@@ -52,7 +52,7 @@ std::string get_default_device() { | |||
} | |||
void init_common(py::module m) { | |||
auto&& PyCompNode = py::class_<CompNode>(m, "CompNode") | |||
auto PyCompNode = py::class_<CompNode>(m, "CompNode") | |||
.def(py::init()) | |||
.def(py::init(py::overload_cast<const std::string&>(&CompNode::load))) | |||
.def_property_readonly("logical_name", [](const CompNode& cn) { | |||
@@ -34,53 +34,36 @@ struct GradSlotWeakPtr { | |||
size_t idx; | |||
}; | |||
struct BackwardGraphCache : std::unordered_map<uint64_t, std::shared_ptr<OptimizedBackwardGraphResult>>, CompNodeDepedentObject { | |||
std::shared_ptr<void> on_comp_node_finalize() override { | |||
clear(); | |||
return {}; | |||
} | |||
} backward_graph_cache; | |||
std::shared_ptr<OptimizedBackwardGraphResult> make_backward_graph( | |||
ApplyContext& ctx, const apply_result_t& outputs) { | |||
// hash | |||
static_assert(alignof(size_t) % alignof(bool) == 0); | |||
size_t buf_size = (1 + ctx.nargs * 2) * sizeof(size_t) + ctx.nargs * sizeof(bool); | |||
alignas(alignof(size_t)) std::byte buf[buf_size]; | |||
size_t* size_t_ptr = reinterpret_cast<size_t*>(buf); | |||
bool* bool_ptr = reinterpret_cast<bool*>(size_t_ptr + (1 + ctx.nargs * 2)); | |||
bool* bool_ptr0 = bool_ptr; | |||
*(size_t_ptr++) = ctx.op->hash(); | |||
using OptimizedBackwardGraphCache = OpMethResultCache<std::shared_ptr<OptimizedBackwardGraphResult>, SmallVector<bool>>; | |||
thread_local OptimizedBackwardGraphCache cache; | |||
decltype(cache)::key_t cache_key{ctx.op}; | |||
SmallVector<LogicalTensorDesc>& input_descs = cache_key.inputs; | |||
SmallVector<bool>& input_requires_grad = std::get<0>(cache_key.extras); | |||
input_descs.resize(ctx.nargs); | |||
input_requires_grad.resize(ctx.nargs); | |||
for (size_t i = 0; i < ctx.nargs; ++i) { | |||
*(size_t_ptr++) = mgb::hash(ctx.args[i]->dtype().handle()); | |||
*(size_t_ptr++) = mgb::hash(ctx.args[i]->comp_node()); | |||
*(bool_ptr++) = !ctx.args[i]->m_grad_info_dict.empty(); | |||
input_descs[i].layout.dtype = ctx.args[i]->dtype(); | |||
input_descs[i].comp_node = ctx.args[i]->comp_node(); | |||
input_requires_grad[i] = python::input_requires_grad(ctx, i); | |||
} | |||
mgb_assert(bool_ptr0 == reinterpret_cast<bool*>(size_t_ptr) && | |||
bool_ptr == reinterpret_cast<bool*>(buf + buf_size)); | |||
uint64_t key = XXHash{}.update(buf, buf_size).digest(); | |||
auto&& iter = backward_graph_cache.find(key); | |||
if (iter != backward_graph_cache.end()) { | |||
auto iter = cache.find(cache_key); | |||
if (iter != cache.end()) { | |||
return iter->second; | |||
} | |||
// slow path | |||
SmallVector<LogicalTensorDesc> inputs(ctx.nargs); | |||
SmallVector<bool> input_requires_grad(ctx.nargs, false); | |||
SmallVector<bool> output_has_grad(outputs.size(), true); | |||
for (size_t i = 0; i < ctx.nargs; ++i) { | |||
inputs[i].comp_node = ctx.args[i]->comp_node(); | |||
inputs[i].layout.dtype = ctx.args[i]->dtype(); | |||
input_requires_grad[i] = python::input_requires_grad(ctx, i); | |||
} | |||
std::shared_ptr<OptimizedBackwardGraphResult> ret; | |||
auto bg = OpDef::make_backward_graph( | |||
*ctx.op, inputs, input_requires_grad, output_has_grad); | |||
*ctx.op, input_descs, input_requires_grad, output_has_grad); | |||
if (!bg.graph.empty()) { | |||
ret = std::make_shared<OptimizedBackwardGraphResult>(bg); | |||
} | |||
backward_graph_cache.emplace(key, ret); | |||
cache.emplace(cache_key, ret); | |||
return ret; | |||
} | |||
@@ -85,7 +85,14 @@ EncodedSubraph OpDef::make_backward_graph( | |||
const SmallVector<LogicalTensorDesc>& inputs, | |||
const SmallVector<bool>& input_requires_grad, | |||
const SmallVector<bool>& output_has_grad) { | |||
return def.trait()->make_backward_graph(def, inputs, input_requires_grad, output_has_grad); | |||
using BackwardGraphCache = OpMethResultCache<EncodedSubraph, SmallVector<bool>, SmallVector<bool>>; | |||
thread_local BackwardGraphCache cache; | |||
decltype(cache)::key_t cache_key{const_cast<OpDef&>(def).shared_from_this(), inputs, {input_requires_grad, output_has_grad}}; | |||
auto iter = cache.find(cache_key); | |||
if (iter == cache.end()) { | |||
iter = cache.insert({cache_key, def.trait()->make_backward_graph(def, inputs, input_requires_grad, output_has_grad)}).first; | |||
} | |||
return iter->second; | |||
} | |||
std::vector<std::pair<const char*, std::string>> OpDef::props( | |||
@@ -94,7 +101,7 @@ std::vector<std::pair<const char*, std::string>> OpDef::props( | |||
} | |||
std::string OpDef::to_string() const { | |||
std::string builder = "{"; | |||
std::string builder = trait()->make_name(*this) + "{"; | |||
for (auto&& [name, value]: props(*this)) { | |||
builder += name; | |||
builder += ": "; | |||
@@ -170,7 +177,7 @@ std::string Subgraph::repr() const { | |||
if (auto* p = op->try_cast_final<OprAttr>()) { | |||
buf << p->type; | |||
} else { | |||
buf << op->dyn_typeinfo()->name; | |||
buf << op->make_name(); | |||
} | |||
for (size_t i : ins) { | |||
buf << " "; | |||
@@ -196,6 +203,26 @@ std::string Subgraph::repr() const { | |||
return buf.str(); | |||
} | |||
bool Subgraph::is_single() const { | |||
if (exprs.size() != 1) { | |||
return false; | |||
} | |||
auto& expr = exprs.at(0); | |||
return expr.inputs == inputs && expr.outputs == outputs; | |||
} | |||
std::shared_ptr<OpDef> Subgraph::as_single() const { | |||
if (is_single()) { | |||
return exprs.at(0).op; | |||
} else { | |||
return nullptr; | |||
} | |||
} | |||
bool Subgraph::operator==(const Subgraph& rhs) const { | |||
mgb_assert(false, "Not Implemented"); | |||
} | |||
} // namespace imperative | |||
} // namespace mgb | |||
@@ -12,6 +12,7 @@ | |||
#pragma once | |||
#include "megbrain/imperative/op_def.h" | |||
#include "megbrain/imperative/graph_cache.h" | |||
namespace mgb { | |||
namespace imperative { | |||
@@ -113,49 +113,12 @@ void execute(const OpDef& def, | |||
// return graph->infer_output_attrs_fallible(def, inputs); | |||
// } | |||
namespace { | |||
size_t get_backward_graph_hash_key(const OpDef& def, | |||
const SmallVector<LogicalTensorDesc>& inputs, | |||
const SmallVector<bool>& input_requires_grad, | |||
const SmallVector<bool>& output_has_grad) { | |||
XXHash state; | |||
size_t length = 0, data[3 + 2 * inputs.size()]; | |||
data[length ++] = def.hash(); | |||
for (auto &&i : inputs) { | |||
data[length ++] = mgb::hash(i.layout.dtype.handle()); | |||
data[length ++] = mgb::hash(i.comp_node); | |||
} | |||
data[length ++] = mgb::hash(input_requires_grad); | |||
data[length ++] = mgb::hash(output_has_grad); | |||
mgb_assert(length == 3 + 2 * inputs.size()); | |||
state.update(data, length * sizeof(size_t)); | |||
return state.digest(); | |||
} | |||
struct BackwardGraphCache : std::unordered_map<size_t, EncodedSubraph>, CompNodeDepedentObject { | |||
std::shared_ptr<void> on_comp_node_finalize() override { | |||
clear(); | |||
return {}; | |||
} | |||
} backward_graph_cache; | |||
} // anonymous namespace | |||
EncodedSubraph | |||
make_backward_graph(const OpDef& def, | |||
const SmallVector<LogicalTensorDesc>& inputs, | |||
const SmallVector<bool>& input_requires_grad, | |||
const SmallVector<bool>& output_has_grad) { | |||
auto hash_key = get_backward_graph_hash_key(def, inputs, input_requires_grad, output_has_grad); | |||
auto&& iter = backward_graph_cache.find(hash_key); | |||
if (iter != backward_graph_cache.end()) { | |||
return iter->second; | |||
} | |||
auto&& graph = ProxyGraph::get_default_graph(); | |||
auto res = graph->make_backward_graph(def, inputs, input_requires_grad, output_has_grad); | |||
backward_graph_cache.emplace(hash_key, res); | |||
return res; | |||
return ProxyGraph::get_default_graph()->make_backward_graph(def, inputs, input_requires_grad, output_has_grad); | |||
} | |||
} // namespace proxy_graph_detail | |||
@@ -0,0 +1,90 @@ | |||
/** | |||
* \file imperative/src/include/megbrain/imperative/graph_builder.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain/imperative/subgraph.h" | |||
#include "megbrain/imperative/op_def.h" | |||
namespace mgb { | |||
namespace imperative { | |||
template <typename... TExtraArgs> | |||
struct OpMethArgs { | |||
std::shared_ptr<OpDef> op; | |||
SmallVector<LogicalTensorDesc> inputs; | |||
std::tuple<TExtraArgs...> extras; | |||
size_t hash() const; | |||
bool operator==(const OpMethArgs& rhs) const { | |||
if (bool(op) ^ bool(rhs.op)) { | |||
return false; | |||
} | |||
if (op && rhs.op && !op->is_same(*rhs.op)) { | |||
return false; | |||
} | |||
if (inputs.size() != rhs.inputs.size()) { | |||
return false; | |||
} | |||
size_t nr_inputs = inputs.size(); | |||
for (size_t i = 0; i < nr_inputs; ++i) { | |||
if (inputs[i].comp_node != rhs.inputs[i].comp_node) { | |||
return false; | |||
} | |||
if (inputs[i].layout.dtype != rhs.inputs[i].layout.dtype) { | |||
return false; | |||
} | |||
} | |||
return extras == rhs.extras; | |||
} | |||
struct hash_t { | |||
size_t operator()(const OpMethArgs& key) const { | |||
return key.hash(); | |||
} | |||
}; | |||
}; | |||
template <typename... TExtraArgs> | |||
inline size_t OpMethArgs<TExtraArgs...>::hash() const { | |||
XXHash state; | |||
size_t length = 0; | |||
size_t data[1 + 2 * inputs.size() + sizeof...(TExtraArgs)]; | |||
auto append = [&](size_t hash) { | |||
data[length++] = hash; | |||
}; | |||
append(op->hash()); | |||
for (auto &&i : inputs) { | |||
append(mgb::hash(i.layout.dtype.handle())); | |||
append(mgb::hash(i.comp_node)); | |||
} | |||
std::apply([&](auto&&... extras){ | |||
(append(mgb::hash(extras)), ...); | |||
}, extras); | |||
mgb_assert(length == sizeof(data) / sizeof(size_t)); | |||
state.update(data, sizeof(data)); | |||
return state.digest(); | |||
} | |||
template <typename TValue, typename... TExtraArgs> | |||
struct OpMethResultCache : std::unordered_map<OpMethArgs<TExtraArgs...>, TValue, typename OpMethArgs<TExtraArgs...>::hash_t>, CompNodeDepedentObject { | |||
std::shared_ptr<void> on_comp_node_finalize() override { | |||
static_cast<std::unordered_map<OpMethArgs<TExtraArgs...>, TValue, typename OpMethArgs<TExtraArgs...>::hash_t>*>(this)->clear(); | |||
// clear(); | |||
return {}; | |||
} | |||
using key_t = OpMethArgs<TExtraArgs...>; | |||
}; | |||
} // namespace imperative | |||
} // namespace mgb |