GitOrigin-RevId: feb09ebb58
release-1.8
@@ -10,24 +10,25 @@ import shutil | |||
from library import * | |||
from gemm_operation import * | |||
from conv2d_operation import * | |||
from conv2d_operation import * | |||
################################################################################################### | |||
class EmitOperationKindLibrary: | |||
def __init__(self, generated_path, kind, args): | |||
self.generated_path = generated_path | |||
self.kind = kind | |||
self.args = args | |||
def __init__(self, generated_path, kind, args): | |||
self.generated_path = generated_path | |||
self.kind = kind | |||
self.args = args | |||
self.emitters = { | |||
OperationKind.Gemm: EmitGemmConfigurationLibrary | |||
, OperationKind.Conv2d: EmitConv2dConfigurationLibrary | |||
} | |||
self.emitters = { | |||
OperationKind.Gemm: EmitGemmConfigurationLibrary, | |||
OperationKind.Conv2d: EmitConv2dConfigurationLibrary, | |||
} | |||
self.configurations = []; | |||
self.configurations = [] | |||
self.header_template =""" | |||
self.header_template = """ | |||
/* | |||
Generated by manifest.py - Do not edit. | |||
*/ | |||
@@ -42,17 +43,19 @@ namespace library { | |||
/////////////////////////////////////////////////////////////////////////////////////////////////// | |||
""" | |||
self.entry_template = """ | |||
self.entry_template = """ | |||
// | |||
// Entry point to construct operations | |||
// | |||
void initialize_all_${operation_name}_operations(Manifest &manifest) { | |||
""" | |||
self.configuration_prototype_template = "void initialize_${configuration_name}(Manifest &manifest);\n" | |||
self.configuration_template =" initialize_${configuration_name}(manifest);\n" | |||
self.configuration_prototype_template = ( | |||
"void initialize_${configuration_name}(Manifest &manifest);\n" | |||
) | |||
self.configuration_template = " initialize_${configuration_name}(manifest);\n" | |||
self.epilogue_template =""" | |||
self.epilogue_template = """ | |||
} | |||
@@ -63,91 +66,118 @@ void initialize_all_${operation_name}_operations(Manifest &manifest) { | |||
""" | |||
# | |||
def __enter__(self): | |||
self.operation_path = os.path.join(self.generated_path, OperationKindNames[self.kind]) | |||
os.mkdir(self.operation_path) | |||
# | |||
def __enter__(self): | |||
self.operation_path = os.path.join( | |||
self.generated_path, OperationKindNames[self.kind] | |||
) | |||
os.mkdir(self.operation_path) | |||
self.top_level_path = os.path.join( | |||
self.operation_path, "all_%s_operations.cu" % OperationKindNames[self.kind] | |||
) | |||
self.top_level_file = open(self.top_level_path, "w") | |||
self.top_level_file.write(self.header_template) | |||
self.top_level_path = os.path.join(self.operation_path, "all_%s_operations.cu" % OperationKindNames[self.kind]) | |||
self.source_files = [self.top_level_path] | |||
self.top_level_file = open(self.top_level_path, "w") | |||
self.top_level_file.write(self.header_template) | |||
return self | |||
self.source_files = [self.top_level_path,] | |||
# | |||
def emit(self, configuration_name, operations): | |||
return self | |||
with self.emitters[self.kind]( | |||
self.operation_path, configuration_name | |||
) as configuration_emitter: | |||
for operation in operations: | |||
configuration_emitter.emit(operation) | |||
# | |||
def emit(self, configuration_name, operations): | |||
self.source_files.append(configuration_emitter.configuration_path) | |||
with self.emitters[self.kind](self.operation_path, configuration_name) as configuration_emitter: | |||
for operation in operations: | |||
configuration_emitter.emit(operation) | |||
self.source_files.append(configuration_emitter.configuration_path) | |||
self.configurations.append(configuration_name) | |||
self.top_level_file.write( | |||
SubstituteTemplate( | |||
self.configuration_prototype_template, | |||
{"configuration_name": configuration_name}, | |||
) | |||
) | |||
self.configurations.append(configuration_name) | |||
self.top_level_file.write(SubstituteTemplate(self.configuration_prototype_template, {'configuration_name': configuration_name} )) | |||
# | |||
def __exit__(self, exception_type, exception_value, traceback): | |||
self.top_level_file.write( | |||
SubstituteTemplate( | |||
self.entry_template, {"operation_name": OperationKindNames[self.kind]} | |||
) | |||
) | |||
# | |||
def __exit__(self, exception_type, exception_value, traceback): | |||
self.top_level_file.write(SubstituteTemplate(self.entry_template, {'operation_name': OperationKindNames[self.kind]})) | |||
for configuration_name in self.configurations: | |||
self.top_level_file.write( | |||
SubstituteTemplate( | |||
self.configuration_template, | |||
{"configuration_name": configuration_name}, | |||
) | |||
) | |||
for configuration_name in self.configurations: | |||
self.top_level_file.write(SubstituteTemplate(self.configuration_template, {'configuration_name': configuration_name})) | |||
self.top_level_file.write(self.epilogue_template) | |||
self.top_level_file.close() | |||
self.top_level_file.write(self.epilogue_template) | |||
self.top_level_file.close() | |||
################################################################################################### | |||
################################################################################################### | |||
class Options: | |||
def __init__(self): | |||
pass | |||
def __init__(self): | |||
pass | |||
################################################################################################### | |||
# | |||
class Manifest: | |||
# | |||
def __init__(self, args): | |||
self.operations = {} | |||
self.args = args | |||
# | |||
def __init__(self, args): | |||
self.operations = {} | |||
self.args = args | |||
architectures = ( | |||
args.architectures.split(";") if len(args.architectures) else ["50"] | |||
) | |||
self.compute_capabilities = [int(x) for x in architectures] | |||
architectures = args.architectures.split(';') if len(args.architectures) else ['50',] | |||
self.compute_capabilities = [int(x) for x in architectures] | |||
self.selected_kernels = [] | |||
if args.operations == 'all': | |||
self.operations_enabled = [] | |||
else: | |||
self.selected_kernels = [] | |||
operations_list = [ | |||
OperationKind.Gemm | |||
, OperationKind.Conv2d | |||
] | |||
if args.operations == "all": | |||
self.operations_enabled = [] | |||
else: | |||
self.operations_enabled = [x for x in operations_list if OperationKindNames[x] in args.operations.split(',')] | |||
operations_list = [OperationKind.Gemm, OperationKind.Conv2d] | |||
if args.kernels == 'all': | |||
self.kernel_names = [] | |||
else: | |||
self.kernel_names = [x for x in args.kernels.split(',') if x != ''] | |||
self.operations_enabled = [ | |||
x | |||
for x in operations_list | |||
if OperationKindNames[x] in args.operations.split(",") | |||
] | |||
self.ignore_kernel_names = [x for x in args.ignore_kernels.split(',') if x != ''] | |||
if args.kernels == "all": | |||
self.kernel_names = [] | |||
else: | |||
self.kernel_names = [x for x in args.kernels.split(",") if x != ""] | |||
if args.kernel_filter_file is None: | |||
self.kernel_filter_list = [] | |||
else: | |||
self.kernel_filter_list = self.get_kernel_filters(args.kernel_filter_file) | |||
self.ignore_kernel_names = [ | |||
x for x in args.ignore_kernels.split(",") if x != "" | |||
] | |||
if args.kernel_filter_file is None: | |||
self.kernel_filter_list = [] | |||
else: | |||
self.kernel_filter_list = self.get_kernel_filters(args.kernel_filter_file) | |||
self.operation_count = 0 | |||
self.operations_by_name = {} | |||
self.top_level_prologue = ''' | |||
self.operation_count = 0 | |||
self.operations_by_name = {} | |||
self.top_level_prologue = """ | |||
#include "cutlass/library/library.h" | |||
#include "cutlass/library/manifest.h" | |||
@@ -159,208 +189,241 @@ ${prototypes} | |||
void initialize_all(Manifest &manifest) { | |||
''' | |||
self.top_level_reserve = ' manifest.reserve(${operation_count});\n\n' | |||
self.top_level_epilogue = ''' | |||
""" | |||
self.top_level_reserve = " manifest.reserve(${operation_count});\n\n" | |||
self.top_level_epilogue = """ | |||
} | |||
} // namespace library | |||
} // namespace cutlass | |||
''' | |||
def get_kernel_filters (self, kernelListFile): | |||
if os.path.isfile(kernelListFile): | |||
with open(kernelListFile, 'r') as fileReader: | |||
lines = [line.rstrip() for line in fileReader if not line.startswith("#")] | |||
lines = [re.compile(line) for line in lines if line] | |||
return lines | |||
else: | |||
return [] | |||
""" | |||
def get_kernel_filters(self, kernelListFile): | |||
if os.path.isfile(kernelListFile): | |||
with open(kernelListFile, "r") as fileReader: | |||
lines = [ | |||
line.rstrip() for line in fileReader if not line.startswith("#") | |||
] | |||
lines = [re.compile(line) for line in lines if line] | |||
return lines | |||
else: | |||
return [] | |||
def filter_out_kernels(self, kernel_name, kernel_filter_list): | |||
def filter_out_kernels(self, kernel_name, kernel_filter_list): | |||
for kernel_filter_re in kernel_filter_list: | |||
if kernel_filter_re.search(kernel_name) is not None: | |||
return True | |||
return False | |||
for kernel_filter_re in kernel_filter_list: | |||
if kernel_filter_re.search(kernel_name) is not None: | |||
return True | |||
# | |||
def _filter_string_matches(self, filter_string, haystack): | |||
''' Returns true if all substrings appear in the haystack in order''' | |||
substrings = filter_string.split('*') | |||
for sub in substrings: | |||
idx = haystack.find(sub) | |||
if idx < 0: | |||
return False | |||
haystack = haystack[idx + len(sub):] | |||
return True | |||
# | |||
def filter(self, operation): | |||
''' Filtering operations based on various criteria''' | |||
# filter based on compute capability | |||
enabled = False | |||
for cc in self.compute_capabilities: | |||
if cc >= operation.tile_description.minimum_compute_capability and \ | |||
cc <= operation.tile_description.maximum_compute_capability: | |||
enabled = True | |||
break | |||
if not enabled: | |||
return False | |||
if len(self.operations_enabled) and not operation.operation_kind in self.operations_enabled: | |||
return False | |||
# eliminate duplicates | |||
if operation.procedural_name() in self.operations_by_name.keys(): | |||
return False | |||
# Filter based on list of valid substrings | |||
if len(self.kernel_names): | |||
name = operation.procedural_name() | |||
enabled = False | |||
# compare against the include list | |||
for name_substr in self.kernel_names: | |||
if self._filter_string_matches(name_substr, name): | |||
enabled = True | |||
break | |||
# compare against the exclude list | |||
for name_substr in self.ignore_kernel_names: | |||
if self._filter_string_matches(name_substr, name): | |||
enabled = False | |||
break | |||
if len(self.kernel_filter_list) > 0: | |||
# | |||
def _filter_string_matches(self, filter_string, haystack): | |||
""" Returns true if all substrings appear in the haystack in order""" | |||
substrings = filter_string.split("*") | |||
for sub in substrings: | |||
idx = haystack.find(sub) | |||
if idx < 0: | |||
return False | |||
haystack = haystack[idx + len(sub) :] | |||
return True | |||
# | |||
def filter(self, operation): | |||
""" Filtering operations based on various criteria""" | |||
# filter based on compute capability | |||
enabled = False | |||
if self.filter_out_kernels(operation.procedural_name(), self.kernel_filter_list): | |||
enabled = True | |||
for cc in self.compute_capabilities: | |||
if ( | |||
cc >= operation.tile_description.minimum_compute_capability | |||
and cc <= operation.tile_description.maximum_compute_capability | |||
): | |||
enabled = True | |||
break | |||
if not enabled: | |||
return False | |||
if ( | |||
len(self.operations_enabled) | |||
and not operation.operation_kind in self.operations_enabled | |||
): | |||
return False | |||
# eliminate duplicates | |||
if operation.procedural_name() in self.operations_by_name.keys(): | |||
return False | |||
# Filter based on list of valid substrings | |||
if len(self.kernel_names): | |||
name = operation.procedural_name() | |||
enabled = False | |||
# compare against the include list | |||
for name_substr in self.kernel_names: | |||
if self._filter_string_matches(name_substr, name): | |||
enabled = True | |||
break | |||
# compare against the exclude list | |||
for name_substr in self.ignore_kernel_names: | |||
if self._filter_string_matches(name_substr, name): | |||
enabled = False | |||
break | |||
if len(self.kernel_filter_list) > 0: | |||
enabled = False | |||
if self.filter_out_kernels( | |||
operation.procedural_name(), self.kernel_filter_list | |||
): | |||
enabled = True | |||
# todo: filter based on compute data type | |||
return enabled | |||
# | |||
# | |||
def append(self, operation): | |||
""" | |||
Inserts the operation. | |||
operation_kind -> configuration_name -> [] | |||
""" | |||
# todo: filter based on compute data type | |||
return enabled | |||
# | |||
if self.filter(operation): | |||
# | |||
def append(self, operation): | |||
''' | |||
Inserts the operation. | |||
self.selected_kernels.append(operation.procedural_name()) | |||
operation_kind -> configuration_name -> [] | |||
''' | |||
self.operations_by_name[operation.procedural_name()] = operation | |||
if self.filter(operation): | |||
self.selected_kernels.append(operation.procedural_name()) | |||
# add the configuration | |||
configuration_name = operation.configuration_name() | |||
self.operations_by_name[operation.procedural_name()] = operation | |||
if operation.operation_kind not in self.operations.keys(): | |||
self.operations[operation.operation_kind] = {} | |||
# add the configuration | |||
configuration_name = operation.configuration_name() | |||
if ( | |||
configuration_name | |||
not in self.operations[operation.operation_kind].keys() | |||
): | |||
self.operations[operation.operation_kind][configuration_name] = [] | |||
if operation.operation_kind not in self.operations.keys(): | |||
self.operations[operation.operation_kind] = {} | |||
self.operations[operation.operation_kind][configuration_name].append( | |||
operation | |||
) | |||
self.operation_count += 1 | |||
if configuration_name not in self.operations[operation.operation_kind].keys(): | |||
self.operations[operation.operation_kind][configuration_name] = [] | |||
# | |||
self.operations[operation.operation_kind][configuration_name].append(operation) | |||
self.operation_count += 1 | |||
# | |||
# | |||
def emit(self, target=GeneratorTarget.Library): | |||
# | |||
def emit(self, target = GeneratorTarget.Library): | |||
operation_emitters = {GeneratorTarget.Library: EmitOperationKindLibrary} | |||
operation_emitters = { | |||
GeneratorTarget.Library: EmitOperationKindLibrary | |||
} | |||
generated_path = os.path.join(self.args.curr_build_dir, "generated") | |||
generated_path = os.path.join(self.args.curr_build_dir, 'generated') | |||
# create generated/ | |||
if os.path.exists(generated_path): | |||
shutil.rmtree(generated_path) | |||
# create generated/ | |||
if os.path.exists(generated_path): | |||
shutil.rmtree(generated_path) | |||
os.mkdir(generated_path) | |||
os.mkdir(generated_path) | |||
source_files = [] | |||
source_files = [] | |||
top_level_path = os.path.join(generated_path, "initialize_all.cpp") | |||
with open(top_level_path, "w") as top_level_file: | |||
top_level_path = os.path.join(generated_path, 'initialize_all.cpp') | |||
with open(top_level_path, 'w') as top_level_file: | |||
if target == GeneratorTarget.Library: | |||
source_files.append(top_level_path) | |||
if target == GeneratorTarget.Library: | |||
source_files.append(top_level_path) | |||
prototypes = [] | |||
for operation_kind, configurations in self.operations.items(): | |||
prototypes.append( | |||
SubstituteTemplate( | |||
"void initialize_all_${operation_kind}_operations(Manifest &manifest);", | |||
{"operation_kind": OperationKindNames[operation_kind]}, | |||
) | |||
) | |||
prototypes = [] | |||
for operation_kind, configurations in self.operations.items(): | |||
prototypes.append(SubstituteTemplate( | |||
"void initialize_all_${operation_kind}_operations(Manifest &manifest);", | |||
{'operation_kind': OperationKindNames[operation_kind]})) | |||
top_level_file.write( | |||
SubstituteTemplate( | |||
self.top_level_prologue, {"prototypes": "\n".join(prototypes)} | |||
) | |||
) | |||
top_level_file.write(SubstituteTemplate(self.top_level_prologue, | |||
{'prototypes': "\n".join(prototypes)})) | |||
top_level_file.write( | |||
SubstituteTemplate( | |||
self.top_level_reserve, | |||
{"operation_count": str(self.operation_count)}, | |||
) | |||
) | |||
top_level_file.write(SubstituteTemplate( | |||
self.top_level_reserve, {'operation_count': str(self.operation_count)})) | |||
# for each operation kind, emit initializer for all configurations | |||
for operation_kind, configurations in self.operations.items(): | |||
# for each operation kind, emit initializer for all configurations | |||
for operation_kind, configurations in self.operations.items(): | |||
with operation_emitters[target](generated_path, operation_kind, self.args) as operation_kind_emitter: | |||
for configuration_name, operations in configurations.items(): | |||
operation_kind_emitter.emit(configuration_name, operations) | |||
with operation_emitters[target]( | |||
generated_path, operation_kind, self.args | |||
) as operation_kind_emitter: | |||
for configuration_name, operations in configurations.items(): | |||
operation_kind_emitter.emit(configuration_name, operations) | |||
source_files += operation_kind_emitter.source_files | |||
source_files += operation_kind_emitter.source_files | |||
top_level_file.write(SubstituteTemplate( | |||
" initialize_all_${operation_kind}_operations(manifest);\n", | |||
{'operation_kind': OperationKindNames[operation_kind]})) | |||
top_level_file.write( | |||
SubstituteTemplate( | |||
" initialize_all_${operation_kind}_operations(manifest);\n", | |||
{"operation_kind": OperationKindNames[operation_kind]}, | |||
) | |||
) | |||
top_level_file.write(self.top_level_epilogue) | |||
top_level_file.write(self.top_level_epilogue) | |||
# write the manifest.cmake file containing paths from all targets | |||
manifest_path = os.path.join(generated_path, "manifest.cmake") | |||
with open(manifest_path, "w") as manifest_file: | |||
# write the manifest.cmake file containing paths from all targets | |||
manifest_path = os.path.join(generated_path, "manifest.cmake") | |||
with open(manifest_path, "w") as manifest_file: | |||
target_name = 'cutlass_library_objs' | |||
target_name = "cutlass_library_objs" | |||
target_text = SubstituteTemplate("""cutlass_target_sources( | |||
target_text = SubstituteTemplate( | |||
"""cutlass_target_sources( | |||
${target_name} | |||
BATCH_SOURCES ON | |||
PRIVATE | |||
""", { 'target_name': target_name}) | |||
""", | |||
{"target_name": target_name}, | |||
) | |||
manifest_file.write(target_text) | |||
manifest_file.write(target_text) | |||
for source_file in source_files: | |||
manifest_file.write(" %s\n" % str(source_file.replace("\\", "/"))) | |||
manifest_file.write(")") | |||
# | |||
for source_file in source_files: | |||
manifest_file.write(" %s\n" % str(source_file.replace('\\', '/'))) | |||
manifest_file.write(")") | |||
# | |||
################################################################################################### | |||
def GenerateManifest(args, operations, output_dir): | |||
assert isinstance(operations, list) | |||
if len(operations) == 0: | |||
return | |||
op = operations[0] | |||
required_cuda_ver_major = op.required_cuda_ver_major | |||
required_cuda_ver_minor = op.required_cuda_ver_minor | |||
manifest_path = os.path.join(output_dir, "all_%s_%s_operations.cu" % (args.operations, args.type)) | |||
f = open(manifest_path, "w") | |||
f.write(""" | |||
assert isinstance(operations, list) | |||
if len(operations) == 0: | |||
return | |||
op = operations[0] | |||
required_cuda_ver_major = op.required_cuda_ver_major | |||
required_cuda_ver_minor = op.required_cuda_ver_minor | |||
manifest_path = os.path.join( | |||
output_dir, "all_%s_%s_operations.cu" % (args.operations, args.type) | |||
) | |||
f = open(manifest_path, "w") | |||
f.write( | |||
""" | |||
/* | |||
Generated by generator.py - Do not edit. | |||
*/ | |||
@@ -374,24 +437,35 @@ def GenerateManifest(args, operations, output_dir): | |||
namespace cutlass { | |||
namespace library { | |||
""" % (str(required_cuda_ver_major), str(required_cuda_ver_major), str(required_cuda_ver_minor))) | |||
for op in operations: | |||
f.write("void initialize_%s(Manifest &manifest);\n" % op.procedural_name()) | |||
f.write(""" | |||
""" | |||
% ( | |||
str(required_cuda_ver_major), | |||
str(required_cuda_ver_major), | |||
str(required_cuda_ver_minor), | |||
) | |||
) | |||
for op in operations: | |||
f.write("void initialize_%s(Manifest &manifest);\n" % op.procedural_name()) | |||
f.write( | |||
""" | |||
void initialize_all_%s_%s_operations(Manifest &manifest) { | |||
""" % (args.operations, args.type)) | |||
""" | |||
% (args.operations, args.type) | |||
) | |||
for op in operations: | |||
f.write(" initialize_%s(manifest);\n" % op.procedural_name()) | |||
for op in operations: | |||
f.write(" initialize_%s(manifest);\n" % op.procedural_name()) | |||
f.write(""" | |||
f.write( | |||
""" | |||
} | |||
} // namespace library | |||
} // namespace cutlass | |||
#endif | |||
""") | |||
f.close() | |||
""" | |||
) | |||
f.close() |
@@ -181,6 +181,8 @@ if(MGE_WITH_CUDA) | |||
gen_cutlass_kimpl(conv2d simt CUTLASS_SOURCES) | |||
gen_cutlass_kimpl(conv2d tensorop8816 CUTLASS_SOURCES) | |||
gen_cutlass_kimpl(conv2d tensorop8832 CUTLASS_SOURCES) | |||
gen_cutlass_kimpl(dwconv2d_fprop simt CUTLASS_SOURCES) | |||
gen_cutlass_kimpl(dwconv2d_fprop tensorop884 CUTLASS_SOURCES) | |||
list(APPEND SOURCES ${CUTLASS_SOURCES}) | |||
list(APPEND SOURCES ${CUSOURCES}) | |||
endif() | |||
@@ -92,6 +92,7 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||
for (auto&& algo : int8_nchw4_dotprod) { | |||
all_algos.push_back(&algo); | |||
} | |||
fill_dwconv_algos(); | |||
all_algos.push_back(&int8_chwn4_dotprod); | |||
all_algos.push_back(&fallback_nchw_qs8); | |||
for (size_t i = all_algo_size; i < all_algos.size(); ++i) { | |||
@@ -301,6 +302,32 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() { | |||
} | |||
#endif | |||
void ConvBiasForwardImpl::AlgoPack::fill_dwconv_algos() { | |||
using AlgoParam = AlgoCutlassConvolutionBase::AlgoParam; | |||
f32_implicit_bmm.emplace_back(AlgoParam{128, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{128, 64, 8, 64, 32, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{128, 32, 8, 64, 32, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{32, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{64, 128, 8, 64, 32, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{64, 64, 8, 64, 32, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{32, 64, 8, 32, 64, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{32, 32, 8, 32, 32, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{64, 32, 8, 64, 32, 8, 1, 1, 1, 2}); | |||
for (auto&& algo : f32_implicit_bmm) { | |||
all_algos.push_back(&algo); | |||
} | |||
#if CUDA_VERSION >= 10020 | |||
f16_implicit_bmm.emplace_back(AlgoParam{128, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
f16_implicit_bmm.emplace_back(AlgoParam{128, 256, 32, 64, 64, 32, 8, 8, 4, 2}); | |||
f16_implicit_bmm.emplace_back(AlgoParam{128, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
f16_implicit_bmm.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
f16_implicit_bmm.emplace_back(AlgoParam{64, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
for (auto&& algo : f16_implicit_bmm) { | |||
all_algos.push_back(&algo); | |||
} | |||
#endif | |||
} | |||
void ConvBiasForwardImpl::AlgoPack::fill_dp4a_algos() { | |||
using AlgoParam = AlgoInt8NCHW4DotProdImplicitGemm::AlgoParam; | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{128, 128, 32, 64, 32, 32, 1, 1, 4, 2}); | |||
@@ -84,7 +84,9 @@ public: | |||
CUDA_IMPLICIT_GEMM_1X1_SASS_NCHW32_IMMA_INT8, | |||
CUDA_IMPLICIT_GEMM_SASS_NCHW64_IMMA_INT4_INT4, | |||
CUDA_IMPLICIT_GEMM_SASS_NCHW64_IMMA_UINT4_INT4, | |||
CUDA_FALLBACK_NCHW_INT4 | |||
CUDA_FALLBACK_NCHW_INT4, | |||
CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32, | |||
CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16, | |||
}; | |||
using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>; | |||
@@ -503,6 +505,8 @@ public: | |||
* +----+--- AlgoInt4Int4NHWCIMMAImplicitGemm | |||
* +----+--- AlgoUInt4Int4NHWCIMMAImplicitGemm | |||
* + | |||
* +--- AlgoFloat32NCHWImplicitBatchedGemm | |||
* +--- AlgoFloat16NCHWHMMAImplicitBatchedGemm | |||
*/ | |||
/* | |||
@@ -516,7 +520,13 @@ public: | |||
// corresponds to cutlass::conv::ConvType. we hope that algo.h does not | |||
// depend on cutlass headers | |||
enum class ConvType { kConvolution, kBatchConvolution, kLocal, kLocalShare }; | |||
enum class ConvType { | |||
kConvolution, | |||
kBatchConvolution, | |||
kLocal, | |||
kLocalShare, | |||
kDepthwiseConvolution, | |||
}; | |||
// common parameters for operation selection | |||
struct AlgoParam { | |||
@@ -558,7 +568,8 @@ public: | |||
size_t wo, size_t ph, size_t pw, size_t sh, size_t sw, size_t dh, size_t dw, | |||
const void* alpha, const void* beta, const void* gamma, const void* delta, | |||
const void* theta, const void* threshold, const void* dst_scale, | |||
cudaStream_t stream, const void* extra_param = nullptr) const; | |||
cudaStream_t stream, const void* extra_param = nullptr, | |||
size_t groups = 1) const; | |||
protected: | |||
AlgoParam m_algo_param; | |||
@@ -992,6 +1003,54 @@ private: | |||
}; | |||
#endif | |||
class ConvBiasForwardImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm final | |||
: public AlgoCutlassConvolutionBase { | |||
public: | |||
AlgoFloat32NCHWFMAImplicitBatchedGemm(AlgoParam algo_param) | |||
: AlgoCutlassConvolutionBase(algo_param) { | |||
m_name = ConvBias::algo_name<ConvBias::DirectParam>( | |||
ssprintf( | |||
"FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM%s", | |||
m_algo_param.to_string().c_str()), | |||
ConvBias::DirectParam{}); | |||
} | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& /* args */) const override { | |||
return 0; | |||
} | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { return m_name.c_str(); }; | |||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32); | |||
private: | |||
std::string m_name; | |||
}; | |||
class ConvBiasForwardImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm final | |||
: public AlgoCutlassConvolutionBase { | |||
public: | |||
AlgoFloat16NCHWHMMAImplicitBatchedGemm(AlgoParam algo_param) | |||
: AlgoCutlassConvolutionBase(algo_param) { | |||
m_name = ConvBias::algo_name<ConvBias::DirectParam>( | |||
ssprintf( | |||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM%s", | |||
m_algo_param.to_string().c_str()), | |||
ConvBias::DirectParam{}); | |||
} | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& /* args */) const override { | |||
return 0; | |||
} | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { return m_name.c_str(); }; | |||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16); | |||
private: | |||
std::string m_name; | |||
}; | |||
class ConvBiasForwardImpl::AlgoBFloat16 final : public AlgoBase { | |||
public: | |||
bool is_available(const SizeArgs& args) const override; | |||
@@ -1048,6 +1107,8 @@ public: | |||
std::vector<AlgoInt4Int4NHWCIMMAImplicitGemm> int4_int4_nhwc_imma; | |||
std::vector<AlgoUInt4Int4NHWCIMMAImplicitGemm> uint4_int4_nhwc_imma; | |||
#endif | |||
std::vector<AlgoFloat32NCHWFMAImplicitBatchedGemm> f32_implicit_bmm; | |||
std::vector<AlgoFloat16NCHWHMMAImplicitBatchedGemm> f16_implicit_bmm; | |||
AlgoGroupConvGeneral group; | |||
AlgoBFloat16 bfloat16; | |||
@@ -1063,6 +1124,7 @@ private: | |||
#endif | |||
void fill_cudnn_algos(); | |||
void fill_dp4a_algos(); | |||
void fill_dwconv_algos(); | |||
}; | |||
} // namespace cuda | |||
@@ -74,13 +74,18 @@ cutlass::conv::ConvType convert_conv_type(Base::ConvType conv_type) { | |||
return cutlass::conv::ConvType::kLocal; | |||
case Base::ConvType::kLocalShare: | |||
return cutlass::conv::ConvType::kLocalShare; | |||
case Base::ConvType::kDepthwiseConvolution: | |||
return cutlass::conv::ConvType::kDepthwiseConvolution; | |||
default: | |||
megdnn_assert(0, "invalid conv type"); | |||
} | |||
} | |||
NumericTypeID convert_dtype(DTypeEnum dtype) { | |||
switch (dtype) { | |||
NumericTypeID convert_dtype(DType dtype) { | |||
// just make convolution with no bias happy | |||
if (!dtype.valid()) | |||
return NumericTypeID::kF32; | |||
switch (dtype.enumv()) { | |||
case DTypeEnum::Float32: | |||
return NumericTypeID::kF32; | |||
case DTypeEnum::Float16: | |||
@@ -100,6 +105,21 @@ NumericTypeID convert_dtype(DTypeEnum dtype) { | |||
} | |||
} | |||
NumericTypeID get_accumulator_dtype( | |||
DType dtype, const param::ConvBias::ComputeMode comp_mode) { | |||
if (dtype.category() == DTypeCategory::QUANTIZED) { | |||
return NumericTypeID::kS32; | |||
} else { | |||
megdnn_assert(dtype.category() == DTypeCategory::FLOAT); | |||
if (comp_mode == param::ConvBias::ComputeMode::DEFAULT) { | |||
return convert_dtype(dtype); | |||
} else { | |||
megdnn_assert(comp_mode == param::ConvBias::ComputeMode::FLOAT32); | |||
return NumericTypeID::kF32; | |||
} | |||
} | |||
} | |||
struct LayoutPack { | |||
LayoutTypeID src; | |||
LayoutTypeID filter; | |||
@@ -149,6 +169,9 @@ LayoutPack get_layout_pack(const param::ConvBias::Format format, int access_type | |||
default: | |||
megdnn_assert(0, "invalid access_type"); | |||
} | |||
case Format::NCHW: | |||
return {LayoutTypeID::kTensorNCHW, LayoutTypeID::kTensorNCHW, | |||
LayoutTypeID::kTensorNCHW, LayoutTypeID::kTensorNCHW}; | |||
default: | |||
megdnn_assert(0, "invalid format"); | |||
} | |||
@@ -177,6 +200,93 @@ EpilogueType get_epilogue_type(const param::ConvBias::NonlineMode mode, bool cla | |||
megdnn_assert(0, "invalid nonlinear mode"); | |||
} | |||
std::pair<int, int> get_tensor_alignment( | |||
const param::ConvBias::Format format, const TensorLayout& src, | |||
const TensorLayout& filter, const Base::AlgoParam& algo_param, | |||
bool is_chanwise) { | |||
int alignment_src = 0; | |||
int alignment_filter = 0; | |||
using Format = param::ConvBias::Format; | |||
// get tensor alignment for tensor op operations | |||
// for tensor op operations, the alignment is determined by the size of a vector | |||
auto get_tensor_alignment_tensor_op = [&]() { | |||
switch (format) { | |||
/// case int8 | |||
case Format::NCHW32: | |||
case Format::NCHW32_NCHW4: | |||
alignment_src = 16; | |||
alignment_filter = 16; | |||
break; | |||
/// case int4 or uint4 | |||
case Format::NCHW64: | |||
alignment_src = 32; | |||
alignment_filter = 32; | |||
break; | |||
case Format::NHWC: | |||
alignment_src = alignment_filter = algo_param.access_size; | |||
break; | |||
default: | |||
megdnn_throw("invalid format"); | |||
}; | |||
}; | |||
// get tensor alignment for dot product operations | |||
// for integer dot product operations, alignment src is always 4 | |||
// and the alignment filter is determined by the threadblock shape | |||
auto get_tensor_alignment_dp4a = [&]() { | |||
megdnn_assert( | |||
format == Format::NCHW4 || format == Format::NCHW4_NCHW || | |||
format == Format::NCHW4_NHWC || format == Format::NCHW4_NCHW32); | |||
alignment_src = 4; | |||
// determine alignment filter | |||
constexpr int warp_size = 32; | |||
int threads = warp_size * algo_param.threadblock_m * algo_param.threadblock_n * | |||
algo_param.threadblock_k / | |||
(algo_param.warp_m * algo_param.warp_n * algo_param.warp_k); | |||
int threadblock_loads = filter.dtype.size( | |||
algo_param.threadblock_m * algo_param.threadblock_n * | |||
algo_param.threadblock_k); | |||
int load_per_thread = threadblock_loads / threads; | |||
if (load_per_thread >= 16) | |||
alignment_filter = 16; | |||
else if (load_per_thread >= 8) | |||
alignment_filter = 8; | |||
else { | |||
megdnn_assert(load_per_thread >= 4); | |||
alignment_filter = 4; | |||
} | |||
}; | |||
// get tensor alignment for depthwise convolution | |||
auto get_tensor_alignment_dwconv2d_nchw = [&]() { | |||
alignment_filter = 1; | |||
size_t wi = src.dtype.size(src[3]); // width extent in bytes | |||
for (size_t candidate : {16, 4, 2}) { | |||
if (wi % candidate == 0) { | |||
alignment_src = candidate; | |||
break; | |||
} | |||
} | |||
alignment_src /= src.dtype.size(1); | |||
}; | |||
if (format == Format::NCHW32 || format == Format::NCHW32_NCHW4 || | |||
format == Format::NCHW64 || format == Format::NCHW64) { | |||
get_tensor_alignment_tensor_op(); | |||
} else if ( | |||
format == Format::NCHW4 || format == Format::NCHW4_NCHW || | |||
format == Format::NCHW4_NHWC || format == Format::NCHW4_NCHW32) { | |||
get_tensor_alignment_dp4a(); | |||
} else { | |||
/// the following is used for depthwise convolution | |||
megdnn_assert(format == Format::NCHW && is_chanwise); | |||
get_tensor_alignment_dwconv2d_nchw(); | |||
} | |||
megdnn_assert(alignment_src >= 1 && alignment_filter >= 1); | |||
return {alignment_src, alignment_filter}; | |||
} | |||
} // namespace | |||
const Operation* ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_conv_op( | |||
@@ -185,23 +295,36 @@ const Operation* ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_co | |||
auto&& param = args.opr->param(); | |||
auto layouts = get_layout_pack(param.format, m_algo_param.access_size); | |||
auto epilogue_type = get_epilogue_type( | |||
param.nonlineMode, args.dst_layout->dtype.enumv() != DTypeEnum::Float32); | |||
param.nonlineMode, | |||
args.dst_layout->dtype.category() != DTypeCategory::FLOAT); | |||
cutlass::conv::SpecialOptimizeDesc special_optimization = | |||
(use_conv_filter_unity_opt) | |||
? cutlass::conv::SpecialOptimizeDesc::CONV_FILTER_UNITY | |||
: cutlass::conv::SpecialOptimizeDesc::NONE; | |||
int alignment_src, alignment_filter; | |||
auto&& fm = args.filter_meta; | |||
bool is_chanwise = param.sparse == param::ConvBias::Sparse::GROUP && fm.icpg == 1 && | |||
fm.ocpg == 1; | |||
std::tie(alignment_src, alignment_filter) = get_tensor_alignment( | |||
param.format, *args.src_layout, *args.filter_layout, m_algo_param, | |||
is_chanwise); | |||
auto accumulator_dtype = | |||
get_accumulator_dtype(args.src_layout->dtype, param.compute_mode); | |||
ConvolutionKey key{ | |||
convert_conv_op(conv_op), | |||
convert_dtype(args.src_layout->dtype.enumv()), | |||
convert_dtype(args.src_layout->dtype), | |||
layouts.src, | |||
convert_dtype(args.filter_layout->dtype.enumv()), | |||
convert_dtype(args.filter_layout->dtype), | |||
layouts.filter, | |||
convert_dtype(args.dst_layout->dtype.enumv()), | |||
convert_dtype(args.dst_layout->dtype), | |||
layouts.dst, | |||
convert_dtype(args.bias_layout->dtype.enumv()), | |||
convert_dtype(args.bias_layout->dtype), | |||
layouts.bias, | |||
accumulator_dtype, | |||
convert_conv_type(conv_type), | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
@@ -215,6 +338,8 @@ const Operation* ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_co | |||
epilogue_type, | |||
m_algo_param.stage, | |||
special_optimization, | |||
alignment_src, | |||
alignment_filter, | |||
without_shared_load}; | |||
return Singleton::get().operation_table.find_op(key); | |||
@@ -227,13 +352,16 @@ void ConvBiasForwardImpl::AlgoCutlassConvolutionBase::execute_cutlass_conv_op( | |||
size_t pw, size_t sh, size_t sw, size_t dh, size_t dw, const void* alpha, | |||
const void* beta, const void* gamma, const void* delta, const void* theta, | |||
const void* threshold, const void* dst_scale, cudaStream_t stream, | |||
const void* extra_param) const { | |||
const void* extra_param, size_t groups) const { | |||
// gcc prints warnings when size_t values are implicitly narrowed to int | |||
cutlass::conv::Conv2dProblemSize problem_size{ | |||
int(n), int(hi), int(wi), int(ci), | |||
int(co), int(fh), int(fw), int(ho), | |||
int(wo), int(ph), int(pw), int(sh), | |||
int(sw), int(dh), int(dw), cutlass::conv::Mode::kCrossCorrelation}; | |||
int(n), int(hi), int(wi), int(ci), | |||
int(co), int(fh), int(fw), int(ho), | |||
int(wo), int(ph), int(pw), int(sh), | |||
int(sw), int(dh), int(dw), cutlass::conv::Mode::kCrossCorrelation, | |||
1, // split k slices, always 1 | |||
int(groups), // groups | |||
}; | |||
ConvolutionArguments conv_args{ | |||
problem_size, src, filter, bias, z, dst, alpha, | |||
@@ -0,0 +1,95 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/implicit_batched_gemm_float16_nchw_hmma.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/common/conv_bias.h" | |||
#include "src/cuda/conv_bias/algo.h" | |||
#include "src/cuda/convolution_helper/parameter.cuh" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
bool ConvBiasForwardImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::is_available( | |||
const SizeArgs& args) const { | |||
#define RETURN_IF_FALSE(stmt_) \ | |||
if (!(stmt_)) \ | |||
return false; | |||
RETURN_IF_FALSE( | |||
args.src_layout->is_contiguous() && args.dst_layout->is_contiguous()); | |||
using Param = param::ConvBias; | |||
using Format = Param::Format; | |||
using Sparse = Param::Sparse; | |||
using Mode = Param::Mode; | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
RETURN_IF_FALSE( | |||
param.format == Format::NCHW && | |||
args.src_layout->dtype.enumv() == DTypeEnum::Float16 && | |||
args.filter_layout->dtype.enumv() == DTypeEnum::Float16 && | |||
args.dst_layout->dtype.enumv() == DTypeEnum::Float16); | |||
RETURN_IF_FALSE( | |||
args.bias_layout->ndim <= 0 || | |||
(args.bias_layout->dtype.enumv() == DTypeEnum::Float16 && | |||
check_bias_share_in_channel(*args.bias_layout, param.format))); | |||
RETURN_IF_FALSE( | |||
args.z_layout->ndim <= 0 || | |||
args.z_layout->dtype.enumv() == DTypeEnum::Float16); | |||
RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||
RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
// check if channelwise convolution | |||
RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kDepthwiseConvolution, false, false); | |||
RETURN_IF_FALSE(op != nullptr); | |||
return true; | |||
#undef RETURN_IF_FALSE | |||
} | |||
void ConvBiasForwardImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::exec( | |||
const ExecArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
size_t n = args.src_layout->operator[](0), hi = args.src_layout->operator[](2), | |||
wi = args.src_layout->operator[](3); | |||
size_t ho = args.dst_layout->operator[](2), wo = args.dst_layout->operator[](3); | |||
size_t co = fm.group; | |||
size_t ci = co; | |||
// check if channelwise convolution | |||
megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||
auto&& stream = cuda_stream(args.opr->handle()); | |||
float alpha = 1.f; | |||
float beta = args.bias_layout->ndim > 0 ? 1.f : 0.f; | |||
void* bias_ptr = args.bias_layout->ndim > 0 ? args.bias_tensor->raw_ptr() : nullptr; | |||
float gamma = args.z_layout->ndim > 0 ? 1.f : 0.f; | |||
void* z_ptr = args.z_layout->ndim > 0 ? args.z_tensor->raw_ptr() : nullptr; | |||
// dummy parameters, used for quantization cases | |||
float theta = 0.f; | |||
float delta = 0.f; | |||
float threshold = 0.f; | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kDepthwiseConvolution, false, false); | |||
UNPACK_CONV_PARAMETER(fm, param); | |||
MARK_USED_VAR | |||
execute_cutlass_conv_op( | |||
op, args.src_tensor->raw_ptr(), args.filter_tensor->raw_ptr(), bias_ptr, | |||
z_ptr, args.dst_tensor->raw_ptr(), nullptr, n, hi, wi, ci, co, fh, fw, ho, | |||
wo, ph, pw, sh, sw, dh, dw, &alpha, &beta, &gamma, &delta, &theta, | |||
&threshold, nullptr, stream, nullptr, fm.group); | |||
after_kernel_launch(); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,95 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/implicit_batched_gemm_float32_nchw_fma.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/common/conv_bias.h" | |||
#include "src/cuda/conv_bias/algo.h" | |||
#include "src/cuda/convolution_helper/parameter.cuh" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
bool ConvBiasForwardImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::is_available( | |||
const SizeArgs& args) const { | |||
#define RETURN_IF_FALSE(stmt_) \ | |||
if (!(stmt_)) \ | |||
return false; | |||
RETURN_IF_FALSE( | |||
args.src_layout->is_contiguous() && args.dst_layout->is_contiguous()); | |||
using Param = param::ConvBias; | |||
using Format = Param::Format; | |||
using Sparse = Param::Sparse; | |||
using Mode = Param::Mode; | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
RETURN_IF_FALSE( | |||
param.format == Format::NCHW && | |||
args.src_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
args.filter_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
args.dst_layout->dtype.enumv() == DTypeEnum::Float32); | |||
RETURN_IF_FALSE( | |||
args.bias_layout->ndim <= 0 || | |||
(args.bias_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
check_bias_share_in_channel(*args.bias_layout, param.format))); | |||
RETURN_IF_FALSE( | |||
args.z_layout->ndim <= 0 || | |||
args.z_layout->dtype.enumv() == DTypeEnum::Float32); | |||
RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||
RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
// check if channelwise convolution | |||
RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kDepthwiseConvolution, false, false); | |||
RETURN_IF_FALSE(op != nullptr); | |||
return true; | |||
#undef RETURN_IF_FALSE | |||
} | |||
void ConvBiasForwardImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::exec( | |||
const ExecArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
size_t n = args.src_layout->operator[](0), hi = args.src_layout->operator[](2), | |||
wi = args.src_layout->operator[](3); | |||
size_t ho = args.dst_layout->operator[](2), wo = args.dst_layout->operator[](3); | |||
size_t co = fm.group; | |||
size_t ci = co; | |||
// check if channelwise convolution | |||
megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||
auto&& stream = cuda_stream(args.opr->handle()); | |||
float alpha = 1.f; | |||
float beta = args.bias_layout->ndim > 0 ? 1.f : 0.f; | |||
void* bias_ptr = args.bias_layout->ndim > 0 ? args.bias_tensor->raw_ptr() : nullptr; | |||
float gamma = args.z_layout->ndim > 0 ? 1.f : 0.f; | |||
void* z_ptr = args.z_layout->ndim > 0 ? args.z_tensor->raw_ptr() : nullptr; | |||
// dummy parameters, used for quantization cases | |||
float theta = 0.f; | |||
float delta = 0.f; | |||
float threshold = 0.f; | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kDepthwiseConvolution, false, false); | |||
UNPACK_CONV_PARAMETER(fm, param); | |||
MARK_USED_VAR | |||
execute_cutlass_conv_op( | |||
op, args.src_tensor->raw_ptr(), args.filter_tensor->raw_ptr(), bias_ptr, | |||
z_ptr, args.dst_tensor->raw_ptr(), nullptr, n, hi, wi, ci, co, fh, fw, ho, | |||
wo, ph, pw, sh, sw, dh, dw, &alpha, &beta, &gamma, &delta, &theta, | |||
&threshold, nullptr, stream, nullptr, fm.group); | |||
after_kernel_launch(); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -71,6 +71,9 @@ public: | |||
class AlgoInt4Int4NHWCIMMAImplicitGemm; | |||
class AlgoUInt4Int4NHWCIMMAImplicitGemm; | |||
class AlgoBFloat16; | |||
// The following algorithms are suitable for channel wise convolution | |||
class AlgoFloat32NCHWFMAImplicitBatchedGemm; | |||
class AlgoFloat16NCHWHMMAImplicitBatchedGemm; | |||
class AlgoPack; | |||
@@ -39,6 +39,7 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm:: | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS32, | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS32, | |||
cutlass::conv::ConvType::kConvolution, | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
@@ -52,6 +53,8 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm:: | |||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | |||
m_algo_param.stage, | |||
special_optimization, | |||
4, | |||
16, | |||
false}; | |||
return (void*)Singleton::get().operation_table.find_op(key); | |||
} | |||
@@ -39,6 +39,7 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm:: | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS32, | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS32, | |||
cutlass::conv::ConvType::kConvolution, | |||
16, | |||
64, | |||
@@ -52,6 +53,8 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm:: | |||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | |||
2, | |||
special_optimization, | |||
4, | |||
4, | |||
false}; | |||
return (void*)Singleton::get().operation_table.find_op(key); | |||
} | |||
@@ -50,6 +50,7 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NHWCIMMAImplicitGemm::get_avail | |||
LayoutTypeID::kTensorNHWC, | |||
NumericTypeID::kS32, | |||
LayoutTypeID::kTensorNHWC, | |||
NumericTypeID::kS32, | |||
cutlass::conv::ConvType::kConvolution, | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
@@ -63,6 +64,8 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NHWCIMMAImplicitGemm::get_avail | |||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | |||
m_algo_param.stage, | |||
special_optimization, | |||
m_algo_param.access_size, | |||
m_algo_param.access_size, | |||
false}; | |||
return (void*)Singleton::get().operation_table.find_op(key); | |||
} | |||
@@ -54,24 +54,28 @@ namespace library { | |||
void initialize_all_gemm_simt_operations(Manifest& manifest); | |||
void initialize_all_conv2d_simt_operations(Manifest& manifest); | |||
void initialize_all_deconv_simt_operations(Manifest& manifest); | |||
void initialize_all_dwconv2d_fprop_simt_operations(Manifest& manifest); | |||
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | |||
void initialize_all_gemm_tensorop884_operations(Manifest& manifest); | |||
void initialize_all_gemm_tensorop1688_operations(Manifest& manifest); | |||
void initialize_all_conv2d_tensorop8816_operations(Manifest& manifest); | |||
void initialize_all_conv2d_tensorop8832_operations(Manifest& manifest); | |||
void initialize_all_deconv_tensorop8816_operations(Manifest& manifest); | |||
void initialize_all_dwconv2d_fprop_tensorop884_operations(Manifest& manifest); | |||
#endif | |||
void initialize_all(Manifest& manifest) { | |||
initialize_all_gemm_simt_operations(manifest); | |||
initialize_all_conv2d_simt_operations(manifest); | |||
initialize_all_deconv_simt_operations(manifest); | |||
initialize_all_dwconv2d_fprop_simt_operations(manifest); | |||
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | |||
initialize_all_gemm_tensorop884_operations(manifest); | |||
initialize_all_gemm_tensorop1688_operations(manifest); | |||
initialize_all_conv2d_tensorop8816_operations(manifest); | |||
initialize_all_conv2d_tensorop8832_operations(manifest); | |||
initialize_all_deconv_tensorop8816_operations(manifest); | |||
initialize_all_dwconv2d_fprop_tensorop884_operations(manifest); | |||
#endif | |||
} | |||
@@ -223,6 +223,9 @@ enum class ThreadblockSwizzleID { | |||
kConvolutionFpropTrans, | |||
kConvolutionDgradNCxHWx, | |||
kConvolutionDgradTrans, | |||
kDepthwiseConvolutionFprop, | |||
kDepthwiseConvolutionDgrad, | |||
kDepthwiseConvolutionWgrad, | |||
kInvalid | |||
}; | |||
@@ -570,6 +570,27 @@ struct ThreadblockSwizzleMap< | |||
ThreadblockSwizzleID::kConvolutionDgradTrans; | |||
}; | |||
template <> | |||
struct ThreadblockSwizzleMap< | |||
conv::threadblock::DepthwiseConvolutionFpropThreadblockSwizzle> { | |||
static ThreadblockSwizzleID const kId = | |||
ThreadblockSwizzleID::kDepthwiseConvolutionFprop; | |||
}; | |||
template <> | |||
struct ThreadblockSwizzleMap< | |||
conv::threadblock::DepthwiseConvolutionDgradThreadblockSwizzle> { | |||
static ThreadblockSwizzleID const kId = | |||
ThreadblockSwizzleID::kDepthwiseConvolutionDgrad; | |||
}; | |||
template <> | |||
struct ThreadblockSwizzleMap< | |||
conv::threadblock::DepthwiseConvolutionWgradThreadblockSwizzle> { | |||
static ThreadblockSwizzleID const kId = | |||
ThreadblockSwizzleID::kDepthwiseConvolutionWgrad; | |||
}; | |||
///////////////////////////////////////////////////////////////////////////////////////////////// | |||
template <typename Element, typename Layout> | |||
@@ -99,6 +99,8 @@ ConvolutionKey get_convolution_key_from_desc(const ConvolutionDescription& desc) | |||
key.layout_dst = desc.dst.layout; | |||
key.element_bias = desc.bias.element; | |||
key.layout_bias = desc.bias.layout; | |||
key.element_accumulator = | |||
desc.tile_description.math_instruction.element_accumulator; | |||
key.convolution_type = desc.convolution_type; | |||
@@ -124,6 +126,8 @@ ConvolutionKey get_convolution_key_from_desc(const ConvolutionDescription& desc) | |||
key.stages = desc.tile_description.threadblock_stages; | |||
key.special_optimization = desc.special_optimization; | |||
key.alignment_src = desc.src.alignment; | |||
key.alignment_filter = desc.filter.alignment; | |||
key.without_shared_load = desc.without_shared_load; | |||
return key; | |||
@@ -188,6 +188,7 @@ struct ConvolutionKey { | |||
library::LayoutTypeID layout_dst; | |||
library::NumericTypeID element_bias; | |||
library::LayoutTypeID layout_bias; | |||
NumericTypeID element_accumulator; | |||
conv::ConvType convolution_type; | |||
@@ -206,6 +207,10 @@ struct ConvolutionKey { | |||
epilogue::EpilogueType epilogue_type; | |||
int stages; | |||
conv::SpecialOptimizeDesc special_optimization; | |||
int alignment_src; | |||
int alignment_filter; | |||
bool without_shared_load; | |||
inline bool operator==(ConvolutionKey const& rhs) const { | |||
@@ -215,6 +220,7 @@ struct ConvolutionKey { | |||
(layout_filter == rhs.layout_filter) && | |||
(element_dst == rhs.element_dst) && (layout_dst == rhs.layout_dst) && | |||
(element_bias == rhs.element_bias) && (layout_bias == rhs.layout_bias) && | |||
(element_accumulator == rhs.element_accumulator) && | |||
(convolution_type == rhs.convolution_type) && | |||
(threadblock_shape_m == rhs.threadblock_shape_m) && | |||
(threadblock_shape_n == rhs.threadblock_shape_n) && | |||
@@ -227,6 +233,8 @@ struct ConvolutionKey { | |||
(instruction_shape_k == rhs.instruction_shape_k) && | |||
(epilogue_type == rhs.epilogue_type) && (stages == rhs.stages) && | |||
(special_optimization == rhs.special_optimization) && | |||
(alignment_src == rhs.alignment_src) && | |||
(alignment_filter == rhs.alignment_filter) && | |||
(without_shared_load == rhs.without_shared_load); | |||
} | |||
@@ -254,6 +262,7 @@ struct ConvolutionKey { | |||
"\n layout_dst: " + to_string(layout_dst) + | |||
"\n element_bias: " + to_string(element_bias) + | |||
"\n layout_bias: " + to_string(layout_bias) + | |||
"\n element_accumulator: " + to_string(element_accumulator) + | |||
"\n convolution_type: " + to_string(convolution_type) + | |||
"\n threadblock_shape: " + threadblock_shape_str + | |||
"\n warp_shape: " + warp_shape_str + | |||
@@ -261,6 +270,8 @@ struct ConvolutionKey { | |||
"\n epilogue_type: " + to_string(epilogue_type) + | |||
"\n stages: " + std::to_string(stages) + | |||
"\n special_optimization: " + to_string(special_optimization) + | |||
"\n alignment_src: " + std::to_string(alignment_src) + | |||
"\n alignment_filter: " + std::to_string(alignment_filter) + | |||
"\n without_shared_load: " + to_string(without_shared_load) + "\n}"; | |||
} | |||
}; | |||
@@ -278,6 +289,7 @@ struct ConvolutionKeyHasher { | |||
.update(&key.layout_dst, sizeof(key.layout_dst)) | |||
.update(&key.element_bias, sizeof(key.element_bias)) | |||
.update(&key.layout_bias, sizeof(key.layout_bias)) | |||
.update(&key.element_accumulator, sizeof(key.element_accumulator)) | |||
.update(&key.convolution_type, sizeof(key.convolution_type)) | |||
.update(&key.threadblock_shape_m, sizeof(key.threadblock_shape_m)) | |||
.update(&key.threadblock_shape_n, sizeof(key.threadblock_shape_n)) | |||
@@ -291,6 +303,8 @@ struct ConvolutionKeyHasher { | |||
.update(&key.epilogue_type, sizeof(key.epilogue_type)) | |||
.update(&key.stages, sizeof(key.stages)) | |||
.update(&key.special_optimization, sizeof(key.special_optimization)) | |||
.update(&key.alignment_src, sizeof(key.alignment_src)) | |||
.update(&key.alignment_filter, sizeof(key.alignment_filter)) | |||
.update(&key.without_shared_load, sizeof(key.without_shared_load)) | |||
.digest(); | |||
} | |||
@@ -38,8 +38,10 @@ bool check_need_full_bench() { | |||
} | |||
#endif | |||
Convolution::Param gconv_param(Convolution::Param p) { | |||
Convolution::Param gconv_param(Convolution::Param p, bool io16xc32 = false) { | |||
p.sparse = Convolution::Param::Sparse::GROUP; | |||
if (io16xc32) | |||
p.compute_mode = Convolution::Param::ComputeMode::FLOAT32; | |||
return p; | |||
} | |||
@@ -421,6 +423,129 @@ TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_FILTER) { | |||
} | |||
} | |||
namespace { | |||
template <typename Op> | |||
struct AlgoCheckerMaker { | |||
static auto make(const char* name, bool* require_algo) { | |||
return AlgoChecker<Op>(name, require_algo); | |||
} | |||
}; | |||
template <> | |||
struct AlgoCheckerMaker<ConvolutionForward> { | |||
static auto make(const char* name, bool* require_algo) { | |||
return AlgoChecker<ConvolutionForward>( | |||
ExecutionPolicyAlgoName{ | |||
"DEFAULT", | |||
{{ConvBiasForward::algo_name<ConvBiasForward::DirectParam>( | |||
name, {}) | |||
.c_str(), | |||
{}}}}, | |||
require_algo); | |||
} | |||
}; | |||
template <typename Op> | |||
void check_chanwise(DType io_type, DType comp_type, Handle* handle, const char* name) { | |||
Checker<Op> checker(handle); | |||
bool require_algo = false; | |||
checker.set_before_exec_callback(AlgoCheckerMaker<Op>::make(name, &require_algo)); | |||
checker.set_dtype(0, io_type).set_dtype(1, io_type).set_dtype(2, io_type); | |||
bool io16xc32 = false; | |||
if (io_type == dtype::Float16()) { | |||
if (comp_type == dtype::Float16()) { | |||
checker.set_epsilon(1e-1); | |||
} else { | |||
io16xc32 = true; | |||
} | |||
} | |||
// dispatch testcase by operation | |||
if (std::is_same<Op, ConvolutionForward>::value) { | |||
// align 8 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{8, 2, 16, 16}, {2, 1, 1, 15, 15}, {}}); | |||
// align 1 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{8, 2, 15, 15}, {2, 1, 1, 15, 15}, {}}); | |||
// align 2 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{8, 2, 14, 14}, {2, 1, 1, 15, 15}, {}}); | |||
// custom padding | |||
checker.set_param(gconv_param({M, 3, 3, 1, 1}, io16xc32)) | |||
.execs({{8, 2, 16, 16}, {2, 1, 1, 15, 15}, {}}); | |||
// custom stride | |||
checker.set_param(gconv_param({M, 7, 7, 2, 2}, io16xc32)) | |||
.execs({{8, 2, 16, 16}, {2, 1, 1, 15, 15}, {}}); | |||
} else if (std::is_same<Op, ConvolutionBackwardData>::value) { | |||
// align 8 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{2, 1, 1, 15, 15}, {8, 2, 16, 16}, {8, 2, 16, 16}}); | |||
// align 1 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{2, 1, 1, 15, 15}, {8, 2, 15, 15}, {8, 2, 15, 15}}); | |||
// align 2 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{2, 1, 1, 15, 15}, {8, 2, 14, 14}, {8, 2, 14, 14}}); | |||
// custom padding | |||
checker.set_param(gconv_param({M, 3, 3, 1, 1}, io16xc32)) | |||
.execs({{2, 1, 1, 15, 15}, {8, 2, 8, 8}, {8, 2, 16, 16}}); | |||
// custom stride | |||
checker.set_param(gconv_param({M, 7, 7, 2, 2}, io16xc32)) | |||
.execs({{2, 1, 1, 15, 15}, {8, 2, 7, 7}, {8, 2, 14, 14}}); | |||
} else if (std::is_same<Op, ConvolutionBackwardFilter>::value) { | |||
} | |||
} | |||
} // namespace | |||
#define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_FMA_KERNEL(cb) \ | |||
cb(1, 128, 128, 8, 32, 64, 8); \ | |||
cb(2, 128, 64, 8, 64, 32, 8); \ | |||
cb(3, 128, 32, 8, 64, 32, 8); \ | |||
cb(4, 64, 128, 8, 64, 32, 8); \ | |||
cb(5, 32, 128, 8, 32, 64, 8); \ | |||
cb(6, 64, 64, 8, 64, 32, 8); \ | |||
cb(7, 32, 64, 8, 32, 64, 8); \ | |||
cb(8, 32, 32, 8, 32, 32, 8); \ | |||
cb(9, 64, 32, 8, 64, 32, 8); | |||
#define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||
TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD_CUTLASS_FMA_##tag) { \ | |||
check_chanwise<ConvolutionForward>( \ | |||
dtype::Float32(), dtype::Float32(), handle_cuda(), \ | |||
"FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
"_" #wm "X" #wn "X" #wk "_2stage"); \ | |||
} | |||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_FMA_KERNEL(cb) | |||
#undef cb | |||
#undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_FMA_KERNEL | |||
#define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL(cb) \ | |||
cb(1, 128, 128, 32, 32, 32, 32); \ | |||
cb(2, 128, 256, 32, 64, 64, 32); \ | |||
cb(3, 128, 64, 32, 32, 32, 32); \ | |||
cb(4, 64, 128, 32, 32, 32, 32); \ | |||
cb(5, 64, 64, 32, 32, 32, 32); | |||
// check both ioc16 and io16xc32 | |||
#define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||
TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD_CUTLASS_HMMA_##tag) { \ | |||
check_chanwise<ConvolutionForward>( \ | |||
dtype::Float16(), dtype::Float16(), handle_cuda(), \ | |||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
"_" #wm "X" #wn "X" #wk "_2stage"); \ | |||
check_chanwise<ConvolutionForward>( \ | |||
dtype::Float16(), dtype::Float32(), handle_cuda(), \ | |||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
"_" #wm "X" #wn "X" #wk "_2stage"); \ | |||
} | |||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL(cb) | |||
#undef cb | |||
#undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL | |||
#if MEGDNN_WITH_BENCHMARK | |||
TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD_BENCH_CHECK) { | |||
auto handle = handle_cuda(); | |||
@@ -1123,6 +1248,82 @@ TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_BWD_FILTER) { | |||
// clang-format on | |||
} | |||
TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_FORWARD_LARGE_KERNEL) { | |||
CUBenchmarker<ConvolutionForward> bencher(handle_cuda()); | |||
size_t RUNS = 100; | |||
bencher.set_display(false).set_times(RUNS); | |||
std::unique_ptr<OprProxy<ConvolutionForward>> proxy{ | |||
new OprProxy<ConvolutionForward>{true}}; | |||
bencher.set_proxy(proxy); | |||
Convolution::Param param; | |||
param.format = ConvBias::Param::Format::NCHW; | |||
param.sparse = Convolution::Param::Sparse::GROUP; | |||
NormalRNG rng; | |||
auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) { | |||
param.pad_h = f / 2; | |||
param.pad_w = f / 2; | |||
param.stride_h = s; | |||
param.stride_w = s; | |||
param.compute_mode = param::Convolution::ComputeMode::DEFAULT; | |||
TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f}; | |||
TensorLayout dst_layout; | |||
auto opr = handle_cuda()->create_operator<Convolution>(); | |||
opr->param() = param; | |||
opr->deduce_layout( | |||
{src, dtype::Float32()}, {filter, dtype::Float32()}, dst_layout); | |||
float bandwith = static_cast<float>( | |||
src.total_nr_elems() + filter.total_nr_elems() + | |||
dst_layout.total_nr_elems()) / | |||
(1024 * 1024 * 1024) * 1e3; | |||
bencher.set_param(param) | |||
.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.set_dtype(2, dtype::Float32()) | |||
.set_rng(0, &rng) | |||
.set_rng(1, &rng); | |||
bencher.proxy()->target_execution_policy = {}; | |||
auto time_in_ms_fp32 = bencher.execs({src, filter, {}}) / RUNS; | |||
bencher.set_param(param) | |||
.set_dtype(0, dtype::Float16()) | |||
.set_dtype(1, dtype::Float16()) | |||
.set_dtype(2, dtype::Float16()) | |||
.set_rng(0, &rng) | |||
.set_rng(1, &rng); | |||
bencher.proxy()->target_execution_policy = {}; | |||
auto time_in_ms_fp16 = bencher.execs({src, filter, {}}) / RUNS; | |||
bencher.proxy()->target_execution_policy.algo.reset(); | |||
param.compute_mode = param::Convolution::ComputeMode::FLOAT32; | |||
bencher.set_param(param); | |||
auto time_in_ms_pseudo_fp16 = bencher.execs({src, filter, {}}) / RUNS; | |||
printf("stride=%zu src=%s, filter=%s, float32: %.2fms %.2fGB/s " | |||
"float16: %.2fms %.2fGB/s " | |||
"pseudo float16: %.2fms %.2fGB/s " | |||
"speedup: " | |||
"%0.2f (fp16/fp32) %.2f (fp16/pseudo fp16)\n", | |||
s, src.to_string().c_str(), filter.to_string().c_str(), time_in_ms_fp32, | |||
bandwith * 4 / time_in_ms_fp32, time_in_ms_fp16, | |||
bandwith * 2 / time_in_ms_fp16, time_in_ms_pseudo_fp16, | |||
bandwith * 2 / time_in_ms_pseudo_fp16, time_in_ms_fp32 / time_in_ms_fp16, | |||
time_in_ms_pseudo_fp16 / time_in_ms_fp16); | |||
}; | |||
// clang-format off | |||
for (size_t b : {32, 64}) | |||
for (size_t f : {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}) { | |||
run(b, 384, 32, 32, f, 1); | |||
run(b, 384, 64, 64, f, 1); | |||
} | |||
// clang-format on | |||
} | |||
#endif | |||
// vim: syntax=cpp.doxygen |