GitOrigin-RevId: d14a69424d
tags/v1.9.0
@@ -41,7 +41,6 @@ from ..distributed import WORLD, is_distributed | |||
from ..jit import exclude_from_trace | |||
from ..tensor import Tensor | |||
from ..utils.deprecation import deprecated_func | |||
from ..utils.tuple_function import _pair, _pair_nonzero, _triple, _triple_nonzero | |||
from .debug_param import get_execution_strategy | |||
from .distributed import all_reduce_sum | |||
from .elemwise import _elwise, exp, log, log1p, maximum, minimum | |||
@@ -94,14 +93,15 @@ __all__ = [ | |||
def expand_hw(x): | |||
# NOTE: >1d array is accepted, as long as 1 <= size <= 2 | |||
try: | |||
x = int(x) | |||
return [x, x] | |||
except (TypeError, ValueError): | |||
pass | |||
h, w = x | |||
return int(h), int(w) | |||
if isinstance(x, Sequence): | |||
return int(x[0]), int(x[1]) | |||
return int(x), int(x) | |||
def expand_dhw(x): | |||
if isinstance(x, Sequence): | |||
return int(x[0]), int(x[1]), int(x[2]) | |||
return int(x), int(x), int(x) | |||
def linear( | |||
@@ -177,11 +177,8 @@ def conv1d( | |||
if weight.dtype != dtype: | |||
weight = weight.astype(dtype) | |||
inp = expand_dims(inp, 3) | |||
weight = expand_dims(weight, 3) | |||
if bias is not None: | |||
assert bias.ndim == 3, "the bias dimension of conv1d should be 3" | |||
bias = expand_dims(bias, 3) | |||
stride_h = stride | |||
pad_h = padding | |||
@@ -206,7 +203,6 @@ def conv1d( | |||
(output,) = apply(op, inp, weight) | |||
if bias is not None: | |||
output += bias | |||
output = squeeze(output, 3) | |||
return output | |||
@@ -314,9 +310,9 @@ def conv3d( | |||
D, H, W = 0, 1, 2 | |||
pad = _triple(padding) | |||
stride = _triple_nonzero(stride) | |||
dilate = _triple_nonzero(dilation) | |||
pad = expand_dhw(padding) | |||
stride = expand_dhw(stride) | |||
dilate = expand_dhw(dilation) | |||
sparse_type = "dense" if groups == 1 else "group" | |||
op = builtin.Convolution3D( | |||
@@ -572,9 +568,9 @@ def conv_transpose3d( | |||
output tensor. | |||
""" | |||
D, H, W = 0, 1, 2 | |||
pad = _triple(padding) | |||
stride = _triple_nonzero(stride) | |||
dilate = _triple_nonzero(dilation) | |||
pad = expand_dhw(padding) | |||
stride = expand_dhw(stride) | |||
dilate = expand_dhw(dilation) | |||
sparse_type = "dense" if groups == 1 else "group" | |||
op = builtin.Convolution3DBackwardData( | |||
@@ -618,9 +614,9 @@ def max_pool2d( | |||
""" | |||
if stride is None: | |||
stride = kernel_size | |||
window_h, window_w = _pair_nonzero(kernel_size) | |||
stride_h, stride_w = _pair_nonzero(stride) | |||
padding_h, padding_w = _pair(padding) | |||
window_h, window_w = expand_hw(kernel_size) | |||
stride_h, stride_w = expand_hw(stride) | |||
padding_h, padding_w = expand_hw(padding) | |||
conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | |||
op = builtin.Pooling( | |||
@@ -662,9 +658,9 @@ def avg_pool2d( | |||
""" | |||
if stride is None: | |||
stride = kernel_size | |||
window_h, window_w = _pair_nonzero(kernel_size) | |||
stride_h, stride_w = _pair_nonzero(stride) | |||
padding_h, padding_w = _pair(padding) | |||
window_h, window_w = expand_hw(kernel_size) | |||
stride_h, stride_w = expand_hw(stride) | |||
padding_h, padding_w = expand_hw(padding) | |||
conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | |||
op = builtin.Pooling( | |||
@@ -1779,10 +1775,10 @@ def sliding_window( | |||
stride: stride of the window. Default: 1 | |||
dilation: dilation of the window. Default: 1 | |||
""" | |||
padding_h, padding_w = _pair(padding) | |||
stride_h, stride_w = _pair_nonzero(stride) | |||
dilation_h, dilation_w = _pair_nonzero(dilation) | |||
window_h, window_w = _pair_nonzero(kernel_size) | |||
padding_h, padding_w = expand_hw(padding) | |||
stride_h, stride_w = expand_hw(stride) | |||
dilation_h, dilation_w = expand_hw(dilation) | |||
window_h, window_w = expand_hw(kernel_size) | |||
op = builtin.Images2Neibs( | |||
pad_h=padding_h, | |||
@@ -1818,11 +1814,11 @@ def sliding_window_transpose( | |||
stride: stride of the window. Default: 1 | |||
dilation: dilation of the window. Default: 1 | |||
""" | |||
output_h, output_w = _pair_nonzero(output_size) | |||
padding_h, padding_w = _pair(padding) | |||
stride_h, stride_w = _pair_nonzero(stride) | |||
dilation_h, dilation_w = _pair_nonzero(dilation) | |||
window_h, window_w = _pair_nonzero(kernel_size) | |||
output_h, output_w = expand_hw(output_size) | |||
padding_h, padding_w = expand_hw(padding) | |||
stride_h, stride_w = expand_hw(stride) | |||
dilation_h, dilation_w = expand_hw(dilation) | |||
window_h, window_w = expand_hw(kernel_size) | |||
expected_h = ( | |||
output_h + 2 * padding_h - dilation_h * (window_h - 1) - 1 | |||
@@ -80,19 +80,6 @@ class _BatchNorm(Module): | |||
self.track_running_stats == False | |||
), "track_running_stats can not be initilized to False and changed to True later" | |||
inp_shape = inp.shape | |||
_ndims = len(inp_shape) | |||
if _ndims != 4: | |||
origin_shape = inp_shape | |||
if _ndims == 2: | |||
n, c = inp_shape[0], inp_shape[1] | |||
new_shape = (n, c, 1, 1) | |||
elif _ndims == 3: | |||
n, c, h = inp_shape[0], inp_shape[1], inp_shape[2] | |||
new_shape = (n, c, h, 1) | |||
inp = inp.reshape(new_shape) | |||
_weight = self.weight | |||
_bias = self.bias | |||
@@ -130,9 +117,6 @@ class _BatchNorm(Module): | |||
param_dim=self.param_dim, | |||
) | |||
if _ndims != 4: | |||
output = output.reshape(origin_shape) | |||
return output | |||
def _module_info_string(self) -> str: | |||
@@ -15,6 +15,7 @@ | |||
#include "megbrain/imperative/ops/backward_graph.h" | |||
#include "megbrain/imperative/ops/utility.h" | |||
#include "megbrain/imperative/profiler.h" | |||
#include "megbrain/imperative/transformations/dim_expansion.h" | |||
#include "megbrain/imperative/transformations/dtype_promote.h" | |||
#include "megbrain/imperative/transformations/eval.h" | |||
#include "megbrain/imperative/transformations/lazy.h" | |||
@@ -61,11 +62,13 @@ struct SymbolVarContext { | |||
std::shared_ptr<SymbolTransformation> symbol_tsf; | |||
std::shared_ptr<ScalarTransformation> scalar_tsf; | |||
std::shared_ptr<DTypePromoteTransformation> dtype_promote_tsf; | |||
std::shared_ptr<DimExpansionTransformation> dim_expansion_tsf; | |||
SymbolVarContext(cg::ComputingGraph* graph) { | |||
symbol_tsf = std::make_shared<SymbolTransformation>(graph); | |||
scalar_tsf = std::make_shared<ScalarTransformation>(); | |||
dtype_promote_tsf = std::make_shared<DTypePromoteTransformation>(); | |||
dim_expansion_tsf = std::make_shared<DimExpansionTransformation>(); | |||
Transformation::swap_context(context); | |||
} | |||
@@ -73,6 +76,7 @@ struct SymbolVarContext { | |||
symbol_tsf->register_at(Transformation::top()); | |||
scalar_tsf->register_at(Transformation::top()); | |||
dtype_promote_tsf->register_at(Transformation::top()); | |||
dim_expansion_tsf->register_at(Transformation::top()); | |||
} | |||
ValueRef symvar2val(py::handle py_symbol_var) { | |||
@@ -452,6 +456,8 @@ void init_tensor(py::module m) { | |||
std::make_shared<ScalarTransformation>()); | |||
transformations.register_at<Segment::DTypePromote>( | |||
std::make_shared<DTypePromoteTransformation>()); | |||
transformations.register_at<Segment::DimExpansion>( | |||
std::make_shared<DimExpansionTransformation>()); | |||
static py::exception<interpreter::AsyncError> py_async_error( | |||
m, "AsyncError", PyExc_RuntimeError); | |||
@@ -26,13 +26,14 @@ struct TransformationManager { | |||
enum Segment { | |||
ModuleTrace, | |||
DTypePromote, | |||
DimExpansion, | |||
Grad, | |||
Scalar, | |||
Trace, | |||
Eval, | |||
}; | |||
std::array<std::vector<std::shared_ptr<Transformation>>, 6> segments; | |||
std::array<std::vector<std::shared_ptr<Transformation>>, 7> segments; | |||
template <Segment segment> | |||
void register_at(std::shared_ptr<Transformation> transformation) { | |||
@@ -91,7 +91,7 @@ class ResNet(M.Module): | |||
def run_dtr_resnet1202(): | |||
batch_size = 8 | |||
batch_size = 7 | |||
resnet1202 = ResNet(BasicBlock, [200, 200, 200]) | |||
opt = optim.SGD(resnet1202.parameters(), lr=0.05, momentum=0.9, weight_decay=1e-4) | |||
gm = GradManager().attach(resnet1202.parameters()) | |||
@@ -0,0 +1,95 @@ | |||
#include "megbrain/imperative/transformations/dim_expansion.h" | |||
#include "megbrain/imperative/ops/autogen.h" | |||
namespace mgb::imperative { | |||
namespace { | |||
using DimExpansionRule = std::function<ValueRefList(const OpDef&, Span<ValueRef>)>; | |||
static std::unordered_map<Typeinfo*, DimExpansionRule> dim_expansion_rules; | |||
template <typename T> | |||
void register_dim_expansion_rules(const DimExpansionRule& rule) { | |||
dim_expansion_rules[T::typeinfo()] = [rule](const OpDef& def, | |||
Span<ValueRef> inputs) { | |||
return rule(def.cast_final_safe<T>(), inputs); | |||
}; | |||
} | |||
ValueRefList conv1d_rule(const OpDef& op, Span<ValueRef> inputs) { | |||
bool need_expand = inputs.at(0).shape()->ndim == 3; | |||
if (!need_expand) | |||
return imperative::apply(op, inputs); | |||
ValueRefList converted(inputs.size()); | |||
std::vector<int32_t> axis = {(int32_t)3}; | |||
for (size_t i = 0; i < inputs.size(); ++i) { | |||
converted[i] = imperative::apply(ApplyOp(*AddAxis::make(axis)), inputs[i])[0]; | |||
} | |||
auto outputs = imperative::apply(op, converted); | |||
outputs[0] = imperative::apply(ApplyOp(*RemoveAxis::make(axis)), outputs[0])[0]; | |||
return outputs; | |||
} | |||
ValueRefList bn1d_rule(const OpDef& op, Span<ValueRef> inputs) { | |||
size_t ndim = inputs.at(0).shape()->ndim; | |||
bool need_expand = (ndim == 2 || ndim == 3); | |||
if (!need_expand) | |||
return imperative::apply(op, inputs); | |||
ValueRefList converted(inputs.size()); | |||
std::vector<int32_t> axis = {(int32_t)3}; | |||
if (ndim == 2) { | |||
axis.insert(axis.begin(), (int32_t)2); | |||
} | |||
converted[0] = imperative::apply(ApplyOp(*AddAxis::make(axis)), inputs[0])[0]; | |||
for (size_t i = 1; i < inputs.size(); ++i) { | |||
converted[i] = inputs[i]; | |||
} | |||
std::reverse(std::begin(axis), std::end(axis)); | |||
auto outputs = imperative::apply(op, converted); | |||
size_t idx = outputs.size() - 1; | |||
outputs[idx] = imperative::apply(ApplyOp(*RemoveAxis::make(axis)), outputs[idx])[0]; | |||
return outputs; | |||
} | |||
struct DimExpansionRuleRegistry { | |||
DimExpansionRuleRegistry() { | |||
register_dim_expansion_rules<Convolution>(conv1d_rule); | |||
register_dim_expansion_rules<BatchNorm>(bn1d_rule); | |||
} | |||
} register_helper; | |||
} // namespace | |||
ValueRefList DimExpansionTransformation::apply_transformation( | |||
const Operator& op, Span<ValueRef> inputs) { | |||
if (auto apply_op = op.as<ApplyOp>()) { | |||
auto iter = dim_expansion_rules.find(apply_op->op().dyn_typeinfo()); | |||
if (iter != dim_expansion_rules.end()) { | |||
return iter->second(apply_op->op(), inputs); | |||
} else { | |||
return imperative::apply(op, inputs); | |||
} | |||
} | |||
return imperative::apply(op, inputs); | |||
} | |||
ValueRef DimExpansionTransformation::unwrap(ValueRef value) { | |||
return value; | |||
} | |||
std::string DimExpansionTransformation::name() const { | |||
return "DimExpansionTransformation"; | |||
} | |||
void DimExpansionTransformation::on_register() { | |||
// printf("DimExpansionTransformation has been registered\n"); | |||
} | |||
void DimExpansionTransformation::on_unregister() noexcept { | |||
// printf("DimExpansionTransformation has been unregistered\n"); | |||
} | |||
} // namespace mgb::imperative |
@@ -0,0 +1,19 @@ | |||
#pragma once | |||
#include "megbrain/imperative/dispatch.h" | |||
#include "megbrain/imperative/value.h" | |||
namespace mgb::imperative { | |||
class DimExpansionTransformation final : public Transformation { | |||
private: | |||
public: | |||
ValueRefList apply_transformation( | |||
const Operator& op, Span<ValueRef> inputs) override; | |||
ValueRef unwrap(ValueRef value) override; | |||
std::string name() const override; | |||
void on_register() override; | |||
void on_unregister() noexcept override; | |||
}; | |||
} // namespace mgb::imperative |