GitOrigin-RevId: 87a7c9c575
tags/v0.5.0
@@ -35,7 +35,8 @@ pdef('Axis').add_fields('int32', 'axis', 0) | |||
). | |||
add_enum(Doc('Format', 'convolution data/filter/output format; see ' | |||
':class:`RelayoutFormat` for more details'), | |||
'NCHW', 'NHWC', 'NHWCD4', 'NCHW4', 'NCHW8', 'NCHW32', 'NCHW88', 'NCHW44', | |||
'NCHW', 'NHWC', 'NHWCD4', 'NCHW4', 'NCHW8', 'NCHW32', 'NCHW88', | |||
'NCHW44','NCHW44_DOT', | |||
Doc('NCHW_WINOGRAD', 'NCHW layout with weights tranformed by winograd'), | |||
Doc('NCHW88_WINOGRAD', 'NCHW88 layout with weights tranformed by winograd'), | |||
Doc('NCHW44_WINOGRAD', 'NCHW44 layout with weights tranformed by winograd'), | |||
@@ -104,6 +104,7 @@ ConvBiasForward::CanonizedFilterMeta ConvBiasForward::check_exec( | |||
bias.to_string().c_str(), dst.to_string().c_str()); | |||
} else if (param().format == param::ConvBias::Format::NCHW4 || | |||
param().format == param::ConvBias::Format::NCHW44 || | |||
param().format == param::ConvBias::Format::NCHW44_DOT || | |||
param().format == param::ConvBias::Format::NCHW44_WINOGRAD) { | |||
megdnn_assert(bias.shape[0] == 1); | |||
megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s", | |||
@@ -280,6 +280,13 @@ void make_canonized_filter_meta_nchwxx( | |||
/** | |||
* input: N IC/pack_size, H, W, pack_size | |||
* | |||
** NCHW44-DOT mode | |||
* filter: | |||
* {OC/pack_size, IC/pack_size, FH, FW, pack_size(OC), pack_size(IC)} | |||
* [dense] | |||
* {GROUP, OC_PER_GROUP/pack_size, IC_PER_GROUP/pack_size, \ | |||
* FH, FW, pack_size(OC), pack_size(IC)} [group] | |||
* | |||
* NCHW88 and NCHW44 mode | |||
* filter: | |||
* {OC/pack_size, IC/pack_size, FH, FW, pack_size(IC), pack_size(OC)} | |||
@@ -300,6 +307,7 @@ void make_canonized_filter_meta_nchwxx( | |||
megdnn_assert(param.format == Param::Format::NCHW88 || | |||
param.format == Param::Format::NCHW44 || | |||
param.format == Param::Format::NCHW44_WINOGRAD || | |||
param.format == Param::Format::NCHW44_DOT || | |||
param.format == Param::Format::NCHW88_WINOGRAD); | |||
size_t img_ndim = 2; | |||
size_t flt_start = 0; | |||
@@ -554,6 +562,7 @@ ConvolutionBase<Parameter>::make_canonized_filter_meta( | |||
make_canonized_filter_meta_nchwxx<8, Parameter>(src_ndim, filter, | |||
param(), ret); | |||
} else if (param().format == Param::Format::NCHW44 || | |||
param().format == Param::Format::NCHW44_DOT || | |||
param().format == Param::Format::NCHW44_WINOGRAD) { | |||
make_canonized_filter_meta_nchwxx<4, Parameter>(src_ndim, filter, | |||
param(), ret); | |||
@@ -660,6 +669,7 @@ ConvolutionBase<Parameter>::deduce_layout_fwd(const TensorLayout& src, | |||
megdnn_assert(param().format == Param::Format::NHWCD4 || | |||
param().format == Param::Format::NCHW4 || | |||
param().format == Param::Format::NCHW44 || | |||
param().format == Param::Format::NCHW44_DOT || | |||
param().format == Param::Format::NCHW8 || | |||
param().format == Param::Format::NCHW32 || | |||
param().format == Param::Format::NCHW88 || | |||
@@ -668,6 +678,7 @@ ConvolutionBase<Parameter>::deduce_layout_fwd(const TensorLayout& src, | |||
param().format == Param::Format::CHWN4); | |||
img_dim = src.ndim - 3; | |||
if ((param().format == Param::Format::NCHW88 || | |||
param().format == Param::Format::NCHW44_DOT || | |||
param().format == Param::Format::NCHW44) && | |||
filter.ndim == 5) { | |||
img_dim = src.ndim - 2; | |||
@@ -675,6 +686,7 @@ ConvolutionBase<Parameter>::deduce_layout_fwd(const TensorLayout& src, | |||
megdnn_assert(filter.ndim == img_dim + 3 || | |||
(filter.ndim == img_dim + 2 && | |||
(param().format == Param::Format::NCHW88 || | |||
param().format == Param::Format::NCHW44_DOT || | |||
param().format == Param::Format::NCHW44)) || | |||
filter.ndim == img_dim + 4 || | |||
filter.ndim == img_dim + 5, | |||
@@ -727,6 +739,7 @@ ConvolutionBase<Parameter>::deduce_layout_fwd(const TensorLayout& src, | |||
src.to_string().c_str(), filter.to_string().c_str()); | |||
} | |||
if (param().format == Param::Format::NCHW44 || | |||
param().format == Param::Format::NCHW44_DOT || | |||
param().format == Param::Format::NCHW44_WINOGRAD) { | |||
megdnn_assert((src.ndim == 4 && filter.ndim == 5 && | |||
filter[filter.ndim - 1] == 4) || | |||
@@ -859,8 +872,9 @@ ConvolutionBase<Parameter>::deduce_layout_fwd(const TensorLayout& src, | |||
} | |||
} else if (param().format == Param::Format::NCHW44 || | |||
param().format == Param::Format::NCHW44_DOT || | |||
param().format == Param::Format::NCHW44_WINOGRAD) { | |||
megdnn_assert(src.ndim == 5 || (src.ndim == 4 && src[1] <= 8), | |||
megdnn_assert(src.ndim == 5 || (src.ndim == 4 && src[1] <= 4), | |||
"invalid src ndim for NCHW44, expected=5 or 4, got=%zu", | |||
src.ndim); | |||
dst.ndim = 5; | |||
@@ -29,6 +29,7 @@ using namespace fallback; | |||
size_t megdnn::fallback::get_format_pack_size(param::ConvBias::Format format) { | |||
switch (format) { | |||
case param::ConvBias::Format::NCHW44: | |||
case param::ConvBias::Format::NCHW44_DOT: | |||
case param::ConvBias::Format::NCHW4: | |||
return 4_z; | |||
case param::ConvBias::Format::NCHW88: | |||
@@ -188,6 +189,7 @@ ConvBiasImpl::NCBKernSizeParam ConvBiasImpl::make_ncb_kern_size_param( | |||
param().format == Param::Format::NCHW8 || | |||
param().format == Param::Format::NCHW4 || | |||
param().format == Param::Format::NCHW44 || | |||
param().format == Param::Format::NCHW44_DOT || | |||
param().format == Param::Format::NCHW || | |||
param().format == Param::Format::NCHW_WINOGRAD || | |||
param().format == Param::Format::NCHW88_WINOGRAD || | |||
@@ -405,6 +407,7 @@ const T* ConvBiasImpl::NCBKernParam::filter(size_t group_pack_id, | |||
break; | |||
} | |||
case Param::Format::NCHW44_DOT: | |||
case Param::Format::NCHW44: { | |||
size_t group = filter_meta.group; | |||
size_t icpg = filter_meta.icpg; | |||
@@ -147,6 +147,7 @@ ConvolutionImpl::NCBKernSizeParam ConvolutionImpl::make_ncb_kern_size_param( | |||
if (param().format == Param::Format::NCHW88 || | |||
param().format == Param::Format::NCHW8 || | |||
param().format == Param::Format::NCHW4 || | |||
param().format == Param::Format::NCHW44_DOT || | |||
param().format == Param::Format::NCHW44) { | |||
spatial_pos = 2; | |||
} else if (param().format == Param::Format::NCHW || | |||
@@ -147,6 +147,7 @@ void compute2d(_megdnn_tensor_in src, ftype* __restrict fptr, | |||
if (filter_meta.format == Format::NCHW || | |||
filter_meta.format == Format::NCHW88 || | |||
filter_meta.format == Format::NCHW44 || | |||
filter_meta.format == Format::NCHW44_DOT || | |||
filter_meta.format == Format::NCHW4 || | |||
filter_meta.format == Format::NCHW8 || | |||
filter_meta.format == Format::NCHW32) { | |||
@@ -174,6 +175,7 @@ void compute2d(_megdnn_tensor_in src, ftype* __restrict fptr, | |||
if (filter_meta.format == Format::NCHW4 || | |||
filter_meta.format == Format::CHWN4 || | |||
filter_meta.format == Format::NCHW44_DOT || | |||
filter_meta.format == Format::NCHW44) { | |||
OC *= 4; | |||
} else if (filter_meta.format == Format::NCHW8 || | |||
@@ -219,7 +221,8 @@ void compute2d(_megdnn_tensor_in src, ftype* __restrict fptr, | |||
FS_G = FS_OC * filter_meta.ocpg / 8; | |||
} | |||
} | |||
} else if (filter_meta.format == Format::NCHW44) { | |||
} else if (filter_meta.format == Format::NCHW44 || | |||
filter_meta.format == Format::NCHW44_DOT) { | |||
if (filter_meta.group > 1 && filter_meta.icpg == 1 && | |||
src.layout.ndim == 5 && filter_meta.ocpg == 1) { | |||
FS_SPATIAL = 4; | |||
@@ -282,7 +285,8 @@ void compute2d(_megdnn_tensor_in src, ftype* __restrict fptr, | |||
h * layout.stride[2] + w * layout.stride[3] + | |||
(c & 0b111) * layout.stride[4]; | |||
} | |||
} else if (filter_meta.format == Format::NCHW44) { | |||
} else if (filter_meta.format == Format::NCHW44 || | |||
filter_meta.format == Format::NCHW44_DOT) { | |||
if (filter_meta.format == Format::NCHW44 && !is_output && | |||
src.layout.ndim == 4) { | |||
return n * layout.stride[0] + c * layout.stride[1] + | |||
@@ -327,30 +331,41 @@ void compute2d(_megdnn_tensor_in src, ftype* __restrict fptr, | |||
return gc_out.cur_grp * FS_G + gc_out.cur_off * FS_OC + | |||
(ic - ic0) / 4 * FS_IC + (fh * FW + fw) * FS_SPATIAL + | |||
((ic - ic0) % 4); | |||
} else if (filter_meta.format == Format::NCHW88) { | |||
} else if (filter_meta.format == Format::NCHW88 || | |||
filter_meta.format == Format::NCHW44) { | |||
size_t pack_c_size = 4_z; | |||
if(filter_meta.format == Format::NCHW88){ | |||
pack_c_size = 8_z; | |||
} | |||
if (src.layout.ndim == 4) { | |||
// ic < 8, input is nchw | |||
return gc_out.cur_grp * FS_G + gc_out.cur_off / 8 * FS_OC + | |||
return gc_out.cur_grp * FS_G + | |||
gc_out.cur_off / pack_c_size * FS_OC + | |||
(fh * FW + fw) * FS_SPATIAL + (ic - ic0) * FS_IC + | |||
gc_out.cur_off % 8; | |||
gc_out.cur_off % pack_c_size; | |||
} else if (filter_meta.group > 1 && filter_meta.icpg == 1 && | |||
filter_meta.ocpg == 1 && src.layout.ndim == 5) { | |||
// dw case | |||
return gc_out.cur_grp / 8 * FS_G + gc_out.cur_off * FS_OC + | |||
(ic - ic0) * FS_IC + (fh * FW + fw) * FS_SPATIAL + | |||
gc_out.cur_grp % 8; | |||
return gc_out.cur_grp / pack_c_size * FS_G + | |||
gc_out.cur_off * FS_OC + (ic - ic0) * FS_IC + | |||
(fh * FW + fw) * FS_SPATIAL + | |||
gc_out.cur_grp % pack_c_size; | |||
} else if (src.layout.ndim == 5) { | |||
// normal case | |||
return gc_out.cur_grp * FS_G + gc_out.cur_off / 8 * FS_OC + | |||
(ic - ic0) / 8 * FS_IC + (fh * FW + fw) * FS_SPATIAL + | |||
((ic - ic0) & 0b111) * 8 + gc_out.cur_off % 8; | |||
return gc_out.cur_grp * FS_G + | |||
gc_out.cur_off / pack_c_size * FS_OC + | |||
(ic - ic0) / pack_c_size * FS_IC + | |||
(fh * FW + fw) * FS_SPATIAL + | |||
((ic - ic0) % pack_c_size) * pack_c_size + | |||
gc_out.cur_off % pack_c_size; | |||
} else { | |||
megdnn_assert( | |||
0, "nchw88 naive not support this input and output\n"); | |||
megdnn_throw( | |||
"nchw88/nchw44 naive not support this input and " | |||
"output\n"); | |||
} | |||
} else if (filter_meta.format == Format::NCHW44) { | |||
} else if (filter_meta.format == Format::NCHW44_DOT) { | |||
if (src.layout.ndim == 4) { | |||
// ic < 8, input is nchw | |||
// ic < 4, input is nchw | |||
return gc_out.cur_grp * FS_G + gc_out.cur_off / 4 * FS_OC + | |||
(fh * FW + fw) * FS_SPATIAL + (ic - ic0) * FS_IC + | |||
gc_out.cur_off % 4; | |||
@@ -364,10 +379,10 @@ void compute2d(_megdnn_tensor_in src, ftype* __restrict fptr, | |||
// normal case | |||
return gc_out.cur_grp * FS_G + gc_out.cur_off / 4 * FS_OC + | |||
(ic - ic0) / 4 * FS_IC + (fh * FW + fw) * FS_SPATIAL + | |||
((ic - ic0) % 4) * 4 + gc_out.cur_off % 4; | |||
(gc_out.cur_off % 4) * 4 + ((ic - ic0) % 4); | |||
} else { | |||
megdnn_assert( | |||
0, "nchw44 naive not support this input and output\n"); | |||
megdnn_throw( | |||
"nchw44_dot naive not support this input and output\n"); | |||
} | |||
} else { | |||
return gc_out.cur_grp * FS_G + gc_out.cur_off * FS_OC + | |||
@@ -559,6 +574,7 @@ void forward(_megdnn_tensor_in src, const ftype* fptr, _megdnn_tensor_out dst, | |||
filter_meta.format == param::Convolution::Format::NHWC || | |||
filter_meta.format == param::Convolution::Format::NCHW88 || | |||
filter_meta.format == param::Convolution::Format::NCHW44 || | |||
filter_meta.format == param::Convolution::Format::NCHW44_DOT || | |||
filter_meta.format == param::Convolution::Format::NCHW4); | |||
compute2d<stype, ftype, dtype, comp_type, StrategyFwd>( | |||
src, const_cast<ftype*>(fptr), dst, filter_meta); | |||
@@ -613,6 +629,7 @@ void forward_bias(_megdnn_tensor_in src, _megdnn_tensor_in filter, | |||
case param::Convolution::Format::NCHW: | |||
case param::Convolution::Format::NCHW88: | |||
case param::Convolution::Format::NCHW44: | |||
case param::Convolution::Format::NCHW44_DOT: | |||
case param::Convolution::Format::NHWC: | |||
case param::Convolution::Format::NCHW4: | |||
case param::Convolution::Format::NCHW8: | |||
@@ -690,6 +707,7 @@ void forward_bias(_megdnn_tensor_in src, _megdnn_tensor_in filter, | |||
} \ | |||
} while (0) | |||
case Format::NCHW44: | |||
case Format::NCHW44_DOT: | |||
case Format::NCHW4: { | |||
BIAS_ADD_NCHWx(4); | |||
break; | |||
@@ -350,9 +350,14 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_SMALL_GROUP) { | |||
get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false), | |||
handle(), "F32DIRECT_SMALL_GROUP"); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1) { | |||
check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, | |||
false, false, true, true), | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1_1) { | |||
check_conv_bias(get_nchw44_conv_bias_args({2, 7}, 1, false, false, false, | |||
false, true, true), | |||
handle(), "F32_CONV_NCHW44_DIRECT"); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1_2) { | |||
check_conv_bias(get_nchw44_conv_bias_args({3, 5}, 1, false, false, false, | |||
false, true, true), | |||
handle(), "F32_CONV_NCHW44_DIRECT"); | |||
} | |||
@@ -516,4 +516,177 @@ TEST_F(NAIVE, CONV_BIAS_NCHW44) { | |||
224, 268, 311, 218, 288, 311, 346, 277})}); | |||
} | |||
} | |||
TEST_F(NAIVE, CONV_BIAS_NCHW44_DOT) { | |||
Checker<ConvBias> checker(handle(), /* check_dispatch */ false); | |||
ConvBias::Param param; | |||
param.format = ConvBias::Param::Format::NCHW44_DOT; | |||
size_t n = 1; | |||
size_t ic = 4; | |||
size_t oc = 8; | |||
size_t h = 2; | |||
size_t w = 2; | |||
size_t filter_size = 3; | |||
size_t pad = 1; | |||
auto src_tensor_shape = TensorShape{n, ic / 4, h, w, 4}; | |||
auto weight_tensor_shape = | |||
TensorShape{oc / 4, ic / 4, filter_size, filter_size, 4, 4}; | |||
auto bias_tensor_shape = TensorShape{1, oc / 4, 1, 1, 4}; | |||
param.pad_h = pad; | |||
param.pad_w = pad; | |||
UniformIntRNG rng{-127, 127}; | |||
checker.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.set_dtype(2, dtype::Float32()) | |||
.set_dtype(4, dtype::Float32()) | |||
.set_rng(0, &rng) | |||
.set_rng(1, &rng) | |||
.set_rng(2, &rng) | |||
.set_epsilon(1e-3) | |||
.set_param(param) | |||
.execs({src_tensor_shape, | |||
weight_tensor_shape, | |||
bias_tensor_shape, | |||
{}, | |||
{}}); | |||
checker.set_dtype(0, dtype::QuantizedS8(2.f)) | |||
.set_dtype(1, dtype::QuantizedS8(3.f)) | |||
.set_dtype(2, dtype::QuantizedS32(6.f)) | |||
.set_dtype(4, dtype::QuantizedS32(6.f)) | |||
.set_rng(0, &rng) | |||
.set_rng(1, &rng) | |||
.set_rng(2, &rng) | |||
.set_epsilon(1e-3) | |||
.set_param(param) | |||
.execs({src_tensor_shape, | |||
weight_tensor_shape, | |||
bias_tensor_shape, | |||
{}, | |||
{}}); | |||
{ | |||
// test normal conv | |||
ConvBias::Param param; | |||
param.format = ConvBias::Param::Format::NCHW44_DOT; | |||
param.sparse = ConvBias::Param::Sparse::DENSE; | |||
param.pad_h = 1; | |||
param.pad_w = 1; | |||
checker.set_param(param).exect( | |||
Testcase{TensorValue({1, 1, 2, 2, 4}, dtype::Float32(), | |||
{7, 2, 2, 1, 7, 5, 6, 3, 1, 2, 8, 3, 7, 7, | |||
6, 4}), | |||
TensorValue( | |||
{1, 1, 3, 3, 4, 4}, dtype::Float32(), | |||
{3, 0, 3, 1, 5, 1, 5, 7, 5, 4, 0, 0, 2, 8, 7, | |||
7, 6, 5, 7, 3, 4, 2, 6, 2, 7, 2, 6, 2, 7, 4, | |||
3, 8, 5, 0, 0, 7, 0, 5, 4, 7, 4, 1, 8, 2, 4, | |||
0, 4, 0, 4, 6, 0, 1, 8, 2, 6, 4, 7, 3, 4, 3, | |||
3, 0, 4, 8, 8, 2, 3, 7, 8, 5, 2, 0, 7, 5, 8, | |||
2, 2, 1, 1, 7, 1, 0, 2, 4, 6, 6, 4, 2, 1, 3, | |||
1, 7, 5, 0, 1, 5, 7, 5, 3, 0, 8, 7, 2, 1, 4, | |||
0, 8, 4, 5, 3, 6, 6, 6, 2, 1, 5, 6, 4, 7, 2, | |||
0, 4, 8, 8, 1, 1, 2, 3, 8, 6, 3, 1, 3, 3, 7, | |||
1, 5, 4, 2, 1, 0, 3, 8, 4}), | |||
TensorValue({1, 1, 1, 1, 4}, dtype::Float32(), | |||
{7, 2, 8, 1}), | |||
TensorValue({1, 1, 2, 2, 4}, dtype::Float32(), | |||
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
0, 0}), | |||
{}}, | |||
Testcase{ | |||
{}, | |||
{}, | |||
{}, | |||
{}, | |||
TensorValue({1, 1, 2, 2, 4}, dtype::Float32(), | |||
{264, 338, 309, 195, 276, 332, 390, 199, | |||
224, 268, 311, 218, 288, 311, 346, 277})}); | |||
} | |||
{ | |||
// test dw conv | |||
ConvBias::Param param; | |||
param.format = ConvBias::Param::Format::NCHW44_DOT; | |||
param.sparse = ConvBias::Param::Sparse::GROUP; | |||
param.pad_h = 1; | |||
param.pad_w = 1; | |||
checker.set_param(param).exect( | |||
Testcase{TensorValue({1, 1, 2, 2, 4}, dtype::Float32(), | |||
{5, 8, 3, 2, 4, 6, 1, 5, 0, 8, 2, 6, 8, 6, | |||
5, 7}), | |||
TensorValue({1, 1, 1, 3, 3, 4}, dtype::Float32(), | |||
{3, 0, 3, 1, 6, 5, 7, 3, 5, 0, 0, 7, | |||
4, 6, 0, 1, 8, 2, 3, 7, 1, 0, 2, 4, | |||
7, 5, 3, 0, 6, 2, 1, 5, 8, 6, 3, 1}), | |||
TensorValue({1, 1, 1, 1, 4}, dtype::Float32(), | |||
{4, 3, 5, 6}), | |||
TensorValue({1, 1, 2, 2, 4}, dtype::Float32(), | |||
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
0, 0}), | |||
{}}, | |||
Testcase{{}, | |||
{}, | |||
{}, | |||
{}, | |||
TensorValue({1, 1, 2, 2, 4}, dtype::Float32(), | |||
{112, 71, 33, 77, 104, 115, 19, 78, 62, 59, | |||
42, 117, 107, 93, 36, 78})}); | |||
} | |||
{ | |||
// test group conv | |||
ConvBias::Param param; | |||
param.format = ConvBias::Param::Format::NCHW44_DOT; | |||
param.sparse = ConvBias::Param::Sparse::GROUP; | |||
param.pad_h = 1; | |||
param.pad_w = 1; | |||
checker.set_param(param).exect( | |||
Testcase{TensorValue({1, 2, 2, 2, 4}, dtype::Float32(), | |||
{6, 3, 2, 7, 7, 6, 4, 5, 8, 6, 3, | |||
1, 1, 2, 8, 3, 1, 0, 6, 1, 3, 3, | |||
6, 0, 0, 5, 6, 7, 2, 2, 4, 4}), | |||
TensorValue( | |||
{2, 1, 1, 3, 3, 4, 4}, dtype::Float32(), | |||
{3, 0, 3, 1, 5, 1, 5, 7, 5, 4, 0, 0, 2, 8, 7, | |||
7, 6, 5, 7, 3, 4, 2, 6, 2, 7, 2, 6, 2, 7, 4, | |||
3, 8, 5, 0, 0, 7, 0, 5, 4, 7, 4, 1, 8, 2, 4, | |||
0, 4, 0, 4, 6, 0, 1, 8, 2, 6, 4, 7, 3, 4, 3, | |||
3, 0, 4, 8, 8, 2, 3, 7, 8, 5, 2, 0, 7, 5, 8, | |||
2, 2, 1, 1, 7, 1, 0, 2, 4, 6, 6, 4, 2, 1, 3, | |||
1, 7, 5, 0, 1, 5, 7, 5, 3, 0, 8, 7, 2, 1, 4, | |||
0, 8, 4, 5, 3, 6, 6, 6, 2, 1, 5, 6, 4, 7, 2, | |||
0, 4, 8, 8, 1, 1, 2, 3, 8, 6, 3, 1, 3, 3, 7, | |||
1, 5, 4, 2, 1, 0, 3, 8, 4, 7, 6, 8, 3, 4, 8, | |||
1, 0, 5, 7, 3, 0, 0, 4, 5, 3, 7, 8, 1, 3, 7, | |||
1, 1, 0, 7, 2, 2, 0, 3, 0, 1, 1, 1, 6, 4, 0, | |||
3, 3, 1, 2, 0, 0, 4, 1, 5, 5, 7, 6, 7, 1, 3, | |||
5, 8, 6, 2, 1, 0, 7, 7, 1, 2, 6, 6, 1, 2, 3, | |||
1, 2, 4, 8, 3, 2, 6, 0, 7, 4, 3, 7, 3, 3, 5, | |||
3, 0, 3, 5, 1, 4, 5, 6, 2, 0, 5, 3, 3, 3, 5, | |||
2, 4, 7, 1, 3, 5, 2, 8, 1, 8, 1, 2, 5, 1, 0, | |||
6, 7, 7, 8, 7, 8, 8, 1, 8, 4, 4, 1, 4, 4, 5, | |||
0, 2, 2, 2, 0, 1, 8, 4, 4, 7, 6, 8, 0, 1, 5, | |||
4, 2, 6}), | |||
TensorValue({1, 2, 1, 1, 4}, dtype::Float32(), | |||
{1, 8, 5, 6, 2, 8, 7, 7}), | |||
TensorValue({1, 2, 2, 2, 4}, dtype::Float32(), | |||
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0}), | |||
{}}, | |||
Testcase{ | |||
{}, | |||
{}, | |||
{}, | |||
{}, | |||
TensorValue({1, 2, 2, 2, 4}, dtype::Float32(), | |||
{260, 342, 244, 241, 293, 385, 362, 257, | |||
278, 301, 303, 226, 273, 306, 318, 307, | |||
180, 244, 169, 156, 210, 244, 206, 167, | |||
126, 165, 156, 207, 191, 141, 209, 172})}); | |||
} | |||
} | |||
// vim: syntax=cpp.doxygen |