GitOrigin-RevId: 814fed047e
tags/v1.0.0-rc1
@@ -4,3 +4,4 @@ dnn/src/cuda/conv_bias/int8/kimpl/* binary | |||
dnn/src/cuda/conv_bias/int8_imma/kimpl/* binary | |||
dnn/src/cuda/batch_conv_bias/int8/kimpl/* binary | |||
dnn/src/cuda/sass/prebuilt/map_defs.cpp binary | |||
tools/mlir/mlir-tblgen filter=lfs diff=lfs merge=lfs -text |
@@ -162,6 +162,15 @@ void mgb::_on_cuda_error(const char* expr, cudaError_t err, const char* file, | |||
cudaGetErrorString(err), expr, file, func, line); | |||
} | |||
void mgb::_on_cuda_cu_error(const char* expr, CUresult err, const char* file, | |||
const char* func, int line) { | |||
const char* msg; | |||
cuGetErrorName(err, &msg); | |||
mgb_throw(CudaError, "cuda error %d: %s (%s at %s:%s:%d)", int(err), msg, | |||
expr, file, func, line); | |||
} | |||
void CompNodeEnv::init_cuda_async(int dev, CompNode comp_node, | |||
const ContinuationCtx<cudaStream_t>& cont) { | |||
m_comp_node = comp_node; | |||
@@ -22,6 +22,7 @@ | |||
#if MGB_CUDA | |||
#include <cuda_runtime.h> | |||
#include <cuda.h> | |||
#if MGB_ENABLE_LOGGING | |||
#define MGB_CUDA_CHECK(expr) \ | |||
@@ -32,6 +33,16 @@ | |||
__func__, __LINE__); \ | |||
} \ | |||
} while (0) | |||
#define MGB_CUDA_CU_CHECK(expr) \ | |||
do { \ | |||
CUresult __cuda_check_code = (expr); \ | |||
if (!mgb_likely(__cuda_check_code == CUDA_SUCCESS)) { \ | |||
::mgb::_on_cuda_cu_error(#expr, __cuda_check_code, __FILE__, \ | |||
__func__, __LINE__); \ | |||
} \ | |||
} while (0) | |||
#else | |||
#define MGB_CUDA_CHECK(expr) \ | |||
do { \ | |||
@@ -41,6 +52,14 @@ | |||
} \ | |||
} while (0) | |||
#define MGB_CUDA_CU_CHECK(expr) \ | |||
do { \ | |||
CUresult __cuda_check_code = (expr); \ | |||
if (!mgb_likely(__cuda_check_code == CUDA_SUCCESS)) { \ | |||
::mgb::_on_cuda_cu_error(#expr, __cuda_check_code, "", "", 1); \ | |||
} \ | |||
} while (0) | |||
#endif //MGB_ENABLE_LOGGING | |||
#endif //MGB_CUDA | |||
@@ -178,6 +197,9 @@ namespace mgb { | |||
#if MGB_CUDA | |||
[[noreturn]] void _on_cuda_error(const char* expr, cudaError_t err, | |||
const char* file, const char* func, int line); | |||
[[noreturn]] void _on_cuda_cu_error(const char* expr, CUresult err, | |||
const char* file, const char* func, | |||
int line); | |||
#endif | |||
@@ -11,6 +11,7 @@ | |||
#include "./halide/compiler_cuda.h" | |||
#include "./nvrtc/compiler_cuda.h" | |||
#include "./mlir/compiler.h" | |||
#include "megbrain/jit/compiler.h" | |||
#include "megbrain/utils/hash.h" | |||
@@ -54,6 +55,8 @@ bool Compiler::is_supported_device(CompNode::DeviceType device) { | |||
case CompNode::DeviceType::CUDA: | |||
return true; | |||
#endif | |||
case CompNode::DeviceType::CPU: | |||
return true; | |||
default: | |||
return false; | |||
} | |||
@@ -87,12 +90,30 @@ Compiler* Compiler::get(ComputingGraph& graph, CompNode comp_node) { | |||
break; | |||
} | |||
#endif | |||
#if MGB_JIT_MLIR | |||
if (!backend || !strcmp(backend, "MLIR")) { | |||
compiler = std::make_unique<MLIRCompiler>( | |||
CompNode::DeviceType::CUDA); | |||
break; | |||
} | |||
#endif | |||
if (!backend || !strcmp(backend, "NVRTC")) { | |||
compiler = std::make_unique<CudaCompiler>(); | |||
break; | |||
} | |||
#endif | |||
// fall through | |||
mgb_throw(InternalError, "No compiler support for cuda"); | |||
break; | |||
case CompNode::DeviceType::CPU: | |||
#if MGB_JIT_MLIR | |||
if (!backend || !strcmp(backend, "MLIR")) { | |||
compiler = std::make_unique<MLIRCompiler>( | |||
CompNode::DeviceType::CPU); | |||
break; | |||
} | |||
#endif | |||
mgb_throw(InternalError, "No compiler support for cpu"); | |||
break; | |||
default: | |||
mgb_throw(InternalError, | |||
"unsupported JIT config: " | |||
@@ -0,0 +1,198 @@ | |||
/** | |||
* \file src/jit/impl/mlir/compiler.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include "./compiler.h" | |||
#include "./executable_cpu.h" | |||
#include "./executable_cuda.h" | |||
#include "./mlir_gen.h" | |||
#include "megbrain/common.h" | |||
#include "megbrain/comp_node_env.h" | |||
#include "megbrain/jit/mlir/ir/dialect.h" | |||
#include "megbrain/jit/mlir/ir/passes.h" | |||
#include <mlir/Conversion/GPUCommon/GPUCommonPass.h> | |||
#include <mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h> | |||
#include <mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h> | |||
#include <mlir/Dialect/GPU/Passes.h> | |||
#include <mlir/IR/Dialect.h> | |||
#include <mlir/IR/MLIRContext.h> | |||
#include <mlir/IR/Module.h> | |||
#include <mlir/InitAllDialects.h> | |||
#include <mlir/Pass/PassManager.h> | |||
#include <mlir/Support/LogicalResult.h> | |||
#include <mlir/Target/NVVMIR.h> | |||
#include <mlir/Transforms/Passes.h> | |||
#include <llvm/Support/TargetSelect.h> | |||
using namespace mgb; | |||
using namespace jit; | |||
namespace { | |||
struct LLVMInitializer { | |||
LLVMInitializer() { | |||
llvm::InitializeNativeTarget(); | |||
llvm::InitializeNativeTargetAsmPrinter(); | |||
} | |||
}; | |||
static LLVMInitializer initializer; | |||
#if MGB_CUDA | |||
mlir::OwnedBlob compile_ptx_to_cubin(const std::string ptx, mlir::Location, | |||
llvm::StringRef) { | |||
OwnedBlob result = std::make_unique<std::vector<char>>( | |||
ptx.data(), ptx.data() + ptx.size()); | |||
return result; | |||
} | |||
#endif | |||
void add_cpu_lowering_pass(mlir::PassManager& manager) { | |||
{ | |||
mlir::OpPassManager& opt_pm = manager.nest<mlir::FuncOp>(); | |||
opt_pm.addPass(create_shape_inference_pass()); | |||
opt_pm.addPass(mlir::createCanonicalizerPass()); | |||
opt_pm.addPass(mlir::createCSEPass()); | |||
} | |||
manager.addPass(create_lower_to_affine_pass()); | |||
{ | |||
mlir::OpPassManager& opt_pm = manager.nest<mlir::FuncOp>(); | |||
opt_pm.addPass(mlir::createCanonicalizerPass()); | |||
opt_pm.addPass(mlir::createCSEPass()); | |||
opt_pm.addPass(mlir::createLoopFusionPass()); | |||
opt_pm.addPass(mlir::createMemRefDataFlowOptPass()); | |||
} | |||
manager.addPass(create_lower_to_llvm_pass()); | |||
} | |||
#if MGB_CUDA | |||
void add_cuda_lowering_pass(mlir::PassManager& manager, CompNode cn) { | |||
{ | |||
mlir::OpPassManager& opt_pm = manager.nest<mlir::FuncOp>(); | |||
opt_pm.addPass(create_shape_inference_pass()); | |||
opt_pm.addPass(mlir::createCanonicalizerPass()); | |||
opt_pm.addPass(mlir::createCSEPass()); | |||
} | |||
manager.addPass(create_lower_to_gpu_pass()); | |||
{ | |||
mlir::OpPassManager& opt_pm = manager.nest<mlir::FuncOp>(); | |||
opt_pm.addPass(mlir::createCanonicalizerPass()); | |||
opt_pm.addPass(mlir::createCSEPass()); | |||
opt_pm.addPass(mlir::createLoopFusionPass()); | |||
opt_pm.addPass(mlir::createMemRefDataFlowOptPass()); | |||
} | |||
manager.addPass(mlir::createGpuKernelOutliningPass()); | |||
{ | |||
auto& kernel_pm = manager.nest<gpu::GPUModuleOp>(); | |||
kernel_pm.addPass(mlir::createLowerGpuOpsToNVVMOpsPass()); | |||
auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop; | |||
kernel_pm.addPass(mlir::createConvertGPUKernelToBlobPass( | |||
mlir::translateModuleToNVVMIR, compile_ptx_to_cubin, | |||
"nvptx64-nvidia-cuda", | |||
ssprintf("sm_%d%d", prop.major, prop.minor), "+ptx60", | |||
MLIRCUDAExecutable::sm_blob_annotation)); | |||
} | |||
} | |||
#endif | |||
} // namespace | |||
/* ==================== MLIRCompiler ===================== */ | |||
thread_local mlir::MLIRContext MLIRCompiler::sm_ctx; | |||
MLIRCompiler::MLIRCompiler(CompNode::DeviceType device_type) | |||
: m_device_type{device_type} { | |||
mlir::registerAllDialects(); | |||
mlir::registerDialect<MgbDialect>(); | |||
#if MGB_CUDA | |||
if (m_device_type == CompNode::DeviceType::CUDA) { | |||
LLVMInitializeNVPTXTarget(); | |||
LLVMInitializeNVPTXTargetInfo(); | |||
LLVMInitializeNVPTXTargetMC(); | |||
LLVMInitializeNVPTXAsmPrinter(); | |||
} | |||
#endif | |||
} | |||
void MLIRCompiler::run_lowering_pass(mlir::OwningModuleRef& module, | |||
CompNode cn) { | |||
mgb_assert(cn.device_type() == m_device_type); | |||
mlir::PassManager manager(module->getContext()); | |||
switch (m_device_type) { | |||
case CompNode::DeviceType::CPU: | |||
add_cpu_lowering_pass(manager); | |||
break; | |||
#if MGB_CUDA | |||
case CompNode::DeviceType::CUDA: | |||
add_cuda_lowering_pass(manager, cn); | |||
break; | |||
#endif | |||
default: | |||
mgb_throw(InternalError, "Unsupport device type: %d", | |||
static_cast<int>(m_device_type)); | |||
break; | |||
} | |||
mgb_assert(mlir::succeeded(manager.run(*module))); | |||
} | |||
std::unique_ptr<Executable> MLIRCompiler::do_compile( | |||
const InternalGraph& graph, const JITExecutor::Args& args) { | |||
MGB_MARK_USED_VAR(graph); | |||
MGB_MARK_USED_VAR(args); | |||
mlir::MLIRContext ctx; | |||
ctx.printStackTraceOnDiagnostic(true); | |||
ctx.printOpOnDiagnostic(true); | |||
auto&& res = mlir_gen(ctx, graph, args); | |||
mgb_assert(res.second, "failed to generate module"); | |||
CompNode cn = args.owner->comp_node(); | |||
run_lowering_pass(res.second, cn); | |||
switch (cn.device_type()) { | |||
case CompNode::DeviceType::CPU: | |||
return std::make_unique<MLIRCPUExecutable>(res.second, | |||
res.first.str()); | |||
#if MGB_CUDA | |||
case CompNode::DeviceType::CUDA: | |||
return std::make_unique<MLIRCUDAExecutable>(res.second, | |||
res.first.str()); | |||
#endif | |||
default: | |||
mgb_throw(InternalError, "Unsupport device type: %d", | |||
static_cast<int>(cn.device_type())); | |||
return nullptr; | |||
} | |||
} | |||
size_t MLIRCompiler::get_nr_workspace_outputs(JITExecutor* opr) const { | |||
MGB_MARK_USED_VAR(opr); | |||
return 0; | |||
} | |||
void MLIRCompiler::init_workspace_size_infer(JITExecutor* opr) { | |||
MGB_MARK_USED_VAR(opr); | |||
} | |||
#endif // MGB_JIT && MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,56 @@ | |||
/** | |||
* \file src/jit/impl/mlir/compiler.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include "megbrain/jit/compiler.h" | |||
#include <mlir/ExecutionEngine/ExecutionEngine.h> | |||
#include <mlir/IR/Module.h> | |||
namespace mgb { | |||
namespace jit { | |||
/*! | |||
* \brief MLIR compiler | |||
*/ | |||
class MLIRCompiler final : public Compiler { | |||
std::unique_ptr<Executable> do_compile( | |||
const InternalGraph& graph, const JITExecutor::Args& args) override; | |||
public: | |||
MLIRCompiler(CompNode::DeviceType device_type = CompNode::DeviceType::CPU); | |||
Property property() const override { | |||
using F = Property::Flag; | |||
return Property{F::NEED_INPUT_COLLAPSE | F::BIND_NDIM, | |||
JITFeatureBits::NONE, 64}; | |||
} | |||
size_t get_nr_workspace_outputs(JITExecutor* opr) const override; | |||
void init_workspace_size_infer(JITExecutor* opr) override; | |||
private: | |||
void run_lowering_pass(mlir::OwningModuleRef& module, CompNode cn); | |||
CompNode::DeviceType m_device_type; | |||
static thread_local mlir::MLIRContext sm_ctx; | |||
}; | |||
} // namespace jit | |||
} // namespace mgb | |||
#endif // MGB_JIT && MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,134 @@ | |||
/** | |||
* \file src/jit/impl/mlir/executable_cpu.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include "./executable_cpu.h" | |||
#include "./utils.h" | |||
#include <mlir/ExecutionEngine/OptUtils.h> | |||
using namespace mgb; | |||
using namespace jit; | |||
namespace { | |||
template <int N> | |||
void* tensor2memref_dim(const megdnn::TensorND& tensor) { | |||
switch (tensor.layout.dtype.enumv()) { | |||
case megdnn::DTypeEnum::Float32: { | |||
StridedMemRefType<float, N>* desc = | |||
static_cast<StridedMemRefType<float, N>*>( | |||
malloc(sizeof(StridedMemRefType<float, N>))); | |||
desc->basePtr = tensor.ptr<float>(); | |||
desc->data = tensor.ptr<float>(); | |||
desc->offset = 0; | |||
for (size_t i = 0; i < tensor.layout.ndim; i++) { | |||
desc->sizes[i] = tensor.layout.shape[i]; | |||
desc->strides[i] = tensor.layout.stride[i]; | |||
} | |||
return desc; | |||
break; | |||
} | |||
default: | |||
mgb_throw(InternalError, "Unsupport dtype, got %s", | |||
tensor.layout.dtype.name()); | |||
break; | |||
} | |||
return nullptr; | |||
} | |||
void* tensor2memref(const megdnn::TensorND& tensor) { | |||
switch (tensor.layout.ndim) { | |||
#define cb(i) \ | |||
case i: \ | |||
return tensor2memref_dim<i>(tensor) | |||
cb(1); | |||
cb(2); | |||
cb(3); | |||
cb(4); | |||
cb(5); | |||
default: | |||
mgb_throw(InternalError, "Unsupported ndim, got %zu", | |||
tensor.layout.ndim); | |||
#undef cb | |||
} | |||
} | |||
} // namespace | |||
MLIRCPUExecutable::MLIRCPUExecutable(mlir::OwningModuleRef& module, | |||
const std::string& kernel_name) | |||
: m_kernel_name{kernel_name} { | |||
auto opt_pipeline = mlir::makeOptimizingTransformer(3, 3, 0); | |||
std::vector<std::string> libs; | |||
auto&& engine = mlir::ExecutionEngine::create( | |||
*module, opt_pipeline, llvm::None, | |||
std::vector<llvm::StringRef>(libs.begin(), libs.end()), true, | |||
false); | |||
mgb_assert(engine); | |||
m_engine = std::move(*engine); | |||
} | |||
void MLIRCPUExecutable::execute(JITExecutor* fusion_opr) { | |||
auto&& args = fusion_opr->args(); | |||
std::vector<void*> args_array(args.inputs.size() + args.outputs.size()); | |||
std::vector<void*> args_array_pointer(args.inputs.size() + | |||
args.outputs.size()); | |||
size_t idx = 0; | |||
for (size_t i = 0; i < args.inputs.size(); i++) { | |||
args_array[idx] = | |||
tensor2memref({args.inputs[i].from->dev_tensor().raw_ptr(), | |||
args.inputs[i].layout}); | |||
args_array_pointer[idx] = &args_array[idx]; | |||
idx++; | |||
} | |||
int64_t nr_elements = 0; | |||
for (size_t i = 0; i < args.outputs.size(); i++) { | |||
if (nr_elements == 0) { | |||
nr_elements = args.outputs[i].layout.total_nr_elems(); | |||
} else { | |||
mgb_assert(static_cast<size_t>(nr_elements) == | |||
args.outputs[i].layout.total_nr_elems(), | |||
"The number of elements of outputs mismatch, expected: " | |||
"%zu got: %zu(%s)", | |||
static_cast<size_t>(nr_elements), | |||
args.outputs[i].layout.total_nr_elems(), | |||
args.outputs[i].layout.to_string().c_str()); | |||
} | |||
args_array[idx] = | |||
tensor2memref({args.outputs[i].from->dev_tensor().raw_ptr(), | |||
args.outputs[i].layout}); | |||
args_array_pointer[idx] = &args_array[idx]; | |||
idx++; | |||
} | |||
args_array_pointer[idx++] = &nr_elements; | |||
std::string adapter_name = std::string("_mlir_ciface_") + m_kernel_name; | |||
auto err = m_engine->invoke( | |||
adapter_name, llvm::MutableArrayRef<void*>(args_array_pointer)); | |||
if (err) { | |||
mgb_throw(InternalError, "failed to run MLIR kernel %s\n", | |||
m_kernel_name.c_str()); | |||
} | |||
for (size_t i = 0; i < args_array.size(); i++) { | |||
free(args_array[i]); | |||
} | |||
} | |||
MLIRCPUExecutable::~MLIRCPUExecutable() {} | |||
#endif // MGB_JIT && MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,51 @@ | |||
/** | |||
* \file src/jit/impl/mlir/executable_cpu.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include "megbrain/jit/compiler.h" | |||
#include <mlir/ExecutionEngine/ExecutionEngine.h> | |||
#include <mlir/IR/Module.h> | |||
namespace mgb { | |||
namespace jit { | |||
/*! | |||
* \brief Executable class for MLIR | |||
*/ | |||
class MLIRCPUExecutable final : public Executable { | |||
public: | |||
MLIRCPUExecutable(mlir::OwningModuleRef& module, | |||
const std::string& kernel_name); | |||
~MLIRCPUExecutable(); | |||
/*! | |||
* \brief execute | |||
* A executable instance can be executed by one or more fusion_opr | |||
*/ | |||
void execute(JITExecutor* fusion_opr) override final; | |||
private: | |||
std::unique_ptr<mlir::ExecutionEngine> m_engine; | |||
std::string m_kernel_name; | |||
}; | |||
} // namespace jit | |||
} // namespace mgb | |||
#endif // MGB_JIT && MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,166 @@ | |||
/** | |||
* \file src/jit/impl/mlir/executable_cuda.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include <vector> | |||
#include "megbrain_build_config.h" | |||
#include "megdnn/dtype.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#if MGB_CUDA | |||
#include "./executable_cuda.h" | |||
#include "./utils.h" | |||
#include "megbrain/utils/timer.h" | |||
#include "megbrain/utils/persistent_cache.h" | |||
#include "megbrain/comp_node_env.h" | |||
#include <mlir/ExecutionEngine/OptUtils.h> | |||
#include <mlir/Dialect/GPU/GPUDialect.h> | |||
#include <mlir/IR/OpDefinition.h> | |||
using namespace mgb; | |||
using namespace jit; | |||
namespace { | |||
template <int out_dim, typename ctype> | |||
void setup_and_launch(const JITExecutor* fusion_opr, CUfunction func, | |||
int block_size) { | |||
auto&& args = fusion_opr->args(); | |||
std::vector<StridedMemRefType<ctype, out_dim>> param_holders; | |||
std::vector<void*> params; | |||
auto set_params = [¶m_holders, ¶ms]( | |||
void* ptr, const megdnn::TensorLayout& layout) { | |||
param_holders.push_back(StridedMemRefType<ctype, out_dim>{}); | |||
StridedMemRefType<ctype, out_dim>& desc = param_holders.back(); | |||
desc.basePtr = static_cast<ctype*>(ptr); | |||
params.push_back(&(desc.basePtr)); | |||
desc.data = static_cast<ctype*>(ptr); | |||
params.push_back(&(desc.data)); | |||
desc.offset = 0; | |||
params.push_back(&(desc.offset)); | |||
for (size_t i = 0; i < layout.ndim; i++) { | |||
desc.sizes[i] = layout.shape[i]; | |||
params.push_back(&(desc.sizes[i])); | |||
desc.strides[i] = layout.stride[i]; | |||
params.push_back(&(desc.strides[i])); | |||
} | |||
}; | |||
for (const auto& arg : args.inputs) { | |||
set_params(arg.from->dev_tensor().raw_ptr(), arg.layout); | |||
} | |||
int64_t nr_elements = 0; | |||
for (const auto& arg : args.outputs) { | |||
if (nr_elements == 0) { | |||
nr_elements = arg.layout.total_nr_elems(); | |||
} else { | |||
mgb_assert(static_cast<size_t>(nr_elements) == | |||
arg.layout.total_nr_elems(), | |||
"The number of elements of outputs mismatch, expected: " | |||
"%zu got: %zu(%s)", | |||
static_cast<size_t>(nr_elements), | |||
arg.layout.total_nr_elems(), | |||
arg.layout.to_string().c_str()); | |||
} | |||
set_params(arg.from->dev_tensor().raw_ptr(), arg.layout); | |||
} | |||
const CompNodeEnv& env = | |||
CompNodeEnv::from_comp_node(fusion_opr->comp_node()); | |||
int64_t num_block = (nr_elements - 1) / block_size + 1; | |||
params.insert(params.begin(), &nr_elements); | |||
MGB_CUDA_CU_CHECK(cuLaunchKernel(func, num_block, 1, 1, block_size, 1, 1, 0, | |||
env.cuda_env().stream, params.data(), 0)); | |||
} | |||
} // namespace | |||
const std::string MLIRCUDAExecutable::sm_blob_annotation = "nvvm.cubin"; | |||
MLIRCUDAExecutable::MLIRCUDAExecutable(mlir::OwningModuleRef& module, | |||
const std::string& kernel_name) { | |||
m_kernel_name = kernel_name + "_kernel"; | |||
auto kernel_module = | |||
module->lookupSymbol<mlir::gpu::GPUModuleOp>(m_kernel_name); | |||
mgb_assert(kernel_module, "Expected gpu kernel module"); | |||
auto binary_attr = kernel_module.getAttrOfType<mlir::StringAttr>( | |||
llvm::StringRef(sm_blob_annotation)); | |||
mgb_assert(binary_attr, "Missing %s attribute in gpu kernel module", | |||
sm_blob_annotation.c_str()); | |||
m_kernel_data = binary_attr.getValue().str(); | |||
} | |||
void MLIRCUDAExecutable::execute(JITExecutor* fusion_opr) { | |||
FuncCache* func; | |||
auto cn = fusion_opr->comp_node(); | |||
auto&& prop = CompNodeEnv::from_comp_node(cn).cuda_env().device_prop; | |||
func = &m_func_cache[{prop.major, prop.minor}]; | |||
func->kernel_data = m_kernel_data; | |||
func->exec(fusion_opr, this); | |||
} | |||
MLIRCUDAExecutable::~MLIRCUDAExecutable() {} | |||
void MLIRCUDAExecutable::FuncCache::exec(const JITExecutor* fusion_opr, | |||
const MLIRCUDAExecutable* cuda_exe) { | |||
Func* func; | |||
{ | |||
MGB_LOCK_GUARD(mtx); | |||
auto ins = cn2func.insert({fusion_opr->comp_node(), {}}); | |||
func = &ins.first->second; | |||
if (ins.second) { | |||
MGB_CUDA_CU_CHECK( | |||
cuModuleLoadData(&func->module, kernel_data.data())); | |||
MGB_CUDA_CU_CHECK( | |||
cuModuleGetFunction(&func->func, func->module, | |||
cuda_exe->m_kernel_name.c_str())); | |||
int min_grid_size = 0; | |||
MGB_CUDA_CU_CHECK(cuOccupancyMaxPotentialBlockSize( | |||
&min_grid_size, &func->block_size, func->func, nullptr, 0, | |||
0)); | |||
} | |||
} | |||
mgb_assert(fusion_opr->args().outputs.size() == 1, | |||
"Currently only support 1 outputs, got %zu", | |||
fusion_opr->args().outputs.size()); | |||
int out_dim = fusion_opr->args().outputs[0].layout.ndim; | |||
DType dtype = fusion_opr->args().outputs[0].layout.dtype; | |||
#define cb_outdim(_ndim, _dtype) \ | |||
if (_ndim == out_dim) { \ | |||
setup_and_launch<_ndim, _dtype>(fusion_opr, func->func, \ | |||
func->block_size); \ | |||
return; \ | |||
} | |||
#define cb(_dtype) \ | |||
cb_outdim(1, float); \ | |||
cb_outdim(2, float); \ | |||
cb_outdim(3, float); \ | |||
cb_outdim(4, float); \ | |||
mgb_throw(InternalError, "unsupported out_dim=%zu", \ | |||
static_cast<size_t>(out_dim)); \ | |||
return; | |||
switch (dtype.enumv()) { | |||
case DTypeEnum::Float32: | |||
cb(float); | |||
default: | |||
mgb_throw(InternalError, "unsupport dtype: %s", dtype.name()); | |||
} | |||
#undef cb | |||
#undef cb_outdim | |||
} | |||
#endif // MGB_CUDA | |||
#endif // MGB_JIT && MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,74 @@ | |||
/** | |||
* \file src/jit/impl/mlir/executable_cuda.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#if MGB_CUDA | |||
#include "megbrain/jit/compiler.h" | |||
#include <mlir/IR/Module.h> | |||
#include <cuda.h> | |||
namespace mgb { | |||
namespace jit { | |||
/*! | |||
* \brief Executable class for MLIR | |||
*/ | |||
class MLIRCUDAExecutable final : public Executable { | |||
public: | |||
MLIRCUDAExecutable(mlir::OwningModuleRef& module, | |||
const std::string& kernel_name); | |||
~MLIRCUDAExecutable(); | |||
/*! | |||
* \brief execute | |||
* A executable instance can be executed by one or more fusion_opr | |||
*/ | |||
void execute(JITExecutor* fusion_opr) override final; | |||
const static std::string sm_blob_annotation; | |||
private: | |||
//! cache for a func on a specific device | |||
struct FuncCache { | |||
struct Func { | |||
int block_size{-1}; | |||
CUmodule module{nullptr}; | |||
CUfunction func{nullptr}; | |||
}; | |||
std::mutex mtx; | |||
std::string kernel_data; | |||
CompNode::UnorderedMap<Func> cn2func; | |||
void exec(const JITExecutor* fusion_opr, | |||
const MLIRCUDAExecutable* cuda_exe); | |||
}; | |||
std::string m_kernel_name; | |||
std::string m_kernel_data; | |||
//! (cuda_major, cuda_minor) => func | |||
ThinHashMap<std::pair<uint32_t, uint32_t>, FuncCache> m_func_cache; | |||
}; | |||
} // namespace jit | |||
} // namespace mgb | |||
#endif // MGB_CUDA | |||
#endif // MGB_JIT && MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,41 @@ | |||
/** | |||
* \file src/jit/impl/mlir/ir/common.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include "common.h" | |||
#include <mlir/Dialect/Affine/IR/AffineOps.h> | |||
using namespace mgb; | |||
using namespace jit; | |||
mlir::Value jit::insert_alloc_and_dealloc(mlir::MemRefType type, | |||
mlir::Location loc, | |||
mlir::PatternRewriter& rewriter) { | |||
auto alloc = rewriter.create<mlir::AllocOp>(loc, type); | |||
// Make sure to allocate at the beginning of the block. | |||
auto* parent_block = alloc.getOperation()->getBlock(); | |||
alloc.getOperation()->moveBefore(&parent_block->front()); | |||
// Make sure to deallocate this alloc at the end of the block. This is fine | |||
// as toy functions have no control flow. | |||
auto dealloc = rewriter.create<mlir::DeallocOp>(loc, alloc); | |||
dealloc.getOperation()->moveBefore(&parent_block->back()); | |||
return alloc; | |||
} | |||
#endif // MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,32 @@ | |||
/** | |||
* \file src/jit/impl/mlir/ir/common.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include <mlir/IR/PatternMatch.h> | |||
#include <mlir/IR/StandardTypes.h> | |||
#include <mlir/IR/Value.h> | |||
namespace mgb { | |||
namespace jit { | |||
mlir::Value insert_alloc_and_dealloc(mlir::MemRefType type, mlir::Location loc, | |||
mlir::PatternRewriter& rewriter); | |||
} // namespace jit | |||
} // namespace mgb | |||
#endif // MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,91 @@ | |||
/** | |||
* \file src/jit/impl/mlir/ir/dialect.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include "megbrain/jit/mlir/ir/dialect.h" | |||
#include <mlir/Support/LogicalResult.h> | |||
#include <mlir/IR/Builders.h> | |||
#include <mlir/IR/OpImplementation.h> | |||
#include <mlir/IR/StandardTypes.h> | |||
using namespace mgb; | |||
using namespace jit; | |||
MgbDialect::MgbDialect(mlir::MLIRContext *ctx) : mlir::Dialect("mgb", ctx) { | |||
addOperations< | |||
#define GET_OP_LIST | |||
#include "megbrain/jit/mlir/ir/ops.cpp.inc" | |||
>(); | |||
} | |||
static mlir::ParseResult parseBinaryOp(mlir::OpAsmParser &parser, | |||
mlir::OperationState &result) { | |||
SmallVector<mlir::OpAsmParser::OperandType, 2> operands; | |||
llvm::SMLoc operandsLoc = parser.getCurrentLocation(); | |||
Type type; | |||
if (parser.parseOperandList(operands, /*requiredOperandCount=*/2) || | |||
parser.parseOptionalAttrDict(result.attributes) || | |||
parser.parseColonType(type)) | |||
return mlir::failure(); | |||
// If the type is a function type, it contains the input and result types of | |||
// this operation. | |||
if (FunctionType funcType = type.dyn_cast<FunctionType>()) { | |||
if (parser.resolveOperands(operands, funcType.getInputs(), operandsLoc, | |||
result.operands)) | |||
return mlir::failure(); | |||
result.addTypes(funcType.getResults()); | |||
return mlir::success(); | |||
} | |||
// Otherwise, the parsed type is the type of both operands and results. | |||
if (parser.resolveOperands(operands, type, result.operands)) | |||
return mlir::failure(); | |||
result.addTypes(type); | |||
return mlir::success(); | |||
} | |||
static void printBinaryOp(mlir::OpAsmPrinter &printer, mlir::Operation *op) { | |||
printer << op->getName() << " " << op->getOperands(); | |||
printer.printOptionalAttrDict(op->getAttrs()); | |||
printer << " : "; | |||
// If all of the types are the same, print the type directly. | |||
Type resultType = *op->result_type_begin(); | |||
if (llvm::all_of(op->getOperandTypes(), | |||
[=](Type type) { return type == resultType; })) { | |||
printer << resultType; | |||
return; | |||
} | |||
// Otherwise, print a functional type. | |||
printer.printFunctionalType(op->getOperandTypes(), op->getResultTypes()); | |||
} | |||
///////////////////////// ElemwiseOp ///////////////////////////////////////////// | |||
void AddOp::build(mlir::OpBuilder &builder, mlir::OperationState &state, | |||
mlir::Value lhs, mlir::Value rhs) { | |||
state.addTypes(lhs.getType()); | |||
state.addOperands({lhs, rhs}); | |||
} | |||
void AddOp::infer_shapes() { getResult().setType(getOperand(0).getType()); } | |||
#define GET_OP_CLASSES | |||
#include "megbrain/jit/mlir/ir/ops.cpp.inc" | |||
#endif // MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,159 @@ | |||
/** | |||
* \file src/jit/impl/mlir/ir/lower_to_affine_pass.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include "megbrain/common.h" | |||
#include "megbrain/jit/mlir/ir/dialect.h" | |||
#include "megbrain/jit/mlir/ir/passes.h" | |||
#include "./common.h" | |||
#include <mlir/Dialect/Affine/IR/AffineOps.h> | |||
#include <mlir/Dialect/StandardOps/IR/Ops.h> | |||
#include <mlir/Pass/Pass.h> | |||
#include <mlir/Transforms/DialectConversion.h> | |||
#include <llvm/ADT/Sequence.h> | |||
using namespace mgb; | |||
using namespace jit; | |||
namespace { | |||
using LoopIterationFn = function_ref<Value( | |||
OpBuilder& rewriter, ValueRange memRefOperands, ValueRange loopIvs)>; | |||
void lower_op_to_loops(Operation* op, ValueRange operands, | |||
PatternRewriter& rewriter, | |||
LoopIterationFn process_iteration) { | |||
auto memref_type = (*op->result_type_begin()).cast<MemRefType>(); | |||
auto loc = op->getLoc(); | |||
auto alloc = jit::insert_alloc_and_dealloc(memref_type, loc, rewriter); | |||
SmallVector<int64_t, 4> lower_bounds(memref_type.getRank(), 0); | |||
SmallVector<int64_t, 4> steps(memref_type.getRank(), 1); | |||
buildAffineLoopNest( | |||
rewriter, loc, lower_bounds, memref_type.getShape(), steps, | |||
[&](OpBuilder& nested_builder, Location loc, ValueRange ivs) { | |||
Value value_to_store = | |||
process_iteration(nested_builder, operands, ivs); | |||
nested_builder.create<AffineStoreOp>(loc, value_to_store, alloc, | |||
ivs); | |||
}); | |||
// Replace this operation with the generated alloc. | |||
rewriter.replaceOp(op, alloc); | |||
} | |||
template <typename BinaryOp, typename LoweredBinaryOp> | |||
struct BinaryOpLowering : public ConversionPattern { | |||
BinaryOpLowering(MLIRContext* ctx) | |||
: ConversionPattern(BinaryOp::getOperationName(), 1, ctx) {} | |||
LogicalResult matchAndRewrite( | |||
Operation* op, ArrayRef<Value> operands, | |||
ConversionPatternRewriter& rewriter) const final { | |||
auto loc = op->getLoc(); | |||
lower_op_to_loops( | |||
op, operands, rewriter, | |||
[loc](OpBuilder& builder, ValueRange memref_operands, | |||
ValueRange loop_ivs) { | |||
typename BinaryOp::Adaptor binary_adaptor(memref_operands); | |||
auto loaded_lhs = builder.create<AffineLoadOp>( | |||
loc, binary_adaptor.lhs(), loop_ivs); | |||
auto loaded_rhs = builder.create<AffineLoadOp>( | |||
loc, binary_adaptor.rhs(), loop_ivs); | |||
return builder.create<LoweredBinaryOp>(loc, loaded_lhs, | |||
loaded_rhs); | |||
}); | |||
return success(); | |||
} | |||
}; | |||
using AddOpLowering = BinaryOpLowering<jit::AddOp, AddFOp>; | |||
struct AssignOpLowering : public ConversionPattern { | |||
AssignOpLowering(MLIRContext* ctx) | |||
: ConversionPattern(jit::AssignOp::getOperationName(), 1, ctx) {} | |||
LogicalResult matchAndRewrite( | |||
Operation* op, ArrayRef<Value> operands, | |||
ConversionPatternRewriter& rewriter) const final { | |||
auto loc = op->getLoc(); | |||
auto memref_type = operands[0].getType().cast<MemRefType>(); | |||
AssignOpAdaptor assign_adaptor(operands); | |||
SmallVector<int64_t, 4> lower_bounds(memref_type.getRank(), 0); | |||
SmallVector<int64_t, 4> steps(memref_type.getRank(), 1); | |||
buildAffineLoopNest( | |||
rewriter, loc, lower_bounds, memref_type.getShape(), steps, | |||
[&](OpBuilder& nested_builder, Location loc, ValueRange ivs) { | |||
auto loaded_lhs = nested_builder.create<AffineLoadOp>( | |||
loc, assign_adaptor.lhs(), ivs); | |||
nested_builder.create<AffineStoreOp>( | |||
loc, loaded_lhs, assign_adaptor.rhs(), ivs); | |||
}); | |||
rewriter.eraseOp(op); | |||
return success(); | |||
} | |||
}; | |||
struct ReturnOpLowering : public OpRewritePattern<jit::ReturnOp> { | |||
using OpRewritePattern<jit::ReturnOp>::OpRewritePattern; | |||
LogicalResult matchAndRewrite(jit::ReturnOp op, | |||
PatternRewriter& rewriter) const final { | |||
rewriter.replaceOpWithNewOp<mlir::ReturnOp>(op); | |||
return success(); | |||
} | |||
}; | |||
class MgbToAffineLoweringPass | |||
: public PassWrapper<MgbToAffineLoweringPass, FunctionPass> { | |||
public: | |||
void runOnFunction() override final { | |||
auto function = getFunction(); | |||
// Verify that the given main has no inputs and results. | |||
if (function.getType().getNumResults()) { | |||
mgb_log_error("expected 'main' to have 0 results"); | |||
return signalPassFailure(); | |||
} | |||
ConversionTarget target(getContext()); | |||
target.addLegalDialect<AffineDialect, StandardOpsDialect>(); | |||
target.addIllegalDialect<MgbDialect>(); | |||
OwningRewritePatternList patterns; | |||
patterns.insert<AddOpLowering, ReturnOpLowering, AssignOpLowering>( | |||
&getContext()); | |||
if (failed(applyPartialConversion(getFunction(), target, patterns))) { | |||
signalPassFailure(); | |||
} | |||
} | |||
}; | |||
} // namespace | |||
std::unique_ptr<mlir::Pass> mgb::jit::create_lower_to_affine_pass() { | |||
return std::make_unique<MgbToAffineLoweringPass>(); | |||
} | |||
#endif // MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,211 @@ | |||
/** | |||
* \file src/jit/impl/mlir/ir/lower_to_gpu_pass.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include "megbrain/common.h" | |||
#include "megbrain/jit/mlir/ir/dialect.h" | |||
#include "megbrain/jit/mlir/ir/passes.h" | |||
#include "../utils.h" | |||
#include <mlir/Dialect/GPU/GPUDialect.h> | |||
#include <mlir/Dialect/SCF/SCF.h> | |||
#include <mlir/Dialect/StandardOps/IR/Ops.h> | |||
#include <mlir/EDSC/Builders.h> | |||
#include <mlir/IR/StandardTypes.h> | |||
#include <mlir/Pass/Pass.h> | |||
#include <mlir/Transforms/DialectConversion.h> | |||
#include <llvm/ADT/PointerUnion.h> | |||
#include <llvm/ADT/Sequence.h> | |||
#include <llvm/ADT/SetVector.h> | |||
#include <llvm/ADT/Twine.h> | |||
#include <llvm/IR/Type.h> | |||
using namespace mgb; | |||
using namespace jit; | |||
namespace { | |||
mlir::Value get_operand(ConversionPatternRewriter& rewriter, | |||
const mlir::Location& loc, const mlir::Value& val, | |||
const mlir::Value& index) { | |||
if (val.getType().isa<mlir::MemRefType>()) { | |||
return rewriter.create<LoadOp>(loc, val, index); | |||
} else { | |||
return val; | |||
} | |||
} | |||
mlir::Value get_tid(ConversionPatternRewriter& rewriter, const Location& loc) { | |||
auto thread_idx = rewriter.create<gpu::ThreadIdOp>( | |||
loc, rewriter.getIndexType(), rewriter.getStringAttr("x")); | |||
auto block_idx = rewriter.create<gpu::BlockIdOp>( | |||
loc, rewriter.getIndexType(), rewriter.getStringAttr("x")); | |||
auto group_size = rewriter.create<gpu::BlockDimOp>( | |||
loc, rewriter.getIndexType(), rewriter.getStringAttr("x")); | |||
Value index = rewriter.create<AddIOp>( | |||
loc, thread_idx, | |||
rewriter.create<MulIOp>(loc, block_idx, group_size)); | |||
return index; | |||
} | |||
template <typename BinaryOp, typename LoweredBinaryOp> | |||
struct BinaryOpLowering : public ConversionPattern { | |||
BinaryOpLowering(MLIRContext* ctx, gpu::LaunchOp* launch_op) | |||
: ConversionPattern(BinaryOp::getOperationName(), 1, ctx), | |||
m_launch_op{launch_op} {} | |||
LogicalResult matchAndRewrite( | |||
Operation* op, ArrayRef<Value> operands, | |||
ConversionPatternRewriter& rewriter) const final { | |||
auto loc = op->getLoc(); | |||
typename BinaryOp::Adaptor binary_adaptor(operands); | |||
rewriter.setInsertionPointToEnd(&(m_launch_op->body().front())); | |||
auto index = get_tid(rewriter, loc); | |||
auto loaded_lhs = | |||
get_operand(rewriter, loc, binary_adaptor.lhs(), index); | |||
auto loaded_rhs = | |||
get_operand(rewriter, loc, binary_adaptor.rhs(), index); | |||
auto binary_op = | |||
rewriter.create<LoweredBinaryOp>(loc, loaded_lhs, loaded_rhs); | |||
rewriter.replaceOp(op, binary_op.getResult()); | |||
return success(); | |||
} | |||
private: | |||
gpu::LaunchOp* m_launch_op; | |||
}; | |||
using AddOpLowering = BinaryOpLowering<jit::AddOp, AddFOp>; | |||
struct ReturnOpLowering : public ConversionPattern { | |||
ReturnOpLowering(MLIRContext* ctx, gpu::LaunchOp* launch_op) | |||
: ConversionPattern(jit::ReturnOp::getOperationName(), 1, ctx), | |||
m_launch_op{launch_op} {} | |||
LogicalResult matchAndRewrite( | |||
Operation* op, ArrayRef<Value>, | |||
ConversionPatternRewriter& rewriter) const final { | |||
rewriter.replaceOpWithNewOp<mlir::ReturnOp>(op); | |||
auto loc = op->getLoc(); | |||
//! remove the first gpu.terminator | |||
m_launch_op->body().front().front().erase(); | |||
//! if (tid >= nr_tid) {return;} in the begin of the block | |||
rewriter.setInsertionPointToStart(&(m_launch_op->body().front())); | |||
Block* cond_block = rewriter.getInsertionBlock(); | |||
Block::iterator op_position = rewriter.getInsertionPoint(); | |||
Block* remaining_ops_block = | |||
rewriter.splitBlock(cond_block, op_position); | |||
rewriter.setInsertionPointToEnd(cond_block); | |||
auto index = get_tid(rewriter, loc); | |||
auto comparison = rewriter.create<mlir::CmpIOp>( | |||
loc, CmpIPredicate::sge, index, | |||
m_launch_op->getParentOfType<mlir::FuncOp>() | |||
.getArguments() | |||
.back()); | |||
Block* then_block = | |||
rewriter.splitBlock(cond_block, rewriter.getInsertionPoint()); | |||
rewriter.setInsertionPointToEnd(then_block); | |||
rewriter.create<gpu::TerminatorOp>(loc); | |||
rewriter.setInsertionPointToEnd(cond_block); | |||
rewriter.create<mlir::CondBranchOp>( | |||
loc, comparison, then_block, ArrayRef<Value>(), | |||
remaining_ops_block, ArrayRef<Value>()); | |||
rewriter.setInsertionPointToEnd(remaining_ops_block); | |||
rewriter.create<gpu::TerminatorOp>(loc); | |||
return success(); | |||
} | |||
private: | |||
gpu::LaunchOp* m_launch_op; | |||
}; | |||
struct AssignOpLowering : public ConversionPattern { | |||
AssignOpLowering(MLIRContext* ctx, gpu::LaunchOp* launch_op) | |||
: ConversionPattern(jit::AssignOp::getOperationName(), 2, ctx), | |||
m_launch_op{launch_op} {} | |||
LogicalResult matchAndRewrite( | |||
Operation* op, ArrayRef<Value> operands, | |||
ConversionPatternRewriter& rewriter) const final { | |||
auto loc = op->getLoc(); | |||
AssignOpAdaptor assign_adaptor(operands); | |||
rewriter.setInsertionPointToEnd(&(m_launch_op->body().front())); | |||
auto index = get_tid(rewriter, loc); | |||
auto loaded_lhs = | |||
get_operand(rewriter, loc, assign_adaptor.lhs(), index); | |||
rewriter.create<StoreOp>(loc, loaded_lhs, assign_adaptor.rhs(), index); | |||
rewriter.eraseOp(op); | |||
return success(); | |||
} | |||
private: | |||
gpu::LaunchOp* m_launch_op; | |||
}; | |||
class MgbToGpuLoweringPass | |||
: public PassWrapper<MgbToGpuLoweringPass, FunctionPass> { | |||
public: | |||
void runOnFunction() override final { | |||
auto func_op = getFunction(); | |||
Location loc = func_op.getLoc(); | |||
OpBuilder builder(&func_op.getBody()); | |||
Value constantOne = builder.create<ConstantIndexOp>(loc, 1); | |||
gpu::LaunchOp launch_op = builder.create<gpu::LaunchOp>( | |||
loc, constantOne, constantOne, constantOne, constantOne, | |||
constantOne, constantOne); | |||
builder.setInsertionPointToEnd(&(launch_op.body().front())); | |||
builder.create<gpu::TerminatorOp>(loc); | |||
OwningRewritePatternList patterns; | |||
ConversionTarget target(getContext()); | |||
target.addLegalDialect<StandardOpsDialect>(); | |||
target.addLegalDialect<gpu::GPUDialect>(); | |||
target.addIllegalDialect<MgbDialect>(); | |||
patterns.insert<AddOpLowering, AssignOpLowering, ReturnOpLowering>( | |||
&getContext(), &launch_op); | |||
if (failed(applyPartialConversion(func_op, target, patterns))) { | |||
signalPassFailure(); | |||
} | |||
} | |||
}; | |||
} // namespace | |||
std::unique_ptr<mlir::Pass> mgb::jit::create_lower_to_gpu_pass() { | |||
return std::make_unique<MgbToGpuLoweringPass>(); | |||
} | |||
#endif // MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,56 @@ | |||
/** | |||
* \file src/jit/impl/mlir/ir/lower_to_llvm_pass.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include "megbrain/common.h" | |||
#include "megbrain/jit/mlir/ir/dialect.h" | |||
#include "megbrain/jit/mlir/ir/passes.h" | |||
#include <mlir/Conversion/AffineToStandard/AffineToStandard.h> | |||
#include <mlir/Conversion/SCFToStandard/SCFToStandard.h> | |||
#include <mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h> | |||
#include <mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h> | |||
using namespace mgb; | |||
using namespace jit; | |||
namespace { | |||
class AffineToLLVMLoweringPass : public PassWrapper<AffineToLLVMLoweringPass, | |||
OperationPass<ModuleOp>> { | |||
void runOnOperation() final { | |||
LLVMConversionTarget target(getContext()); | |||
target.addLegalOp<ModuleOp, ModuleTerminatorOp>(); | |||
LLVMTypeConverter typeConverter(&getContext()); | |||
OwningRewritePatternList patterns; | |||
populateAffineToStdConversionPatterns(patterns, &getContext()); | |||
populateLoopToStdConversionPatterns(patterns, &getContext()); | |||
populateStdToLLVMConversionPatterns(typeConverter, patterns); | |||
auto module = getOperation(); | |||
if (failed(applyFullConversion(module, target, patterns))) | |||
signalPassFailure(); | |||
} | |||
}; | |||
} // namespace | |||
std::unique_ptr<mlir::Pass> mgb::jit::create_lower_to_llvm_pass() { | |||
return std::make_unique<AffineToLLVMLoweringPass>(); | |||
} | |||
#endif // MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,72 @@ | |||
/** | |||
* \file src/jit/impl/mlir/ir/ops.td | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#ifndef MGB_MLIR_OPS | |||
#define MGB_MLIR_OPS | |||
include "mlir/IR/OpBase.td" | |||
include "mlir/Interfaces/SideEffectInterfaces.td" | |||
include "./shape_inference_interface.td" | |||
def Mgb_Dialect : Dialect { | |||
let name = "mgb"; | |||
let cppNamespace = "mgb::jit"; | |||
} | |||
class ElemwiseOp<string mnemonic, list<OpTrait> traits = []> : | |||
Op<Mgb_Dialect, mnemonic, traits>; | |||
class GenericOp<string mnemonic, list<OpTrait> traits = []> : | |||
Op<Mgb_Dialect, mnemonic, traits>; | |||
def AddOp : ElemwiseOp<"add", | |||
[NoSideEffect, DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> { | |||
let summary = "element-wise addition operation"; | |||
let description = [{ | |||
The "add" operation performs element-wise addition between two tensors. | |||
The shapes of the tensor operands are expected to match. | |||
}]; | |||
let arguments = (ins F32MemRef:$lhs, F32MemRef:$rhs); | |||
let results = (outs F32MemRef); | |||
// Specify a parser and printer method. | |||
let parser = [{ return ::parseBinaryOp(parser, result); }]; | |||
let printer = [{ return ::printBinaryOp(p, *this); }]; | |||
// Allow building an AddOp with from the two input operands. | |||
let builders = [ | |||
OpBuilder<"OpBuilder &b, OperationState &state, Value lhs, Value rhs"> | |||
]; | |||
} | |||
def ReturnOp : GenericOp<"return", | |||
[NoSideEffect, HasParent<"FuncOp">, Terminator]> { | |||
let summary = "return operation"; | |||
let description = [{ | |||
The "return" operation represents a return operation within a function. | |||
The operation takes an no tensor operand and produces no results. | |||
}]; | |||
} | |||
def AssignOp : GenericOp<"assign", []> { | |||
let summary = "assign op"; | |||
let description = [{ | |||
assign rhs to lhs without results | |||
}]; | |||
let arguments = (ins F32MemRef:$lhs, F32MemRef:$rhs); | |||
} | |||
#endif |
@@ -0,0 +1,30 @@ | |||
/** | |||
* \file src/jit/impl/mlir/ir/shape_inference_interface.td | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#ifndef MGB_JIT_SHAPE_INFERENCE_INTERFACE | |||
#define MGB_JIT_SHAPE_INFERENCE_INTERFACE | |||
include "mlir/IR/OpBase.td" | |||
def ShapeInferenceOpInterface : OpInterface<"ShapeInference"> { | |||
let description = [{ | |||
Interface to access a registered method to infer the return types for an | |||
operation that can be used during type inference. | |||
}]; | |||
let methods = [ | |||
InterfaceMethod<"Infer and set the output shape for the current operation.", | |||
"void", "infer_shapes"> | |||
]; | |||
} | |||
#endif // MGB_SHAPE_INFERENCE_INTERFACE |
@@ -0,0 +1,100 @@ | |||
/** | |||
* \file src/jit/impl/mlir/ir/shape_inference_pass.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include "megbrain/common.h" | |||
#include "megbrain/jit/mlir/ir/dialect.h" | |||
#include "megbrain/jit/mlir/ir/passes.h" | |||
#include "megbrain/jit/mlir/ir/shape_inference_interface.h" | |||
#include <llvm/ADT/SmallPtrSet.h> | |||
#include <mlir/IR/StandardTypes.h> | |||
#include <mlir/Pass/Pass.h> | |||
using namespace mgb; | |||
using namespace jit; | |||
#include "megbrain/jit/mlir/ir/shape_inference_interface.cpp.inc" | |||
namespace { | |||
class ShapeInferencePass | |||
: public mlir::PassWrapper<ShapeInferencePass, FunctionPass> { | |||
public: | |||
void runOnFunction() override { | |||
auto f = getFunction(); | |||
llvm::SmallPtrSet<mlir::Operation*, 16> op_worklist; | |||
f.walk([&](mlir::Operation* op) { | |||
if (returns_dynamic_shape(op)) | |||
op_worklist.insert(op); | |||
}); | |||
// Iterate on the operations in the worklist until all operations have | |||
// been inferred or no change happened (fix point). | |||
while (!op_worklist.empty()) { | |||
// Find the next operation ready for inference, that is an operation | |||
// with all operands already resolved (non-generic). | |||
auto nextop = llvm::find_if(op_worklist, all_operands_inferred); | |||
if (nextop == op_worklist.end()) | |||
break; | |||
Operation* op = *nextop; | |||
op_worklist.erase(op); | |||
if (auto shapeOp = dyn_cast<ShapeInference>(op)) { | |||
shapeOp.infer_shapes(); | |||
} else { | |||
mgb_log_error( | |||
"unable to infer shape of operation without shape " | |||
"inference interface"); | |||
return signalPassFailure(); | |||
} | |||
} | |||
// If the operation worklist isn't empty, this indicates a failure. | |||
if (!op_worklist.empty()) { | |||
mgb_log_error( | |||
"Shape inference failed, %zu operations couldn't be " | |||
"inferred", | |||
op_worklist.size()); | |||
signalPassFailure(); | |||
} | |||
} | |||
//! A utility method that returns if the given operation has all of its | |||
//! operands inferred. | |||
static bool all_operands_inferred(Operation* op) { | |||
return llvm::all_of(op->getOperandTypes(), [](Type operandType) { | |||
return operandType.isa<mlir::MemRefType>(); | |||
}); | |||
} | |||
//! A utility method that returns if the given operation has a dynamically | |||
//! shaped result. | |||
static bool returns_dynamic_shape(Operation* op) { | |||
return llvm::any_of(op->getResultTypes(), [](Type resultType) { | |||
return !resultType.isa<mlir::MemRefType>(); | |||
}); | |||
} | |||
}; | |||
} // namespace | |||
std::unique_ptr<mlir::Pass> mgb::jit::create_shape_inference_pass() { | |||
return std::make_unique<ShapeInferencePass>(); | |||
} | |||
#endif // MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,207 @@ | |||
/** | |||
* \file src/jit/impl/mlir/mlir_gen.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include "./mlir_gen.h" | |||
#include "./utils.h" | |||
#include "megbrain/jit/mlir/ir/dialect.h" | |||
#include "megbrain/opr/basic_arith.h" | |||
#include "megdnn/dtype.h" | |||
#include <mlir/Dialect/Affine/IR/AffineOps.h> | |||
#include <mlir/Dialect/StandardOps/IR/Ops.h> | |||
#include <mlir/IR/Attributes.h> | |||
#include <mlir/IR/Builders.h> | |||
#include <mlir/IR/Function.h> | |||
#include <mlir/IR/MLIRContext.h> | |||
#include <mlir/IR/Module.h> | |||
#include <mlir/IR/StandardTypes.h> | |||
#include <mlir/IR/Types.h> | |||
#include <mlir/IR/Value.h> | |||
#include <mlir/IR/Verifier.h> | |||
#include <mlir/Support/LogicalResult.h> | |||
#include <llvm/ADT/ScopedHashTable.h> | |||
#include <llvm/Support/raw_ostream.h> | |||
using namespace mgb; | |||
using namespace jit; | |||
namespace { | |||
class MLIRGenImpl { | |||
public: | |||
MLIRGenImpl(mlir::MLIRContext& context) : m_builder(&context) {} | |||
std::pair<llvm::StringRef, mlir::OwningModuleRef> gen( | |||
const InternalGraph& internal_graph, | |||
const JITExecutor::Args& args) { | |||
mlir::ModuleOp module = | |||
mlir::ModuleOp::create(m_builder.getUnknownLoc()); | |||
//! Create main routine function | |||
auto func_op = gen_func_op(internal_graph, args); | |||
module.push_back(func_op); | |||
if (mlir::failed(mlir::verify(module))) { | |||
module.emitError("module verification error"); | |||
return {}; | |||
} | |||
return {func_op.getName(), module}; | |||
} | |||
private: | |||
mlir::OpBuilder m_builder; | |||
llvm::ScopedHashTable<mlir::StringRef, mlir::Value> m_symbol_table; | |||
mlir::FuncOp gen_func_op(const InternalGraph& internal_graph, | |||
const JITExecutor::Args& args) { | |||
llvm::ScopedHashTableScope<llvm::StringRef, mlir::Value> var_scope( | |||
m_symbol_table); | |||
std::vector<mlir::Type> func_args; | |||
for (auto&& arg : args.inputs) { | |||
func_args.push_back(get_type(arg.layout)); | |||
} | |||
for (auto&& arg : args.outputs) { | |||
func_args.push_back(get_type(arg.layout)); | |||
} | |||
//! the last arg is nr_elements | |||
func_args.push_back(m_builder.getIndexType()); | |||
auto func_type = m_builder.getFunctionType(func_args, llvm::None); | |||
//! function name maybe renamed in later pass | |||
mlir::FuncOp func_op = mlir::FuncOp::create(m_builder.getUnknownLoc(), | |||
"func", func_type); | |||
if (!func_op) | |||
return nullptr; | |||
func_op.setAttr("llvm.emit_c_interface", | |||
mlir::UnitAttr::get(m_builder.getContext())); | |||
auto& entry_block = *func_op.addEntryBlock(); | |||
size_t idx = 0; | |||
for (auto&& input : args.inputs) { | |||
if (mlir::failed(declare(internal_graph.placeholders()[input.idx] | |||
->output(0) | |||
->name(), | |||
entry_block.getArgument(idx)))) { | |||
return nullptr; | |||
} | |||
idx++; | |||
} | |||
for (auto&& output : args.outputs) { | |||
if (mlir::failed(declare(output.from->name(), | |||
entry_block.getArgument(idx)))) { | |||
return nullptr; | |||
} | |||
idx++; | |||
} | |||
m_builder.setInsertionPointToStart(&entry_block); | |||
if (mlir::failed(gen_func_body(internal_graph, args))) { | |||
func_op.erase(); | |||
return nullptr; | |||
} | |||
jit::ReturnOp return_op; | |||
if (!return_op) { | |||
m_builder.create<jit::ReturnOp>(m_builder.getUnknownLoc()); | |||
} | |||
std::string op_content = to_string(func_op); | |||
func_op.setName( | |||
ssprintf("jit_mlir_%" PRIx64, | |||
XXHash{}.update(op_content.data(), op_content.size()) | |||
.digest())); | |||
return func_op; | |||
} | |||
mlir::LogicalResult gen_func_body(const InternalGraph& internal_graph, | |||
const JITExecutor::Args& args) { | |||
llvm::ScopedHashTableScope<llvm::StringRef, mlir::Value> var_scope( | |||
m_symbol_table); | |||
cg::DepOprIter{[&](cg::OperatorNodeBase* opr) { | |||
if (opr->same_type<JITPlaceholder>()) { | |||
return; | |||
} | |||
if (opr->same_type<opr::Elemwise>()) { | |||
auto&& out = gen_op(opr->cast_final<opr::Elemwise>()); | |||
mgb_assert( | |||
mlir::succeeded(declare(opr->output(0)->name(), out))); | |||
} | |||
}}.add(internal_graph.output()); | |||
m_builder.create<AssignOp>(m_builder.getUnknownLoc(), | |||
get(internal_graph.output()), | |||
get(args.outputs[0].from)); | |||
return mlir::success(); | |||
} | |||
mlir::Value gen_op(const opr::Elemwise& opr) { | |||
switch (opr.param().mode) { | |||
case opr::Elemwise::Mode::ADD: | |||
return m_builder.create<AddOp>(m_builder.getUnknownLoc(), | |||
get(opr.input(0)), | |||
get(opr.input(1))); | |||
break; | |||
default: | |||
return nullptr; | |||
} | |||
return nullptr; | |||
} | |||
mlir::Type get_type(const TensorLayout& layout) { | |||
std::vector<int64_t> shape; | |||
for (size_t i = 0; i < layout.ndim; i++) { | |||
shape.push_back(layout[i]); | |||
} | |||
mgb_assert(layout.ndim != 0); | |||
switch (layout.dtype.enumv()) { | |||
case DTypeEnum::Float32: | |||
return mlir::MemRefType::get(shape, m_builder.getF32Type()); | |||
default: | |||
mgb_throw(InternalError, "No supported dtype: %s", | |||
layout.dtype.name()); | |||
} | |||
return mlir::UnrankedMemRefType::get(m_builder.getNoneType(), 0); | |||
} | |||
mlir::Value get(const VarNode* var) { | |||
if (auto ret = m_symbol_table.lookup(var->name())) { | |||
return ret; | |||
} | |||
mgb_throw(InternalError, "Unknown var: %s", var->cname()); | |||
} | |||
mlir::LogicalResult declare(llvm::StringRef var, mlir::Value value) { | |||
if (m_symbol_table.count(var)) { | |||
return mlir::failure(); | |||
} | |||
m_symbol_table.insert(var, value); | |||
return mlir::success(); | |||
} | |||
}; | |||
} // namespace | |||
std::pair<llvm::StringRef, mlir::OwningModuleRef> mgb::jit::mlir_gen( | |||
mlir::MLIRContext& context, | |||
const mgb::jit::InternalGraph& internal_graph, | |||
const mgb::jit::JITExecutor::Args& args) { | |||
return MLIRGenImpl(context).gen(internal_graph, args); | |||
} | |||
#endif // MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,42 @@ | |||
/** | |||
* \file src/jit/impl/mlir/mlir_gen.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include "megbrain/jit/executor_opr.h" | |||
#include "megbrain/jit/internal_graph.h" | |||
#include <mlir/IR/Module.h> | |||
namespace mgb { | |||
namespace jit { | |||
/** | |||
* \brief generate mlir from subgraph. | |||
* | |||
* \param context mlir context | |||
* \param internal_graph internal graph used to generate mlir | |||
* \param args input args for the internal graph | |||
* \return A pair of {kernel_name, module} | |||
**/ | |||
std::pair<llvm::StringRef, mlir::OwningModuleRef> mlir_gen( | |||
mlir::MLIRContext& context, const InternalGraph& internal_graph, | |||
const JITExecutor::Args& args); | |||
} | |||
} // namespace mgb | |||
#endif // MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,45 @@ | |||
/** | |||
* \file src/jit/impl/mlir/utils.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include "megbrain/common.h" | |||
#include "megbrain/exception.h" | |||
#include "megdnn/basic_types.h" | |||
#include "megdnn/dtype.h" | |||
#include <string> | |||
#include <mlir/ExecutionEngine/CRunnerUtils.h> | |||
#include <llvm/Support/raw_ostream.h> | |||
namespace mgb { | |||
namespace jit { | |||
template <typename T> | |||
std::string to_string(T&& t) { | |||
std::string ret; | |||
llvm::raw_string_ostream stream(ret); | |||
t.print(stream); | |||
return ret; | |||
} | |||
} // namespace jit | |||
} // namespace mgb | |||
#endif // MGB_JIT && MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,45 @@ | |||
/** | |||
* \file src/jit/impl/mlir/ir/dialect.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include <mlir/IR/OpDefinition.h> | |||
#include <mlir/IR/Dialect.h> | |||
#include <mlir/IR/Function.h> | |||
#include <mlir/Interfaces/SideEffectInterfaces.h> | |||
#include "megbrain/jit/mlir/ir/shape_inference_interface.h" | |||
namespace mgb { | |||
namespace jit { | |||
class MgbDialect : public ::mlir::Dialect { | |||
public: | |||
explicit MgbDialect(::mlir::MLIRContext* ctx); | |||
//! We should register this function in dialect | |||
static llvm::StringRef getDialectNamespace() { return "mgb::jit"; } | |||
}; | |||
#define GET_OP_CLASSES | |||
using namespace mlir; | |||
#include "megbrain/jit/mlir/ir/ops.h.inc" | |||
} // namespace jit | |||
} // namespace mgb | |||
#endif // MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,43 @@ | |||
/** | |||
* \file src/jit/impl/mlir/ir/passes.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include <mlir/IR/Module.h> | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include <memory> | |||
#include <mlir/Pass/Pass.h> | |||
namespace mgb { | |||
namespace jit { | |||
std::unique_ptr<mlir::Pass> create_shape_inference_pass(); | |||
/** | |||
* \brief Create a pass for lowering to operations in the `Affine` and `Std` | |||
* dialects, for a subset of the megbrain IR. | |||
*/ | |||
std::unique_ptr<mlir::Pass> create_lower_to_affine_pass(); | |||
std::unique_ptr<mlir::Pass> create_lower_to_llvm_pass(); | |||
std::unique_ptr<mlir::Pass> create_lower_to_gpu_pass(); | |||
} // namespace jit | |||
} // namespace mgb | |||
#endif // MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,33 @@ | |||
/** | |||
* \file src/jit/impl/mlir/ir/shape_inference_interface.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain_build_config.h" | |||
#if MGB_JIT && MGB_JIT_MLIR | |||
#include "mlir/IR/OpDefinition.h" | |||
namespace mgb { | |||
namespace jit { | |||
/// Include the auto-generated declarations. | |||
#include "megbrain/jit/mlir/ir/shape_inference_interface.h.inc" | |||
} // end namespace toy | |||
} // end namespace mlir | |||
#endif // MGB_JIT_MLIR | |||
// vim: syntax=cpp.doxygen |
@@ -18,8 +18,8 @@ | |||
*/ | |||
/*! | |||
* * \brief fast division for unsigned int | |||
* */ | |||
* \brief fast division for unsigned int | |||
*/ | |||
struct Uint32Fastdiv { | |||
unsigned int m_mul, m_divisor, m_divisor_is_not_1, m_inc_dividend, m_shift; | |||
@@ -14,6 +14,7 @@ | |||
#include "megbrain/jit/executor_opr.h" | |||
#include "megbrain/opr/basic_arith_wrapper.h" | |||
#include "megbrain/test/helper.h" | |||
#include "megdnn/dtype.h" | |||
#if MGB_JIT | |||
using namespace mgb; | |||
@@ -120,6 +121,44 @@ void run<grad>(Backend backend, CompNode cn) { | |||
template <> | |||
void run<void>(Backend, CompNode) {} | |||
#if MGB_JIT_MLIR | |||
void run_mlir(CompNode cn) { | |||
set_backend(Backend::MLIR); | |||
auto graph = ComputingGraph::make(); | |||
HostTensorGenerator<dtype::Float32> gen; | |||
auto host_x0 = gen({23, 42}, cn), host_x1 = gen({23, 42}, cn), | |||
host_x2 = gen({23, 42}, cn); | |||
auto a = opr::Host2DeviceCopy::make(*graph, host_x0), | |||
b = opr::Host2DeviceCopy::make(*graph, host_x1), | |||
c = opr::Host2DeviceCopy::make(*graph, host_x2); | |||
auto y = a + b + c; | |||
VarNodeArray inputs{a.node(), b.node(), c.node()}, outputs{y.node()}; | |||
auto ig_gen = | |||
std::make_unique<InternalGraphGenerator>(y.node()->owner_opr()); | |||
for (auto i : get_rev_topo_order(y)) { | |||
if (!i->same_type<opr::Host2DeviceCopy>()) { | |||
ig_gen->add_opr(i); | |||
} | |||
} | |||
auto igraph = ig_gen->generate(); | |||
auto y_jit = JITExecutor::make(igraph, ig_gen->orig_inps()); | |||
HostTensorND host_y, host_y_jit; | |||
auto func = graph->compile({make_callback_copy(y, host_y), | |||
make_callback_copy(y_jit, host_y_jit)}); | |||
func->execute(); | |||
MGB_ASSERT_TENSOR_EQ(host_y, host_y_jit); | |||
} | |||
#endif | |||
} // anonymous namespace | |||
#if MGB_JIT_HALIDE | |||
@@ -140,6 +179,20 @@ TYPED_TEST(TestJITNvrtcCodeGen, run) { | |||
run<TypeParam>(Backend::NVRTC, CompNode::load("gpu0")); | |||
} | |||
#if MGB_JIT_MLIR | |||
TEST(TestJITMlirCodeGen, Basic) { | |||
auto cn = CompNode::load("cpu0"); | |||
run_mlir(cn); | |||
} | |||
TEST(TestJITMlirCodeGen, BasicGPU) { | |||
REQUIRE_GPU(1); | |||
auto cn = CompNode::load("gpu0"); | |||
run_mlir(cn); | |||
} | |||
#endif | |||
#endif // MGB_JIT | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -35,6 +35,9 @@ void jit::set_backend(Backend backend) { | |||
case Backend::NVRTC: | |||
setenv("MGB_JIT_BACKEND", "NVRTC", 1); | |||
return; | |||
case Backend::MLIR: | |||
setenv("MGB_JIT_BACKEND", "MLIR", 1); | |||
return; | |||
default: | |||
mgb_assert(0); | |||
} | |||
@@ -15,7 +15,7 @@ | |||
namespace mgb { | |||
namespace jit { | |||
enum class Backend { NONE, HALIDE, NVRTC }; | |||
enum class Backend { NONE, HALIDE, NVRTC, MLIR }; | |||
void set_backend(Backend backend); | |||