADS | |||
// INs and ONs are the stride on the src/dst batch size dim | |||
// IC and OC are nr. channels per group | |||
// Each thread tackles with NB (actually NB_cur if non-multiple-of-NB N is | |||
// considered). Let oid = blockIdx.y*NR_THREADS + threadIdx.x (global thread ID | |||
// along block axis y), and we flatten (OC, OH, OW) into one dimension, then | |||
// each thread calculates the answer at dst position (n, blockIdx.z, oid), where | |||
// n ranges from blockDim.x*NB + 0 to blockDim.x*NB + (NB-1). IC is processed at | |||
// stride of ICB. On entrance of each iteration of the loop, NB * ICB spatial | |||
// src planes are loaded into shared memory (presumably src spatial size is | |||
// small). | |||
template <uint32_t NB, uint32_t ICB, bool is_xcorr> | |||
__global__ void forward_kernel(const float* __restrict__ src, | |||
const float* __restrict__ filter, | |||
float* __restrict__ dst, uint32_t N, uint32_t IC, | |||
uint32_t IH, uint32_t IW, uint32_t OC, | |||
uint32_t OH, uint32_t OW, uint32_t FH, | |||
uint32_t FW, uint32_t INs, uint32_t ONs, | |||
uint32_t PH, uint32_t PW, uint32_t SH, | |||
uint32_t SW) { | |||
// NB * ICB * sizeof(float) * IH * IW | |||
extern __shared__ float shared_mem[]; | |||
float* src_cache = shared_mem; | |||
uint32_t tid = threadIdx.x; | |||
uint32_t tstride = blockDim.x; | |||
uint32_t oid = tid + blockIdx.y * tstride; | |||
src += blockIdx.x * NB * INs + blockIdx.z * IC * IH * IW; | |||
dst += blockIdx.x * NB * ONs + blockIdx.z * OC * OH * OW; | |||
filter += blockIdx.z * OH * OW * IC * FH * FW * OC; | |||
uint32_t op = oid / OC; | |||
uint32_t oc = oid % OC; | |||
uint32_t oh = op / OW; | |||
uint32_t ow = op % OW; | |||
float dst_reg[NB]; | |||
for (uint32_t nb = 0; nb < NB; ++nb) | |||
dst_reg[nb] = 0.0f; | |||
uint32_t NB_cur = min(N - blockIdx.x * NB, NB); | |||
for (uint32_t ic = 0; ic < IC; ic += ICB) { | |||
// read ICB-channel src | |||
// (NB, ICB, IHs, IWs) | |||
uint32_t ICB_cur = min(ICB, IC - ic); | |||
for (uint32_t i = tid; i < NB_cur * ICB * IH * IW; i += tstride) { | |||
uint32_t ip = i % (IH * IW); | |||
uint32_t icb = i / (IH * IW) % ICB; | |||
uint32_t nb = i / (IH * IW) / ICB; | |||
src_cache[i] = | |||
(icb < ICB_cur) * | |||
src[nb * INs + min(IC - 1, (ic + icb)) * IH * IW + ip]; | |||
} | |||
__syncthreads(); | |||
if (oid < OC * OH * OW) | |||
for (uint32_t fh = 0; fh < FH; ++fh) { | |||
uint32_t ih; | |||
if (is_xcorr) | |||
ih = oh * SH + fh - PH; | |||
else | |||
ih = oh * SH + (FH - fh - 1) - PH; | |||
if (ih < IH) | |||
for (uint32_t fw = 0; fw < FW; ++fw) { | |||
uint32_t iw; | |||
if (is_xcorr) | |||
iw = ow * SW + fw - PW; | |||
else | |||
iw = ow * SW + (FW - fw - 1) - PW; | |||
if (iw < IW) | |||
for (uint32_t icb = 0; icb < ICB_cur; ++icb) { | |||
uint32_t fid = op * IC * FH * FW * OC + | |||
(ic + icb) * FH * FW * OC + | |||
fh * FW * OC + fw * OC + oc; | |||
float fval = filter[fid]; | |||
float src_reg[NB]; | |||
#pragma unroll | |||
for (uint32_t nb = 0; nb < NB; ++nb) { | |||
src_reg[nb] = src_cache[nb * ICB * IH * IW + | |||
icb * IH * IW + | |||
ih * IW + iw]; | |||
} | |||
#pragma unroll | |||
for (uint32_t nb = 0; nb < NB; ++nb) { | |||
dst_reg[nb] += src_reg[nb] * fval; | |||
} | |||
} | |||
} | |||
} | |||
__syncthreads(); | |||
} | |||
if (oid < OC * OH * OW) { | |||
for (uint32_t nb = 0; nb < NB_cur; ++nb) { | |||
dst[nb * ONs + oc * OH * OW + op] = dst_reg[nb]; | |||
} | |||
} | |||
} | |||
} | |||
void group_local::exec(const float* src, const float* filter, float* dst, | |||
float* wptr, uint32_t N, uint32_t IC, uint32_t IH, | |||
uint32_t IW, uint32_t OC, uint32_t OH, uint32_t OW, | |||
uint32_t FH, uint32_t FW, uint32_t G, uint32_t PH, | |||
uint32_t PW, uint32_t SH, uint32_t SW, | |||
cudaStream_t stream) { | |||
MEGDNN_MARK_USED_VAR(wptr); | |||
size_t threads = 256; | |||
dim3 blocks = dim3(DIVUP(N, NB), DIVUP(OC * OH * OW, threads), G); | |||
uint32_t INs = G * IC * IH * IW, ONs = G * OC * OH * OW; | |||
forward_kernel<NB, ICB, true> | |||
<<<blocks, threads, NB * ICB * sizeof(float) * IH * IW, stream>>>( | |||
src, filter, dst, N, IC, IH, IW, OC, OH, OW, FH, FW, INs, | |||
ONs, PH, PW, SH, SW); | |||
after_kernel_launch(); | |||
} | |||
size_t group_local::get_share_mem_in_bytes(uint32_t IH, uint32_t IW) { | |||
return NB * ICB * sizeof(float) * IH * IW; | |||
} |
@@ -14,8 +14,9 @@ | |||
namespace megdnn { | |||
namespace cuda { | |||
namespace group_local { | |||
void run_inference_kernel(const float *src, const float *filter, float *dst, | |||
void exec(const float *src, const float *filter, float *dst, | |||
float *wptr, | |||
uint32_t N, uint32_t IC, uint32_t IH, uint32_t IW, | |||
uint32_t OC, uint32_t OH, uint32_t OW, | |||
@@ -25,6 +26,10 @@ void run_inference_kernel(const float *src, const float *filter, float *dst, | |||
uint32_t SH, uint32_t SW, | |||
cudaStream_t stream); | |||
size_t get_share_mem_in_bytes(uint32_t IH, uint32_t IW); | |||
} // namespace group_local | |||
} // namespace cuda | |||
} // namespace megdnn | |||
@@ -1,5 +1,5 @@ | |||
/** | |||
* \file dnn/src/cuda/group_local/fwd.cpp | |||
* \file dnn/src/cuda/group_local/forward/opr_impl.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
@@ -14,7 +14,7 @@ | |||
#include "src/cuda/local/local.cuh" | |||
#include "src/cuda/utils.h" | |||
#include "./cuda_interface.h" | |||
#include "src/cuda/group_local/forward/kern.cuh" | |||
namespace megdnn { | |||
namespace cuda { | |||
@@ -46,7 +46,7 @@ void GroupLocalForwardImpl::exec(_megdnn_tensor_in src, | |||
auto one = handle->one_device(); | |||
auto zero = handle->zero_device(); | |||
if (prefer_inference_kernel(src.layout, filter.layout, dst.layout)) { | |||
run_inference_kernel(sptr, fptr, dptr, wptr, | |||
group_local::exec(sptr, fptr, dptr, wptr, | |||
N, IC, IH, IW, | |||
OC, OH, OW, | |||
FH, FW, | |||
@@ -141,11 +141,14 @@ bool GroupLocalForwardImpl::prefer_inference_kernel(const TensorLayout &src, | |||
const TensorLayout &filter, | |||
const TensorLayout &dst) | |||
{ | |||
megdnn_ignore(filter); | |||
megdnn_ignore(dst); | |||
return src.shape[0] <= 8; | |||
MEGDNN_MARK_USED_VAR(filter); | |||
MEGDNN_MARK_USED_VAR(dst); | |||
auto handle = concrete_handle(this->handle()); | |||
size_t N = src.shape[0], IH = src.shape[2], IW = src.shape[3]; | |||
return N <= 8 && handle->device_prop().sharedMemPerBlock >= | |||
group_local::get_share_mem_in_bytes(IH, IW); | |||
} | |||
} // namespace cuda | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen | |||
} // namespace cuda | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |