GitOrigin-RevId: fbc0d51c2b
tags/v1.0.0-rc1
@@ -130,32 +130,31 @@ def optimize_for_inference(dest_vars, **kwargs): | |||||
inference) | inference) | ||||
""" | """ | ||||
inference_options = GraphOptimizeOptions() | inference_options = GraphOptimizeOptions() | ||||
if optimize_for_inference: | |||||
inference_optimize_layout_transform_map = { | |||||
"enable_hwcd4": GraphOptimizeOptions.LayoutTransform.NHWCD4, | |||||
"enable_nchw4": GraphOptimizeOptions.LayoutTransform.NCHW4, | |||||
"enable_nchw88": GraphOptimizeOptions.LayoutTransform.NCHW88, | |||||
"enable_nchw32": GraphOptimizeOptions.LayoutTransform.NCHW32, | |||||
"enable_nchw44": GraphOptimizeOptions.LayoutTransform.NCHW44, | |||||
"enable_nchw44_dot": GraphOptimizeOptions.LayoutTransform.NCHW44_DOT, | |||||
"enable_chwn4": GraphOptimizeOptions.LayoutTransform.CHWN4, | |||||
} | |||||
for k, v in inference_optimize_layout_transform_map.items(): | |||||
if kwargs.pop(k, False): | |||||
inference_options.layout_transform = v | |||||
if kwargs.pop("enable_io16xc32", False): | |||||
inference_options.f16_io_f32_comp = True | |||||
if kwargs.pop("enable_ioc16", False): | |||||
inference_options.f16_io_comp = True | |||||
if kwargs.pop("enable_fuse_conv_bias_nonlinearity", False): | |||||
inference_options.fuse_conv_bias_nonlinearity = True | |||||
if kwargs.pop("enable_fuse_conv_bias_with_z", False): | |||||
inference_options.fuse_conv_bias_with_z = True | |||||
if kwargs: | |||||
raise ValueError("unknown options: %s" % list(kwargs)) | |||||
inference_optimize_layout_transform_map = { | |||||
"enable_hwcd4": GraphOptimizeOptions.LayoutTransform.NHWCD4, | |||||
"enable_nchw4": GraphOptimizeOptions.LayoutTransform.NCHW4, | |||||
"enable_nchw88": GraphOptimizeOptions.LayoutTransform.NCHW88, | |||||
"enable_nchw32": GraphOptimizeOptions.LayoutTransform.NCHW32, | |||||
"enable_nchw44": GraphOptimizeOptions.LayoutTransform.NCHW44, | |||||
"enable_nchw44_dot": GraphOptimizeOptions.LayoutTransform.NCHW44_DOT, | |||||
"enable_chwn4": GraphOptimizeOptions.LayoutTransform.CHWN4, | |||||
} | |||||
for k, v in inference_optimize_layout_transform_map.items(): | |||||
if kwargs.pop(k, False): | |||||
inference_options.layout_transform = v | |||||
if kwargs.pop("enable_io16xc32", False): | |||||
inference_options.f16_io_f32_comp = True | |||||
if kwargs.pop("enable_ioc16", False): | |||||
inference_options.f16_io_comp = True | |||||
if kwargs.pop("enable_fuse_conv_bias_nonlinearity", False): | |||||
inference_options.fuse_conv_bias_nonlinearity = True | |||||
if kwargs.pop("enable_fuse_conv_bias_with_z", False): | |||||
inference_options.fuse_conv_bias_with_z = True | |||||
if kwargs: | |||||
raise ValueError("unknown options: %s" % list(kwargs)) | |||||
res_vars = _imperative_rt.optimize_for_inference( | res_vars = _imperative_rt.optimize_for_inference( | ||||
[i._node for i in dest_vars], inference_options | [i._node for i in dest_vars], inference_options | ||||
@@ -458,7 +458,16 @@ class trace: | |||||
self._process_outputs(outputs) | self._process_outputs(outputs) | ||||
return outputs | return outputs | ||||
def dump(self, file, *, arg_names=None, output_names=None, append=False, **kwargs): | |||||
def dump( | |||||
self, | |||||
file, | |||||
*, | |||||
arg_names=None, | |||||
output_names=None, | |||||
append=False, | |||||
optimize_for_inference=True, | |||||
**kwargs | |||||
): | |||||
r"""Serializes trace to file system. | r"""Serializes trace to file system. | ||||
:param file: output file, could be file object or filename. | :param file: output file, could be file object or filename. | ||||
@@ -467,6 +476,8 @@ class trace: | |||||
use the default name if not specified. | use the default name if not specified. | ||||
:param append: whether output is appended to ``file``. | :param append: whether output is appended to ``file``. | ||||
Only works when ``file`` is str. | Only works when ``file`` is str. | ||||
:param optimize_for_inference: enbale optmizations, | |||||
will skip all optimize options if this is False. Default: True | |||||
:Keyword Arguments: | :Keyword Arguments: | ||||
@@ -572,7 +583,8 @@ class trace: | |||||
v.name = output_names[i] | v.name = output_names[i] | ||||
dest_vars.append(v) | dest_vars.append(v) | ||||
dest_vars = G.optimize_for_inference(dest_vars, **kwargs) | |||||
if optimize_for_inference: | |||||
dest_vars = G.optimize_for_inference(dest_vars, **kwargs) | |||||
if isinstance(file, str): | if isinstance(file, str): | ||||
permission = "wb" if append == False else "ab" | permission = "wb" if append == False else "ab" | ||||
@@ -155,6 +155,9 @@ void init_graph_rt(py::module m) { | |||||
}) | }) | ||||
.def_property_readonly("id",[](cg::VarNode* v){ | .def_property_readonly("id",[](cg::VarNode* v){ | ||||
return (v->id()); | return (v->id()); | ||||
}) | |||||
.def("__repr__", [](cg::VarNode* v) { | |||||
return "Var:" + v->name(); | |||||
}); | }); | ||||
py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(m, "OperatorNode") | py::class_<cg::OperatorNodeBase, GraphNodePtr<cg::OperatorNodeBase>>(m, "OperatorNode") | ||||
@@ -175,6 +178,9 @@ void init_graph_rt(py::module m) { | |||||
}) | }) | ||||
.def_property_readonly("type",[](cg::OperatorNodeBase* opr){ | .def_property_readonly("type",[](cg::OperatorNodeBase* opr){ | ||||
return opr->dyn_typeinfo()->name; | return opr->dyn_typeinfo()->name; | ||||
}) | |||||
.def("__repr__", [](cg::OperatorNodeBase* opr){ | |||||
return "Opr:" + opr->name(); | |||||
}); | }); | ||||
@@ -67,7 +67,6 @@ def test_replace_oprs(): | |||||
np.testing.assert_equal(res, np.array([5.0 * 5.0 * 1.25])) | np.testing.assert_equal(res, np.array([5.0 * 5.0 * 1.25])) | ||||
@pytest.mark.skip(reason="Please check opr index") | |||||
def test_graph_traversal(): | def test_graph_traversal(): | ||||
net = M.Conv2d(3, 32, 3) | net = M.Conv2d(3, 32, 3) | ||||
@@ -77,11 +76,11 @@ def test_graph_traversal(): | |||||
return x | return x | ||||
data = np.random.random([1, 3, 224, 224]).astype(np.float32) | data = np.random.random([1, 3, 224, 224]).astype(np.float32) | ||||
for i in range(3): | |||||
for _ in range(3): | |||||
fun(megengine.tensor(data)) | fun(megengine.tensor(data)) | ||||
file = io.BytesIO() | file = io.BytesIO() | ||||
fun.dump(file) | |||||
fun.dump(file, optimize_for_inference=False) | |||||
file.seek(0) | file.seek(0) | ||||
cg, _, outputs = mgb_graph.load_graph(file) | cg, _, outputs = mgb_graph.load_graph(file) | ||||
@@ -13,7 +13,6 @@ import numpy as np | |||||
import pytest | import pytest | ||||
import megengine | import megengine | ||||
import megengine.core.tensor.megbrain_graph as G | |||||
import megengine.module as M | import megengine.module as M | ||||
from megengine import cgtools, tensor | from megengine import cgtools, tensor | ||||
from megengine.core._trace_option import set_tensor_shape | from megengine.core._trace_option import set_tensor_shape | ||||
@@ -150,7 +149,6 @@ def test_capture_dump(): | |||||
np.testing.assert_equal(result[0], y) | np.testing.assert_equal(result[0], y) | ||||
@pytest.mark.skip(reason="get MultipleDeviceTensorHolder instead of SharedDeviceTensor") | |||||
def test_dump_volatile(): | def test_dump_volatile(): | ||||
p = as_raw_tensor([2]) | p = as_raw_tensor([2]) | ||||
@@ -167,7 +165,7 @@ def test_dump_volatile(): | |||||
np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) | np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) | ||||
file = io.BytesIO() | file = io.BytesIO() | ||||
f.dump(file) | |||||
f.dump(file, optimize_for_inference=False) | |||||
file.seek(0) | file.seek(0) | ||||
cg, _, outputs = G.load_graph(file) | cg, _, outputs = G.load_graph(file) | ||||
(out,) = outputs | (out,) = outputs | ||||
@@ -196,26 +194,7 @@ def test_trace_profiler(): | |||||
assert out.get("profiler") | assert out.get("profiler") | ||||
@pytest.mark.skip(reason="eq_to_unit failed in inplace.cpp") | |||||
def test_goptions_div_zero(): | |||||
@trace(symbolic=True, opt_level=0) | |||||
def f(x): | |||||
return x / x | |||||
@trace(symbolic=True, opt_level=1) | |||||
def g(x): | |||||
return x / x | |||||
out = f(tensor(0.0)) | |||||
if out == out: | |||||
raise ValueError("actual result should be nan") | |||||
out = g(tensor(0.0)) | |||||
if out != out: | |||||
raise ValueError("actual result should be 1") | |||||
@pytest.mark.skip(reason="cast to Elemwise failed in inplace.cpp") | |||||
@pytest.mark.skip(reason="could not disable opt_level") | |||||
def test_goptions_log_exp(): | def test_goptions_log_exp(): | ||||
@trace(symbolic=True, opt_level=0, capture_as_const=True) | @trace(symbolic=True, opt_level=0, capture_as_const=True) | ||||
def f(x): | def f(x): | ||||
@@ -227,19 +206,19 @@ def test_goptions_log_exp(): | |||||
f(tensor(1.0)) | f(tensor(1.0)) | ||||
_, out = mkstemp() | _, out = mkstemp() | ||||
f.dump(out) | |||||
*_, outputs = G.load_comp_graph_from_file(out) | |||||
f.dump(out, optimize_for_inference=False) | |||||
*_, outputs = G.load_graph(out) | |||||
oprs_1 = cgtools.get_oprs_seq(outputs) | oprs_1 = cgtools.get_oprs_seq(outputs) | ||||
g(tensor(1.0)) | g(tensor(1.0)) | ||||
g.dump(out) | |||||
*_, outputs = G.load_comp_graph_from_file(out) | |||||
g.dump(out, optimize_for_inference=False) | |||||
*_, outputs = G.load_graph(out) | |||||
oprs_2 = cgtools.get_oprs_seq(outputs) | oprs_2 = cgtools.get_oprs_seq(outputs) | ||||
assert len(oprs_1) - len(oprs_2) == 2 | assert len(oprs_1) - len(oprs_2) == 2 | ||||
@pytest.mark.skip(reason="need cgtools to check final oprs") | |||||
@pytest.mark.skip(reason="could not disable opt_level") | |||||
def test_goptions_log_sum_exp(): | def test_goptions_log_sum_exp(): | ||||
@trace(symbolic=True, opt_level=0, capture_as_const=True) | @trace(symbolic=True, opt_level=0, capture_as_const=True) | ||||
def f(x, y): | def f(x, y): | ||||
@@ -251,19 +230,18 @@ def test_goptions_log_sum_exp(): | |||||
f(tensor(1.0), tensor(2.0)) | f(tensor(1.0), tensor(2.0)) | ||||
_, out = mkstemp() | _, out = mkstemp() | ||||
f.dump(out) | |||||
*_, outputs = G.load_comp_graph_from_file(out) | |||||
f.dump(out, optimize_for_inference=False) | |||||
*_, outputs = G.load_graph(out) | |||||
oprs_1 = cgtools.get_oprs_seq(outputs) | oprs_1 = cgtools.get_oprs_seq(outputs) | ||||
g(tensor(1.0), tensor(2.0)) | g(tensor(1.0), tensor(2.0)) | ||||
g.dump(out) | |||||
*_, outputs = G.load_comp_graph_from_file(out) | |||||
g.dump(out, optimize_for_inference=False) | |||||
*_, outputs = G.load_graph(out) | |||||
oprs_2 = cgtools.get_oprs_seq(outputs) | oprs_2 = cgtools.get_oprs_seq(outputs) | ||||
assert len(oprs_1) - len(oprs_2) == 2 | assert len(oprs_1) - len(oprs_2) == 2 | ||||
@pytest.mark.skip(reason="need cgtools to check computing input dtype") | |||||
def test_optimize_for_inference(): | def test_optimize_for_inference(): | ||||
@trace(symbolic=True, capture_as_const=True) | @trace(symbolic=True, capture_as_const=True) | ||||
def f(x): | def f(x): | ||||
@@ -271,9 +249,9 @@ def test_optimize_for_inference(): | |||||
_, out = mkstemp() | _, out = mkstemp() | ||||
f(tensor(5.0)) | f(tensor(5.0)) | ||||
f.dump(out, optimize_for_inference=True, optimize_options={"enable_io16xc32": True}) | |||||
f.dump(out, enable_io16xc32=True) | |||||
res = G.load_comp_graph_from_file(out) | |||||
res = G.load_graph(out) | |||||
computing_input = res.output_vars_list[0].owner.inputs[0] | computing_input = res.output_vars_list[0].owner.inputs[0] | ||||
assert computing_input.dtype == np.float16 | assert computing_input.dtype == np.float16 | ||||