GitOrigin-RevId: 9d6c48ed99
tags/v1.0.0-rc1
@@ -57,6 +57,13 @@ add_dependencies(opr_param_defs _opr_param_defs) | |||||
install(TARGETS opr_param_defs EXPORT ${MGE_EXPORT_TARGETS}) | install(TARGETS opr_param_defs EXPORT ${MGE_EXPORT_TARGETS}) | ||||
if(MGE_WITH_CUDA) | |||||
add_library(cutlass INTERFACE) | |||||
target_include_directories(cutlass | |||||
INTERFACE | |||||
$<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/third_party/cutlass/include>) | |||||
install(TARGETS cutlass EXPORT ${MGE_EXPORT_TARGETS}) | |||||
endif() | |||||
if(MGE_WITH_TEST) | if(MGE_WITH_TEST) | ||||
if(NOT MGE_BUILD_IMPERATIVE_RT) | if(NOT MGE_BUILD_IMPERATIVE_RT) | ||||
@@ -36,8 +36,9 @@ all: ${PARAM_DEFS} ${ELEMWISE_IMPL} ${CUDA_CONV_IMPL} | |||||
../src/cuda/conv_bias/int8/kimpl: gen_cuda_conv_bias_kern_impls.py | ../src/cuda/conv_bias/int8/kimpl: gen_cuda_conv_bias_kern_impls.py | ||||
./$^ --type dp4a $@ | ./$^ --type dp4a $@ | ||||
../src/cuda/conv_bias/int8_imma/kimpl: gen_cuda_conv_bias_kern_impls.py | |||||
./$^ --type imma $@ | |||||
../src/cuda/conv_bias/int8_imma/kimpl: gen_cuda_conv_bias_kern_impls.py gen_cutlass_conv_bias_kern_impls.py | |||||
./gen_cuda_conv_bias_kern_impls.py --type imma $@ | |||||
./gen_cutlass_conv_bias_kern_impls.py --type imma $@ | |||||
../src/cuda/batch_conv_bias/int8/kimpl: gen_cuda_batch_conv_bias_kern_impls.py | ../src/cuda/batch_conv_bias/int8/kimpl: gen_cuda_batch_conv_bias_kern_impls.py | ||||
./$^ --type dp4a $@ | ./$^ --type dp4a $@ | ||||
@@ -51,6 +51,9 @@ add_definitions(${LIBMEGDNN_DEF}) | |||||
add_library(megdnn EXCLUDE_FROM_ALL OBJECT ${SOURCES}) | add_library(megdnn EXCLUDE_FROM_ALL OBJECT ${SOURCES}) | ||||
target_link_libraries(megdnn PUBLIC opr_param_defs) | target_link_libraries(megdnn PUBLIC opr_param_defs) | ||||
if(MGE_WITH_CUDA) | |||||
target_link_libraries(megdnn PUBLIC cutlass) | |||||
endif() | |||||
if(${MGE_ARCH} STREQUAL "x86_64" OR ${MGE_ARCH} STREQUAL "i386" OR ${MGE_ARCH} STREQUAL "armv7" OR ${MGE_ARCH} STREQUAL "aarch64") | if(${MGE_ARCH} STREQUAL "x86_64" OR ${MGE_ARCH} STREQUAL "i386" OR ${MGE_ARCH} STREQUAL "armv7" OR ${MGE_ARCH} STREQUAL "aarch64") | ||||
if(MGE_ENABLE_CPUINFO) | if(MGE_ENABLE_CPUINFO) | ||||
@@ -85,6 +85,11 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||||
for (auto&& algo : int8_chwn4_imma_unroll_width) { | for (auto&& algo : int8_chwn4_imma_unroll_width) { | ||||
all_algos.push_back(&algo); | all_algos.push_back(&algo); | ||||
} | } | ||||
#if CUDA_VERSION >= 10020 | |||||
for (auto&& algo : int8_nchw32_imma) { | |||||
all_algos.push_back(&algo); | |||||
} | |||||
#endif | |||||
#endif | #endif | ||||
all_algos.push_back(&int8_nchw4_dotprod); | all_algos.push_back(&int8_nchw4_dotprod); | ||||
all_algos.push_back(&int8_chwn4_dotprod); | all_algos.push_back(&int8_chwn4_dotprod); | ||||
@@ -233,6 +238,18 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() { | |||||
int8_chwn4_imma_unroll_width.push_back( | int8_chwn4_imma_unroll_width.push_back( | ||||
{AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize:: | {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize:: | ||||
IMMA8x32x16}); | IMMA8x32x16}); | ||||
#if CUDA_VERSION >= 10020 | |||||
{ | |||||
using AlgoParam = AlgoInt8NCHW32IMMAImplicitGemm::AlgoParam; | |||||
int8_nchw32_imma.emplace_back(AlgoParam{128, 256, 64, 64, 64, 64}); | |||||
int8_nchw32_imma.emplace_back(AlgoParam{256, 128, 64, 64, 64, 64}); | |||||
int8_nchw32_imma.emplace_back(AlgoParam{128, 128, 64, 64, 64, 64}); | |||||
int8_nchw32_imma.emplace_back(AlgoParam{64, 128, 64, 32, 64, 64}); | |||||
int8_nchw32_imma.emplace_back(AlgoParam{128, 64, 64, 64, 32, 64}); | |||||
int8_nchw32_imma.emplace_back(AlgoParam{64, 64, 64, 32, 32, 64}); | |||||
int8_nchw32_imma.emplace_back(AlgoParam{32, 64, 64, 32, 16, 64}); | |||||
} | |||||
#endif | |||||
} | } | ||||
#endif | #endif | ||||
@@ -499,6 +499,41 @@ private: | |||||
}; | }; | ||||
#endif | #endif | ||||
#if CUDA_VERSION >= 10020 | |||||
class ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm final | |||||
: public AlgoBase { | |||||
public: | |||||
struct AlgoParam { | |||||
int threadblock_m; | |||||
int threadblock_n; | |||||
int threadblock_k; | |||||
int warp_m; | |||||
int warp_n; | |||||
int warp_k; | |||||
}; | |||||
AlgoInt8NCHW32IMMAImplicitGemm(AlgoParam algo_param) | |||||
: m_algo_param{algo_param} { | |||||
m_name = ConvBias::algo_name<ConvBias::DirectParam>( | |||||
ssprintf("INT8_NCHW32_IMMA_IMPLICIT_GEMM_%s", | |||||
to_string(m_algo_param).c_str()), | |||||
ConvBias::DirectParam{}); | |||||
} | |||||
bool is_available(const SizeArgs& args) const override; | |||||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||||
void exec(const ExecArgs& args) const override; | |||||
const char* name() const override { return m_name.c_str(); } | |||||
bool is_reproducible() const override { return true; } | |||||
static std::string to_string(AlgoParam algo_param); | |||||
private: | |||||
WorkspaceBundle get_workspace_bundle(dt_byte* raw_ptr, | |||||
const SizeArgs& args) const; | |||||
AlgoParam m_algo_param; | |||||
std::string m_name; | |||||
}; | |||||
#endif | |||||
class ConvBiasForwardImpl::AlgoBFloat16 final : public AlgoBase { | class ConvBiasForwardImpl::AlgoBFloat16 final : public AlgoBase { | ||||
public: | public: | ||||
AlgoBFloat16(AlgoBase* impl); | AlgoBFloat16(AlgoBase* impl); | ||||
@@ -554,6 +589,9 @@ public: | |||||
std::vector<AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth> | std::vector<AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth> | ||||
int8_chwn4_imma_unroll_width; | int8_chwn4_imma_unroll_width; | ||||
#endif | #endif | ||||
#if CUDA_VERSION >= 10020 | |||||
std::vector<AlgoInt8NCHW32IMMAImplicitGemm> int8_nchw32_imma; | |||||
#endif | |||||
std::vector<std::unique_ptr<AlgoGroupConvGeneral>> gconv_refhold; | std::vector<std::unique_ptr<AlgoGroupConvGeneral>> gconv_refhold; | ||||
std::vector<std::unique_ptr<AlgoBFloat16>> bfloat16_refhold; | std::vector<std::unique_ptr<AlgoBFloat16>> bfloat16_refhold; | ||||
std::unordered_map<AlgoBase*, AlgoGroupConvGeneral*> algo2gconv; | std::unordered_map<AlgoBase*, AlgoGroupConvGeneral*> algo2gconv; | ||||
@@ -142,4 +142,12 @@ void do_conv_bias_int8_implicit_gemm_imma8x32x16_cdiv4hwn4_unroll_width( | |||||
UNPACK_CONV_PARAMETER(_filter_meta, _param); \ | UNPACK_CONV_PARAMETER(_filter_meta, _param); \ | ||||
MARK_USED_VAR | MARK_USED_VAR | ||||
#define UNPACK_CONV_BIAS_NCHW32_PARAM(_src, _filter_meta, _dst, _param) \ | |||||
using Format = param::ConvBias::Format; \ | |||||
megdnn_assert(_param.format == Format::NCHW32); \ | |||||
size_t n = (_src)[0], ci = (_src)[1] * 32, hi = (_src)[2], wi = (_src)[3]; \ | |||||
size_t co = (_dst)[1] * 32, ho = (_dst)[2], wo = (_dst)[3]; \ | |||||
UNPACK_CONV_PARAMETER(_filter_meta, _param); \ | |||||
MARK_USED_VAR | |||||
// vim: syntax=cuda.doxygen | // vim: syntax=cuda.doxygen |
@@ -0,0 +1,152 @@ | |||||
/** | |||||
* \file dnn/src/cuda/conv_bias/cutlass_convolution_wrapper.cu | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#if !MEGDNN_TEGRA_X1 | |||||
#include "cutlass/convolution/device/convolution.h" | |||||
#endif | |||||
#include "src/common/opr_param_defs_enumv.cuh" | |||||
#include "src/cuda/conv_bias/cutlass_convolution_wrapper.cuh" | |||||
#pragma GCC diagnostic pop | |||||
using namespace megdnn; | |||||
using namespace cuda; | |||||
using namespace cutlass_wrapper; | |||||
#if MEGDNN_TEGRA_X1 | |||||
template <bool NeedLoadFromConstMem> | |||||
void megdnn::cuda::cutlass_wrapper:: | |||||
do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32( | |||||
const int8_t* /* d_src */, const int8_t* /* d_filter */, | |||||
const int32_t* /* d_bias */, const int8_t* /* d_z */, | |||||
int8_t* /* d_dst */, int* /* workspace */, | |||||
const convolution::ConvParam& /* param */, | |||||
uint32_t /* nonlinear_mode */, float /* alpha */, | |||||
float /* beta */, float /* gamma */, float /* scale */, | |||||
const GemmCoord& /* threadblock_shape */, | |||||
const GemmCoord& /* warp_shape */, cudaStream_t /* stream */) {} | |||||
#else | |||||
template <bool NeedLoadFromConstMem> | |||||
void megdnn::cuda::cutlass_wrapper:: | |||||
do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32( | |||||
const int8_t* d_src, const int8_t* d_filter, | |||||
const int32_t* d_bias, const int8_t* d_z, int8_t* d_dst, | |||||
int* workspace, const convolution::ConvParam& param, | |||||
uint32_t nonlinear_mode, float alpha, float beta, float gamma, | |||||
float scale, const GemmCoord& threadblock_shape, | |||||
const GemmCoord& warp_shape, cudaStream_t stream) { | |||||
#define DISPATCH_KERNEL_WITH_TILE_SHAPE(threadblock_m_, threadblock_n_, \ | |||||
threadblock_k_, warp_m_, warp_n_, \ | |||||
warp_k_) \ | |||||
if (threadblock_shape.m() == threadblock_m_ && \ | |||||
threadblock_shape.n() == threadblock_n_ && \ | |||||
threadblock_shape.k() == threadblock_k_ && \ | |||||
warp_shape.m() == warp_m_ && warp_shape.n() == warp_n_ && \ | |||||
warp_shape.k() == warp_k_) { \ | |||||
using ThreadBlockShape = \ | |||||
cutlass::gemm::GemmShape<threadblock_m_, threadblock_n_, \ | |||||
threadblock_k_>; \ | |||||
using WarpShape = cutlass::gemm::GemmShape<warp_m_, warp_n_, warp_k_>; \ | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; \ | |||||
using Convolution = cutlass::convolution::device::Convolution< \ | |||||
int8_t, cutlass::layout::TensorNCxHWx<32>, int8_t, \ | |||||
cutlass::layout::TensorCxRSKx<32>, ElementOutput, \ | |||||
cutlass::layout::TensorNCxHWx<32>, int32_t, \ | |||||
cutlass::layout::TensorNCxHWx<32>, int32_t, \ | |||||
cutlass::convolution::ConvType::kConvolution, \ | |||||
cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, \ | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, \ | |||||
cutlass::convolution::threadblock:: \ | |||||
ConvolutionNCxHWxThreadblockSwizzle< \ | |||||
cutlass::convolution::ConvType::kConvolution>, \ | |||||
2, 16, 16, NeedLoadFromConstMem>; \ | |||||
typename Convolution::ConvolutionParameter conv_param{ \ | |||||
param.n, param.ci, param.co, param.hi, param.wi, \ | |||||
param.fh, param.fw, param.ho, param.wo, param.sh, \ | |||||
param.sw, param.ph, param.pw, 1, 1}; \ | |||||
return cutlass_convolution_wrapper<Convolution>( \ | |||||
d_src, d_filter, d_bias, d_z, d_dst, workspace, conv_param, \ | |||||
epilogue, stream); \ | |||||
} | |||||
#define DISPATCH_KERNEL \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(256, 128, 64, 64, 64, 64); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 256, 64, 64, 64, 64); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 128, 64, 64, 64, 64); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 128, 64, 32, 64, 64); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 64, 64, 64, 32, 64); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 64, 64, 32, 32, 64); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(32, 64, 64, 32, 16, 64); \ | |||||
megdnn_assert(false, \ | |||||
"unsupported threadblock shape (%dx%dx%d) and warp shape " \ | |||||
"(%dx%dx%d)", \ | |||||
threadblock_shape.m(), threadblock_shape.n(), \ | |||||
threadblock_shape.k(), warp_shape.m(), warp_shape.n(), \ | |||||
warp_shape.k()); | |||||
using ElementOutput = int8_t; | |||||
using ElementAccumulator = int32_t; | |||||
using ElementBias = int32_t; | |||||
using ElementCompute = float; | |||||
using NonlineMode = megdnn::param_enumv::ConvBias::NonlineMode; | |||||
switch (nonlinear_mode) { | |||||
case NonlineMode::IDENTITY: { | |||||
using EpilogueOp = | |||||
cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
ElementOutput, 8, ElementAccumulator, ElementBias, | |||||
ElementCompute>; | |||||
typename EpilogueOp::Params epilogue{alpha, beta, gamma}; | |||||
DISPATCH_KERNEL; | |||||
} | |||||
case NonlineMode::RELU: { | |||||
using EpilogueOp = cutlass::epilogue::thread:: | |||||
BiasAddLinearCombinationReluClamp< | |||||
ElementOutput, 8, ElementAccumulator, ElementBias, | |||||
ElementCompute>; | |||||
typename EpilogueOp::Params epilogue{alpha, beta, gamma, 0}; | |||||
DISPATCH_KERNEL; | |||||
} | |||||
case NonlineMode::H_SWISH: { | |||||
using EpilogueOp = cutlass::epilogue::thread:: | |||||
BiasAddLinearCombinationHSwishClamp< | |||||
ElementOutput, 8, ElementAccumulator, ElementBias, | |||||
ElementCompute>; | |||||
typename EpilogueOp::Params epilogue{alpha, beta, gamma, scale}; | |||||
DISPATCH_KERNEL; | |||||
} | |||||
default: | |||||
megdnn_assert(false, | |||||
"unsupported nonlinear mode for conv bias operator"); | |||||
} | |||||
#undef DISPATCH_KERNEL_WITH_TILE_SHAPE | |||||
#undef DISPATCH_KERNEL | |||||
} | |||||
#endif | |||||
#define INST(need_load_from_const_mem) \ | |||||
template void megdnn::cuda::cutlass_wrapper:: \ | |||||
do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32< \ | |||||
need_load_from_const_mem>( \ | |||||
const int8_t* d_src, const int8_t* d_filter, \ | |||||
const int32_t* d_bias, const int8_t* d_z, int8_t* d_dst, \ | |||||
int* workspace, const convolution::ConvParam& param, \ | |||||
uint32_t nonlinear_mode, float alpha, float beta, \ | |||||
float gamma, float scale, \ | |||||
const GemmCoord& threadblock_shape, \ | |||||
const GemmCoord& warp_shape, cudaStream_t stream); | |||||
INST(true); | |||||
INST(false); | |||||
#undef INST | |||||
// vim: syntax=cuda.doxygen |
@@ -0,0 +1,44 @@ | |||||
/** | |||||
* \file dnn/src/cuda/conv_bias/cutlass_convolution_wrapper.cuh | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#pragma once | |||||
#include "cutlass/gemm/gemm.h" | |||||
#include "src/cuda/convolution_helper/parameter.cuh" | |||||
#include "src/cuda/utils.cuh" | |||||
namespace megdnn { | |||||
namespace cuda { | |||||
namespace cutlass_wrapper { | |||||
using GemmCoord = cutlass::gemm::GemmCoord; | |||||
template <typename Convolution> | |||||
void cutlass_convolution_wrapper( | |||||
const int8_t* d_src, const int8_t* d_filter, const int32_t* d_bias, | |||||
const int8_t* d_z, int8_t* d_dst, int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
template <bool NeedLoadFromConstMem> | |||||
void do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32( | |||||
const int8_t* d_src, const int8_t* d_filter, const int32_t* d_bias, | |||||
const int8_t* d_z, int8_t* d_dst, int* workspace, | |||||
const convolution::ConvParam& param, uint32_t nonlinear_mode, | |||||
float alpha, float beta, float gamma, float scale, | |||||
const GemmCoord& threadblock_shape, const GemmCoord& warp_shape, | |||||
cudaStream_t stream); | |||||
} // namespace cutlass_wrapper | |||||
} // namespace cuda | |||||
} // namespace megdnn | |||||
// vim: syntax=cuda.doxygen |
@@ -0,0 +1,188 @@ | |||||
/** | |||||
* \file dnn/src/cuda/conv_bias/implicit_gemm_int8_nchw32_imma.cpp | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include "./algo.h" | |||||
#include "src/cuda/conv_bias/cutlass_convolution_wrapper.cuh" | |||||
#include "src/cuda/convolution_helper/parameter.cuh" | |||||
#include "src/cuda/utils.h" | |||||
using namespace megdnn; | |||||
using namespace cuda; | |||||
using namespace convolution; | |||||
#if CUDA_VERSION >= 10020 | |||||
bool ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::is_available( | |||||
const SizeArgs& args) const { | |||||
if (args.bias_layout->ndim <= 0) | |||||
return false; | |||||
using Param = param::ConvBias; | |||||
using Format = Param::Format; | |||||
using Sparse = Param::Sparse; | |||||
using Mode = Param::Mode; | |||||
bool available = true; | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
if (!conv_bias::check_bias_share_in_channel(*(args.bias_layout), | |||||
param.format)) | |||||
return false; | |||||
if (param.format != Format::NCHW32) | |||||
return false; | |||||
UNPACK_CONV_BIAS_NCHW32_PARAM(*(args.src_layout), fm, *(args.dst_layout), | |||||
param); | |||||
// TODO support group conv | |||||
available &= param.sparse == Sparse::DENSE; | |||||
// mode must be cross correlation | |||||
available &= param.mode == Mode::CROSS_CORRELATION; | |||||
// check data type | |||||
auto src_dtype = args.src_layout->dtype, | |||||
filter_dtype = args.filter_layout->dtype, | |||||
bias_dtype = args.bias_layout->dtype, | |||||
dst_dtype = args.dst_layout->dtype; | |||||
available &= (src_dtype.enumv() == DTypeEnum::QuantizedS8 && | |||||
filter_dtype.enumv() == DTypeEnum::QuantizedS8 && | |||||
bias_dtype.enumv() == DTypeEnum::QuantizedS32 && | |||||
dst_dtype.enumv() == DTypeEnum::QuantizedS8); | |||||
// TODO: support dialtion | |||||
available &= dh == 1 && dw == 1; | |||||
// only support sm_75 or later, platform should have tensorcore int8 | |||||
// support | |||||
available &= is_compute_capability_required(7, 5); | |||||
if (fh == 1 && fw == 1) | |||||
return available; | |||||
// for non 1x1 convolution, we have to check constant memory size | |||||
auto&& device_prop = current_device_prop(); | |||||
// const mem size >= 64K | |||||
available &= device_prop.totalConstMem >= 65536; | |||||
size_t const_mem_usage = get_workspace_in_bytes(args) - | |||||
args.filter_layout->span().dist_byte(); | |||||
available &= const_mem_usage <= device_prop.totalConstMem; | |||||
return available; | |||||
} | |||||
WorkspaceBundle | |||||
ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::get_workspace_bundle( | |||||
dt_byte* raw_ptr, const SizeArgs& args) const { | |||||
size_t ci = args.filter_layout->operator[](1) * 32; | |||||
size_t fh = args.filter_layout->operator[](2); | |||||
size_t fw = args.filter_layout->operator[](3); | |||||
size_t ws_filter = args.filter_layout->span().dist_byte(); | |||||
if (fh == 1 && fw == 1) { | |||||
return WorkspaceBundle{raw_ptr, {ws_filter}}; | |||||
} | |||||
size_t ws_size = (ci / 32) * fh * fw * sizeof(int32_t) * 2; | |||||
return WorkspaceBundle{raw_ptr, {ws_filter, ws_size}}; | |||||
} | |||||
size_t | |||||
ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::get_workspace_in_bytes( | |||||
const SizeArgs& args) const { | |||||
return get_workspace_bundle(nullptr, args).total_size_in_bytes(); | |||||
} | |||||
void ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::exec( | |||||
const ExecArgs& args) const { | |||||
using Format = Param::Format; | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
UNPACK_CONV_BIAS_NCHW32_PARAM(*(args.src_layout), fm, *(args.dst_layout), | |||||
param); | |||||
auto ws = get_workspace_bundle(args.workspace.raw_ptr, args); | |||||
auto ws_filter = ws.get(0); | |||||
auto&& stream = cuda_stream(args.opr->handle()); | |||||
// reformat filter from nchw32 to chwn32 | |||||
{ | |||||
TensorLayout src{{co, ci / 32, fh, fw, 32}, dtype::Int8()}; | |||||
src.init_contiguous_stride(); | |||||
TensorLayout dst = src; | |||||
dst.stride[0] = 32; | |||||
dst.stride[1] = co * fh * fw * 32; | |||||
dst.stride[2] = co * fw * 32; | |||||
dst.stride[3] = co * 32; | |||||
dst.stride[4] = 1; | |||||
TensorND ts_src, ts_dst; | |||||
ts_src.raw_ptr = args.filter_tensor->raw_ptr; | |||||
ts_src.layout = src; | |||||
ts_dst.raw_ptr = ws_filter; | |||||
ts_dst.layout = dst; | |||||
auto&& transpose = | |||||
args.opr->handle()->create_operator<RelayoutForward>(); | |||||
transpose->exec(ts_src, ts_dst); | |||||
} | |||||
ConvParam kern_param; | |||||
kern_param.n = n, kern_param.co = co, kern_param.ci = ci, | |||||
kern_param.hi = hi, kern_param.wi = wi, kern_param.ho = ho, | |||||
kern_param.wo = wo, kern_param.ph = ph, kern_param.pw = pw, | |||||
kern_param.sh = sh, kern_param.sw = sw, kern_param.fh = fh, | |||||
kern_param.fw = fw; | |||||
float src_scale = args.src_layout->dtype.param<dtype::QuantizedS8>().scale, | |||||
filter_scale = | |||||
args.filter_layout->dtype.param<dtype::QuantizedS8>().scale, | |||||
bias_scale = | |||||
args.bias_layout->dtype.param<dtype::QuantizedS32>().scale, | |||||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS8>().scale; | |||||
float alpha = src_scale * filter_scale / dst_scale, | |||||
beta = bias_scale / dst_scale; | |||||
int8_t* z_dev_ptr = nullptr; | |||||
float gamma = 0.0; | |||||
if (args.z_layout->ndim > 0) { | |||||
z_dev_ptr = args.z_tensor->compatible_ptr<int8_t>(); | |||||
float z_scale = args.z_layout->dtype.param<dtype::QuantizedS8>().scale; | |||||
gamma = z_scale / dst_scale; | |||||
} | |||||
uint32_t nonlinear_mode = static_cast<uint32_t>(param.nonlineMode); | |||||
if (fh == 1 && fw == 1) { | |||||
cutlass_wrapper::do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32< | |||||
false>(args.src_tensor->compatible_ptr<int8_t>(), | |||||
reinterpret_cast<int8_t*>(ws_filter), | |||||
args.bias_tensor->compatible_ptr<int32_t>(), z_dev_ptr, | |||||
args.dst_tensor->compatible_ptr<int8_t>(), | |||||
nullptr, kern_param, nonlinear_mode, | |||||
alpha, beta, gamma, dst_scale, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k}, | |||||
stream); | |||||
} else { | |||||
auto workspace = ws.get(1); | |||||
cutlass_wrapper::do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32<true>( | |||||
args.src_tensor->compatible_ptr<int8_t>(), | |||||
reinterpret_cast<int8_t*>(ws_filter), | |||||
args.bias_tensor->compatible_ptr<int32_t>(), z_dev_ptr, | |||||
args.dst_tensor->compatible_ptr<int8_t>(), | |||||
reinterpret_cast<int*>(workspace), kern_param, nonlinear_mode, | |||||
alpha, beta, gamma, dst_scale, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k}, | |||||
stream); | |||||
} | |||||
} | |||||
std::string ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::to_string( | |||||
AlgoParam algo_param) { | |||||
return ssprintf("%uX%uX%u_%uX%uX%u", algo_param.threadblock_m, | |||||
algo_param.threadblock_n, algo_param.threadblock_k, | |||||
algo_param.warp_m, algo_param.warp_n, algo_param.warp_k); | |||||
} | |||||
#endif | |||||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,57 @@ | |||||
/** | |||||
* \file | |||||
* dnn/src/cuda/conv_bias/int8_imma/conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include "cutlass/convolution/device/convolution.h" | |||||
#include "src/cuda/conv_bias/cutlass_convolution_wrapper.cuh" | |||||
using namespace megdnn; | |||||
using namespace cuda; | |||||
using namespace cutlass_wrapper; | |||||
template <typename Convolution> | |||||
void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper( | |||||
const int8_t* d_src, const int8_t* d_filter, const int32_t* d_bias, | |||||
const int8_t* d_z, int8_t* d_dst, int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream) { | |||||
typename Convolution::TensorRefSrc tensor_src{ | |||||
const_cast<int8_t*>(d_src), | |||||
Convolution::LayoutSrc::packed({conv_param.n(), conv_param.hi(), | |||||
conv_param.wi(), conv_param.ci()})}; | |||||
typename Convolution::TensorRefFilter tensor_filter{ | |||||
const_cast<int8_t*>(d_filter), | |||||
Convolution::LayoutFilter::packed({conv_param.co(), conv_param.fh(), | |||||
conv_param.fw(), | |||||
conv_param.ci()})}; | |||||
typename Convolution::TensorRefBias tensor_bias{ | |||||
const_cast<int32_t*>(d_bias), | |||||
Convolution::LayoutBias::packed({1, 1, 1, conv_param.co()})}; | |||||
typename Convolution::TensorRefDst tensor_z{ | |||||
const_cast<int8_t*>(d_z), | |||||
Convolution::LayoutDst::packed({conv_param.n(), conv_param.ho(), | |||||
conv_param.wo(), conv_param.co()})}; | |||||
typename Convolution::TensorRefDst tensor_dst{ | |||||
d_dst, | |||||
Convolution::LayoutDst::packed({conv_param.n(), conv_param.ho(), | |||||
conv_param.wo(), conv_param.co()})}; | |||||
typename Convolution::Arguments arguments{ | |||||
conv_param, tensor_src, tensor_filter, | |||||
tensor_bias, tensor_z, tensor_dst.non_const_ref(), | |||||
epilogue}; | |||||
Convolution conv_op; | |||||
cutlass_check(conv_op.initialize(arguments, workspace)); | |||||
cutlass_check(conv_op(stream)); | |||||
after_kernel_launch(); | |||||
} | |||||
// vim: syntax=cuda.doxygen |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 256, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 256, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 256, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 256, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 256, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 256, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 16, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 16, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 16, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 16, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 16, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 16, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,35 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "../conv_bias_int8_implicit_gemm_imma_ncdiv32hw32.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 8, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const int8_t* d_src, | |||||
const int8_t* d_filter, | |||||
const int32_t* d_bias, | |||||
const int8_t* d_z, | |||||
int8_t* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -80,6 +80,7 @@ public: | |||||
class AlgoInt8NCHW4IMMAImplicitGemm; | class AlgoInt8NCHW4IMMAImplicitGemm; | ||||
class AlgoInt8CHWN4IMMAImplicitGemmReorderFilter; | class AlgoInt8CHWN4IMMAImplicitGemmReorderFilter; | ||||
class AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth; | class AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth; | ||||
class AlgoInt8NCHW32IMMAImplicitGemm; | |||||
class AlgoBFloat16; | class AlgoBFloat16; | ||||
class AlgoPack; | class AlgoPack; | ||||
@@ -56,7 +56,6 @@ const char *cublasGetErrorString(cublasStatus_t error) { | |||||
} | } | ||||
return "Unknown CUBLAS error"; | return "Unknown CUBLAS error"; | ||||
} | } | ||||
} // anonymous namespace | } // anonymous namespace | ||||
void cuda::__throw_cuda_error__(cudaError_t err, const char *msg) { | void cuda::__throw_cuda_error__(cudaError_t err, const char *msg) { | ||||
@@ -87,6 +86,12 @@ void cuda::__throw_cuda_driver_error__(CUresult err, const char* msg) { | |||||
megdnn_throw(s.c_str()); | megdnn_throw(s.c_str()); | ||||
} | } | ||||
void cuda::__throw_cutlass_error__(cutlass::Status err, const char* msg) { | |||||
auto s = ssprintf("cutlass error %s(%d) occurred; expr: %s", | |||||
cutlass::cutlassGetStatusString(err), int(err), msg); | |||||
megdnn_throw(s.c_str()); | |||||
} | |||||
void cuda::report_error(const char *msg) { | void cuda::report_error(const char *msg) { | ||||
megdnn_throw(msg); | megdnn_throw(msg); | ||||
MEGDNN_MARK_USED_VAR(msg); | MEGDNN_MARK_USED_VAR(msg); | ||||
@@ -20,6 +20,7 @@ | |||||
#include <cusolverDn.h> | #include <cusolverDn.h> | ||||
#include "cuda.h" | #include "cuda.h" | ||||
#include "src/cuda/cudnn_with_check.h" | #include "src/cuda/cudnn_with_check.h" | ||||
#include "cutlass/cutlass.h" | |||||
#define cuda_check(_x) \ | #define cuda_check(_x) \ | ||||
do { \ | do { \ | ||||
@@ -61,6 +62,14 @@ | |||||
} \ | } \ | ||||
} while (0) | } while (0) | ||||
#define cutlass_check(_x) \ | |||||
do { \ | |||||
cutlass::Status _err = (_x); \ | |||||
if (_err != cutlass::Status::kSuccess) { \ | |||||
::megdnn::cuda::__throw_cutlass_error__(_err, #_x); \ | |||||
} \ | |||||
} while (0) | |||||
#define after_kernel_launch() \ | #define after_kernel_launch() \ | ||||
do { \ | do { \ | ||||
cuda_check(cudaGetLastError()); \ | cuda_check(cudaGetLastError()); \ | ||||
@@ -93,6 +102,8 @@ MEGDNN_NORETURN void __throw_cublas_error__(cublasStatus_t err, | |||||
MEGDNN_NORETURN void __throw_cusolver_error__(cusolverStatus_t err, | MEGDNN_NORETURN void __throw_cusolver_error__(cusolverStatus_t err, | ||||
const char* msg); | const char* msg); | ||||
MEGDNN_NORETURN void __throw_cuda_driver_error__(CUresult err, const char* msg); | MEGDNN_NORETURN void __throw_cuda_driver_error__(CUresult err, const char* msg); | ||||
MEGDNN_NORETURN void __throw_cutlass_error__(cutlass::Status status, | |||||
const char* msg); | |||||
MEGDNN_NORETURN void report_error(const char* msg); | MEGDNN_NORETURN void report_error(const char* msg); | ||||
template <typename T, size_t N> | template <typename T, size_t N> | ||||
@@ -32,6 +32,10 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing") | |||||
target_link_libraries(megdnn_test gtest) | target_link_libraries(megdnn_test gtest) | ||||
target_link_libraries(megdnn_test megdnn ${MGE_BLAS_LIBS}) | target_link_libraries(megdnn_test megdnn ${MGE_BLAS_LIBS}) | ||||
if (MGE_WITH_CUDA) | |||||
target_link_libraries(megdnn_test cutlass) | |||||
endif() | |||||
target_include_directories(megdnn_test | target_include_directories(megdnn_test | ||||
PRIVATE | PRIVATE | ||||
${PROJECT_SOURCE_DIR}/third_party/midout/src | ${PROJECT_SOURCE_DIR}/third_party/midout/src | ||||
@@ -254,8 +254,8 @@ public: | |||||
}; | }; | ||||
////////////////// Algo Benchmark //////////////////////// | ////////////////// Algo Benchmark //////////////////////// | ||||
template <typename Opr, typename Proxy = OprProxy<Opr>> | |||||
float algo_benchmark(Benchmarker<Opr>& benchmark, TensorLayoutArray layouts, | |||||
template <typename Opr, typename Proxy = OprProxy<Opr>, typename T = Timer> | |||||
float algo_benchmark(Benchmarker<Opr, T>& benchmark, TensorLayoutArray layouts, | |||||
const std::string& algo_base) { | const std::string& algo_base) { | ||||
Proxy proxy; | Proxy proxy; | ||||
auto opr = benchmark.opr(); | auto opr = benchmark.opr(); | ||||
@@ -279,8 +279,8 @@ float algo_benchmark(Benchmarker<Opr>& benchmark, TensorLayoutArray layouts, | |||||
return min_used; | return min_used; | ||||
} | } | ||||
template <typename Opr, typename Proxy = OprProxy<Opr>> | |||||
float algo_benchmark(Benchmarker<Opr>& benchmark, TensorShapeArray shapes, | |||||
template <typename Opr, typename Proxy = OprProxy<Opr>, typename T = Timer> | |||||
float algo_benchmark(Benchmarker<Opr, T>& benchmark, TensorShapeArray shapes, | |||||
const std::string& algo_base) { | const std::string& algo_base) { | ||||
return algo_benchmark(benchmark, benchmark.make_layouts(shapes), algo_base); | return algo_benchmark(benchmark, benchmark.make_layouts(shapes), algo_base); | ||||
} | } | ||||
@@ -18,6 +18,8 @@ | |||||
#include "test/cuda/fixture.h" | #include "test/cuda/fixture.h" | ||||
#include "test/cuda/utils.h" | #include "test/cuda/utils.h" | ||||
#define MEGDNN_WITH_BENCHMARK 1 | |||||
#define V1(x) #x | #define V1(x) #x | ||||
#define V(x) V1(x) | #define V(x) V1(x) | ||||
@@ -107,11 +109,6 @@ void benchmark_target_algo( | |||||
benchmarker.set_display(false).set_times(RUNS); | benchmarker.set_display(false).set_times(RUNS); | ||||
benchmarker_cudnn.set_display(false).set_times(RUNS); | benchmarker_cudnn.set_display(false).set_times(RUNS); | ||||
if (algo) { | |||||
benchmarker.set_before_exec_callback( | |||||
conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo)); | |||||
} | |||||
#define CUDNN_VERSION_STRING \ | #define CUDNN_VERSION_STRING \ | ||||
"v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL) | "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL) | ||||
benchmarker_cudnn.set_before_exec_callback( | benchmarker_cudnn.set_before_exec_callback( | ||||
@@ -133,168 +130,117 @@ void benchmark_target_algo( | |||||
using Param = ConvBias::Param; | using Param = ConvBias::Param; | ||||
using Format = Param::Format; | using Format = Param::Format; | ||||
if (format == Format::NCHW4) { | |||||
for (auto&& arg : args) { | |||||
Param param; | |||||
param.pad_h = param.pad_w = arg.f / 2; | |||||
param.stride_h = param.stride_w = arg.s; | |||||
param.format = Format::NCHW4; | |||||
size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2); | |||||
size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2); | |||||
benchmarker.set_param(param); | |||||
auto time_in_ms = | |||||
benchmarker.execs({{arg.n, arg.ci / 4, arg.hi, arg.wi, 4}, | |||||
{arg.co, arg.ci / 4, arg.f, arg.f, 4}, | |||||
{1, arg.co / 4, 1, 1, 4}, | |||||
{}, | |||||
{}}) / | |||||
RUNS; | |||||
param.nonlineMode = Param::NonlineMode::IDENTITY; | |||||
benchmarker_cudnn.set_param(param); | |||||
auto time_in_ms_cudnn = | |||||
benchmarker_cudnn.execs( | |||||
{{arg.n, arg.ci / 4, arg.hi, arg.wi, 4}, | |||||
{arg.co, arg.ci / 4, arg.f, arg.f, 4}, | |||||
{1, arg.co / 4, 1, 1, 4}, | |||||
{}, | |||||
{}}) / | |||||
RUNS; | |||||
float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * | |||||
arg.f / (1e12); | |||||
TensorShape src{arg.n, arg.ci, arg.hi, arg.wi}, | |||||
filter{arg.co, arg.ci, arg.f, arg.f}; | |||||
printf("src=%s, filter=%s, time(algo=%s)=%.2f %.2fTops, " | |||||
"time(cudnn)=%.2f %.2fTops, " | |||||
"perf(algo=%s)/perf(cudnn)=%.2f\n", | |||||
src.to_string().c_str(), filter.to_string().c_str(), algo, | |||||
time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn, | |||||
(flo / (time_in_ms_cudnn * 1e-3)), algo, | |||||
time_in_ms_cudnn / time_in_ms); | |||||
// helper function to change format | |||||
auto get_tensor_shape = [](TensorShape shape, | |||||
Format format) -> TensorShape { | |||||
TensorShape ret; | |||||
if (format == Format::NCHW4) { | |||||
ret = static_cast<TensorShape>( | |||||
TensorLayout{shape, dtype::Int8()} | |||||
.reshape({shape[0], shape[1] / 4, 4, shape[2], | |||||
shape[3]}) | |||||
.dimshuffle({0, 1, 3, 4, 2})); | |||||
} else if (format == Format::CHWN4) { | |||||
ret = static_cast<TensorShape>( | |||||
TensorLayout{shape, dtype::Int8()} | |||||
.reshape({shape[0], shape[1] / 4, 4, shape[2], | |||||
shape[3]}) | |||||
.dimshuffle({1, 3, 4, 0, 2})); | |||||
} | } | ||||
printf("bench with z tensor\n"); | |||||
for (auto&& arg : args) { | |||||
Param param; | |||||
param.pad_h = param.pad_w = arg.f / 2; | |||||
param.stride_h = param.stride_w = arg.s; | |||||
param.format = Format::NCHW4; | |||||
size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2); | |||||
size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2); | |||||
benchmarker.set_param(param); | |||||
auto time_in_ms = | |||||
benchmarker.execs({{arg.n, arg.ci / 4, arg.hi, arg.wi, 4}, | |||||
{arg.co, arg.ci / 4, arg.f, arg.f, 4}, | |||||
{1, arg.co / 4, 1, 1, 4}, | |||||
{arg.n, arg.co / 4, ho, wo, 4}, | |||||
{}}) / | |||||
RUNS; | |||||
param.format = Format::NCHW4; | |||||
param.nonlineMode = Param::NonlineMode::IDENTITY; | |||||
benchmarker_cudnn.set_param(param); | |||||
auto time_in_ms_cudnn = | |||||
benchmarker_cudnn.execs( | |||||
{{arg.n, arg.ci / 4, arg.hi, arg.wi, 4}, | |||||
{arg.co, arg.ci / 4, arg.f, arg.f, 4}, | |||||
{1, arg.co / 4, 1, 1, 4}, | |||||
{arg.n, arg.co / 4, ho, wo, 4}, | |||||
{}}) / | |||||
RUNS; | |||||
float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * | |||||
arg.f / (1e12); | |||||
TensorShape src{arg.n, arg.ci, arg.hi, arg.wi}, | |||||
filter{arg.co, arg.ci, arg.f, arg.f}; | |||||
printf("src=%s, filter=%s, time(algo=%s)=%.2f %.2fTops, " | |||||
"time(cudnn)=%.2f %.2fTops, " | |||||
"perf(algo=%s)/perf(cudnn)=%.2f\n", | |||||
src.to_string().c_str(), filter.to_string().c_str(), algo, | |||||
time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn, | |||||
(flo / (time_in_ms_cudnn * 1e-3)), algo, | |||||
time_in_ms_cudnn / time_in_ms); | |||||
return ret; | |||||
}; | |||||
for (auto&& arg : args) { | |||||
Param param; | |||||
param.pad_h = param.pad_w = arg.f / 2; | |||||
param.stride_h = param.stride_w = arg.s; | |||||
param.format = format; | |||||
size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2); | |||||
size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2); | |||||
benchmarker.set_param(param); | |||||
if (!algo) { | |||||
benchmarker.proxy()->target_algo = nullptr; | |||||
} | } | ||||
} else if (format == Format::CHWN4) { | |||||
for (auto&& arg : args) { | |||||
Param param; | |||||
param.pad_h = param.pad_w = arg.f / 2; | |||||
param.stride_h = param.stride_w = arg.s; | |||||
param.format = Format::CHWN4; | |||||
size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2); | |||||
size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2); | |||||
benchmarker.set_param(param); | |||||
auto time_in_ms = | |||||
benchmarker.execs({{arg.ci / 4, arg.hi, arg.wi, arg.n, 4}, | |||||
{arg.ci / 4, arg.f, arg.f, arg.co, 4}, | |||||
{arg.co / 4, 1, 1, 1, 4}, | |||||
{}, | |||||
{}}) / | |||||
RUNS; | |||||
param.format = Format::NCHW4; | |||||
benchmarker_cudnn.set_param(param); | |||||
auto time_in_ms_cudnn = | |||||
benchmarker_cudnn.execs( | |||||
{{arg.n, arg.ci / 4, arg.hi, arg.wi, 4}, | |||||
{arg.co, arg.ci / 4, arg.f, arg.f, 4}, | |||||
{1, arg.co / 4, 1, 1, 4}, | |||||
{}, | |||||
{}}) / | |||||
TensorShape src{arg.n, arg.ci, arg.hi, arg.wi}, | |||||
filter{arg.co, arg.ci, arg.f, arg.f}, bias{1, arg.co, 1, 1}, | |||||
z{arg.n, arg.co, ho, wo}, dst = z; | |||||
float time_in_ms = 0.f; | |||||
if (algo) { | |||||
time_in_ms = | |||||
algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>, | |||||
CUTimer>(benchmarker, | |||||
{get_tensor_shape(src, format), | |||||
get_tensor_shape(filter, format), | |||||
get_tensor_shape(bias, format), | |||||
{}, | |||||
{}}, | |||||
algo) / | |||||
RUNS; | RUNS; | ||||
float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * | |||||
arg.f / (1e12); | |||||
TensorShape src{arg.n, arg.ci, arg.hi, arg.wi}, | |||||
filter{arg.co, arg.ci, arg.f, arg.f}; | |||||
printf("src=%s, filter=%s, time(algo=%s)=%.2f %.2fTops, " | |||||
"time(cudnn)=%.2f %.2fTops, " | |||||
"perf(algo=%s)/perf(cudnn)=%.2f\n", | |||||
src.to_string().c_str(), filter.to_string().c_str(), algo, | |||||
time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn, | |||||
(flo / (time_in_ms_cudnn * 1e-3)), algo, | |||||
time_in_ms_cudnn / time_in_ms); | |||||
} else { | |||||
time_in_ms = benchmarker.execs({get_tensor_shape(src, format), | |||||
get_tensor_shape(filter, format), | |||||
get_tensor_shape(bias, format), | |||||
{}, | |||||
{}}) / | |||||
RUNS; | |||||
} | } | ||||
Format format_cudnn = Format::NCHW4; | |||||
param.format = format_cudnn; | |||||
benchmarker_cudnn.set_param(param); | |||||
auto time_in_ms_cudnn = | |||||
benchmarker_cudnn.execs({get_tensor_shape(src, format_cudnn), | |||||
get_tensor_shape(filter, format_cudnn), | |||||
get_tensor_shape(bias, format_cudnn), | |||||
{}, | |||||
{}}) / | |||||
RUNS; | |||||
float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * arg.f / | |||||
(1e12); | |||||
printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, " | |||||
"time(cudnn)=%.2f %.2fTops, " | |||||
"perf(algo=%s)/perf(cudnn)=%.2f\n", | |||||
src.to_string().c_str(), filter.to_string().c_str(), | |||||
dst.to_string().c_str(), algo, time_in_ms, | |||||
(flo / (time_in_ms * 1e-3)), time_in_ms_cudnn, | |||||
(flo / (time_in_ms_cudnn * 1e-3)), algo, | |||||
time_in_ms_cudnn / time_in_ms); | |||||
printf("bench with z tensor\n"); | printf("bench with z tensor\n"); | ||||
for (auto&& arg : args) { | |||||
Param param; | |||||
param.pad_h = param.pad_w = arg.f / 2; | |||||
param.stride_h = param.stride_w = arg.s; | |||||
param.format = Format::CHWN4; | |||||
size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2); | |||||
size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2); | |||||
benchmarker.set_param(param); | |||||
auto time_in_ms = | |||||
benchmarker.execs({{arg.ci / 4, arg.hi, arg.wi, arg.n, 4}, | |||||
{arg.ci / 4, arg.f, arg.f, arg.co, 4}, | |||||
{arg.co / 4, 1, 1, 1, 4}, | |||||
{arg.co / 4, ho, wo, arg.n, 4}, | |||||
{}}) / | |||||
if (algo) { | |||||
time_in_ms = | |||||
algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>, | |||||
CUTimer>(benchmarker, | |||||
{get_tensor_shape(src, format), | |||||
get_tensor_shape(filter, format), | |||||
get_tensor_shape(bias, format), | |||||
get_tensor_shape(z, format), | |||||
{}}, | |||||
algo) / | |||||
RUNS; | RUNS; | ||||
param.format = Format::NCHW4; | |||||
benchmarker_cudnn.set_param(param); | |||||
param.nonlineMode = Param::NonlineMode::IDENTITY; | |||||
auto time_in_ms_cudnn = | |||||
benchmarker_cudnn.execs( | |||||
{{arg.n, arg.ci / 4, arg.hi, arg.wi, 4}, | |||||
{arg.co, arg.ci / 4, arg.f, arg.f, 4}, | |||||
{1, arg.co / 4, 1, 1, 4}, | |||||
{arg.n, arg.co / 4, ho, wo, 4}, | |||||
{}}) / | |||||
RUNS; | |||||
float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * | |||||
arg.f / (1e12); | |||||
TensorShape src{arg.n, arg.ci, arg.hi, arg.wi}, | |||||
filter{arg.co, arg.ci, arg.f, arg.f}; | |||||
printf("src=%s, filter=%s, time(algo=%s)=%.2f %.2fTops, " | |||||
"time(cudnn)=%.2f %.2fTops, " | |||||
"perf(algo=%s)/perf(cudnn)=%.2f\n", | |||||
src.to_string().c_str(), filter.to_string().c_str(), algo, | |||||
time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn, | |||||
(flo / (time_in_ms_cudnn * 1e-3)), algo, | |||||
time_in_ms_cudnn / time_in_ms); | |||||
} else { | |||||
time_in_ms = benchmarker.execs({get_tensor_shape(src, format), | |||||
get_tensor_shape(filter, format), | |||||
get_tensor_shape(bias, format), | |||||
get_tensor_shape(z, format), | |||||
{}}) / | |||||
RUNS; | |||||
} | } | ||||
time_in_ms_cudnn = | |||||
benchmarker_cudnn.execs({get_tensor_shape(src, format_cudnn), | |||||
get_tensor_shape(filter, format_cudnn), | |||||
get_tensor_shape(bias, format_cudnn), | |||||
get_tensor_shape(z, format_cudnn), | |||||
{}}) / | |||||
RUNS; | |||||
printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, " | |||||
"time(cudnn)=%.2f %.2fTops, " | |||||
"perf(algo=%s)/perf(cudnn)=%.2f\n", | |||||
src.to_string().c_str(), filter.to_string().c_str(), | |||||
dst.to_string().c_str(), algo, time_in_ms, | |||||
(flo / (time_in_ms * 1e-3)), time_in_ms_cudnn, | |||||
(flo / (time_in_ms_cudnn * 1e-3)), algo, | |||||
time_in_ms_cudnn / time_in_ms); | |||||
} | } | ||||
} | } | ||||
@@ -313,10 +259,7 @@ void benchmark_target_algo_with_cudnn_tsc( | |||||
std::unique_ptr<OprProxy<ConvBiasForward>> proxy{ | std::unique_ptr<OprProxy<ConvBiasForward>> proxy{ | ||||
new OprProxy<ConvBiasForward>{true}}; | new OprProxy<ConvBiasForward>{true}}; | ||||
if (algo) { | |||||
benchmarker.set_before_exec_callback( | |||||
conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo)); | |||||
} else { | |||||
if (!algo) { | |||||
benchmarker.set_proxy(proxy); | benchmarker.set_proxy(proxy); | ||||
} | } | ||||
@@ -340,163 +283,132 @@ void benchmark_target_algo_with_cudnn_tsc( | |||||
using Param = ConvBias::Param; | using Param = ConvBias::Param; | ||||
using Format = Param::Format; | using Format = Param::Format; | ||||
if (format == Format::NCHW4) { | |||||
for (auto&& arg : args) { | |||||
Param param; | |||||
param.pad_h = param.pad_w = arg.f / 2; | |||||
param.stride_h = param.stride_w = arg.s; | |||||
param.format = Format::NCHW4; | |||||
size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2); | |||||
size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2); | |||||
benchmarker.set_param(param); | |||||
if (!algo) { | |||||
benchmarker.proxy()->target_algo = nullptr; | |||||
} | |||||
auto time_in_ms = | |||||
benchmarker.execs({{arg.n, arg.ci / 4, arg.hi, arg.wi, 4}, | |||||
{arg.co, arg.ci / 4, arg.f, arg.f, 4}, | |||||
{1, arg.co / 4, 1, 1, 4}, | |||||
{}, | |||||
{}}) / | |||||
RUNS; | |||||
param.format = Format::NCHW32; | |||||
benchmarker_cudnn.set_param(param); | |||||
auto time_in_ms_cudnn = | |||||
benchmarker_cudnn.execs( | |||||
{{arg.n, arg.ci / 32, arg.hi, arg.wi, 32}, | |||||
{arg.co, arg.ci / 32, arg.f, arg.f, 32}, | |||||
{1, arg.co / 32, 1, 1, 32}, | |||||
{}, | |||||
{}}) / | |||||
RUNS; | |||||
float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * | |||||
arg.f / (1e12); | |||||
TensorShape src{arg.n, arg.ci, arg.hi, arg.wi}, | |||||
filter{arg.co, arg.ci, arg.f, arg.f}; | |||||
printf("src=%s, filter=%s, time(algo=%s)=%.2f %.2fTops, " | |||||
"time(cudnn)=%.2f %.2fTops, " | |||||
"perf(algo=%s)/perf(cudnn)=%.2f\n", | |||||
src.to_string().c_str(), filter.to_string().c_str(), algo, | |||||
time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn, | |||||
(flo / (time_in_ms_cudnn * 1e-3)), algo, | |||||
time_in_ms_cudnn / time_in_ms); | |||||
// helper function to change format | |||||
auto get_tensor_shape = [](TensorShape shape, | |||||
Format format) -> TensorShape { | |||||
TensorShape ret; | |||||
if (format == Format::NCHW4) { | |||||
ret = static_cast<TensorShape>( | |||||
TensorLayout{shape, dtype::Int8()} | |||||
.reshape({shape[0], shape[1] / 4, 4, shape[2], | |||||
shape[3]}) | |||||
.dimshuffle({0, 1, 3, 4, 2})); | |||||
} else if (format == Format::NCHW32) { | |||||
ret = static_cast<TensorShape>( | |||||
TensorLayout{shape, dtype::Int8()} | |||||
.reshape({shape[0], shape[1] / 32, 32, shape[2], | |||||
shape[3]}) | |||||
.dimshuffle({0, 1, 3, 4, 2})); | |||||
} else if (format == Format::CHWN4) { | |||||
ret = static_cast<TensorShape>( | |||||
TensorLayout{shape, dtype::Int8()} | |||||
.reshape({shape[0], shape[1] / 4, 4, shape[2], | |||||
shape[3]}) | |||||
.dimshuffle({1, 3, 4, 0, 2})); | |||||
} | } | ||||
} else if (format == Format::CHWN4) { | |||||
for (auto&& arg : args) { | |||||
Param param; | |||||
param.pad_h = param.pad_w = arg.f / 2; | |||||
param.stride_h = param.stride_w = arg.s; | |||||
param.format = Format::CHWN4; | |||||
size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2); | |||||
size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2); | |||||
benchmarker.set_param(param); | |||||
if (!algo) { | |||||
benchmarker.proxy()->target_algo = nullptr; | |||||
} | |||||
auto time_in_ms = | |||||
benchmarker.execs({{arg.ci / 4, arg.hi, arg.wi, arg.n, 4}, | |||||
{arg.ci / 4, arg.f, arg.f, arg.co, 4}, | |||||
{arg.co / 4, 1, 1, 1, 4}, | |||||
{}, | |||||
{}}) / | |||||
return ret; | |||||
}; | |||||
for (auto&& arg : args) { | |||||
Param param; | |||||
param.pad_h = param.pad_w = arg.f / 2; | |||||
param.stride_h = param.stride_w = arg.s; | |||||
param.format = format; | |||||
size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2); | |||||
size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2); | |||||
benchmarker.set_param(param); | |||||
if (!algo) { | |||||
benchmarker.proxy()->target_algo = nullptr; | |||||
} | |||||
TensorShape src{arg.n, arg.ci, arg.hi, arg.wi}, | |||||
filter{arg.co, arg.ci, arg.f, arg.f}, bias{1, arg.co, 1, 1}, | |||||
z{arg.n, arg.co, ho, wo}, dst = z; | |||||
// skip testcase which cannot enable nchw32 tensorcore | |||||
if (format == Format::NCHW32 && (arg.co % 32 != 0 || arg.ci % 32 != 0)) | |||||
continue; | |||||
// skip testcase which cannot enable nchw4/chwn4 tensorcore | |||||
if ((format == Format::CHWN4 || format == Format::NCHW4) && | |||||
(arg.ci % 16 != 0)) | |||||
continue; | |||||
float time_in_ms = 0.f; | |||||
if (algo) { | |||||
time_in_ms = | |||||
algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>, | |||||
CUTimer>(benchmarker, | |||||
{get_tensor_shape(src, format), | |||||
get_tensor_shape(filter, format), | |||||
get_tensor_shape(bias, format), | |||||
{}, | |||||
{}}, | |||||
algo) / | |||||
RUNS; | RUNS; | ||||
float time_in_ms_cudnn = 0.f; | |||||
if (arg.ci % 32 == 0 && arg.co % 32 == 0) { | |||||
param.format = Format::NCHW32; | |||||
benchmarker_cudnn.set_param(param); | |||||
time_in_ms_cudnn = | |||||
benchmarker_cudnn.execs( | |||||
{{arg.n, arg.ci / 32, arg.hi, arg.wi, 32}, | |||||
{arg.co, arg.ci / 32, arg.f, arg.f, 32}, | |||||
{1, arg.co / 32, 1, 1, 32}, | |||||
{}, | |||||
{}}) / | |||||
RUNS; | |||||
} else { | |||||
param.format = Format::NCHW4; | |||||
benchmarker_cudnn.set_param(param); | |||||
time_in_ms_cudnn = | |||||
benchmarker_cudnn.execs( | |||||
{{arg.n, arg.ci / 4, arg.hi, arg.wi, 4}, | |||||
{arg.co, arg.ci / 4, arg.f, arg.f, 4}, | |||||
{1, arg.co / 4, 1, 1, 4}, | |||||
{}, | |||||
{}}) / | |||||
RUNS; | |||||
} | |||||
float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * | |||||
arg.f / (1e12); | |||||
TensorShape src{arg.n, arg.ci, arg.hi, arg.wi}, | |||||
filter{arg.co, arg.ci, arg.f, arg.f}; | |||||
printf("src=%s, filter=%s, time(algo=%s)=%.2f %.2fTops, " | |||||
"time(cudnn)=%.2f %.2fTops, " | |||||
"perf(algo=%s)/perf(cudnn)=%.2f\n", | |||||
src.to_string().c_str(), filter.to_string().c_str(), algo, | |||||
time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn, | |||||
(flo / (time_in_ms_cudnn * 1e-3)), algo, | |||||
time_in_ms_cudnn / time_in_ms); | |||||
} else { | |||||
time_in_ms = benchmarker.execs({get_tensor_shape(src, format), | |||||
get_tensor_shape(filter, format), | |||||
get_tensor_shape(bias, format), | |||||
{}, | |||||
{}}) / | |||||
RUNS; | |||||
} | } | ||||
Format format_cudnn = arg.ci % 32 == 0 && arg.co % 32 == 0 | |||||
? Format::NCHW32 | |||||
: Format::NCHW4; | |||||
param.format = format_cudnn; | |||||
benchmarker_cudnn.set_param(param); | |||||
auto time_in_ms_cudnn = | |||||
benchmarker_cudnn.execs({get_tensor_shape(src, format_cudnn), | |||||
get_tensor_shape(filter, format_cudnn), | |||||
get_tensor_shape(bias, format_cudnn), | |||||
{}, | |||||
{}}) / | |||||
RUNS; | |||||
float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * arg.f / | |||||
(1e12); | |||||
printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, " | |||||
"time(cudnn)=%.2f %.2fTops, " | |||||
"perf(algo=%s)/perf(cudnn)=%.2f\n", | |||||
src.to_string().c_str(), filter.to_string().c_str(), | |||||
dst.to_string().c_str(), algo, time_in_ms, | |||||
(flo / (time_in_ms * 1e-3)), time_in_ms_cudnn, | |||||
(flo / (time_in_ms_cudnn * 1e-3)), algo, | |||||
time_in_ms_cudnn / time_in_ms); | |||||
printf("bench with z tensor\n"); | printf("bench with z tensor\n"); | ||||
for (auto&& arg : args) { | |||||
Param param; | |||||
param.pad_h = param.pad_w = arg.f / 2; | |||||
param.stride_h = param.stride_w = arg.s; | |||||
param.format = Format::CHWN4; | |||||
size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2); | |||||
size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2); | |||||
benchmarker.set_param(param); | |||||
if (!algo) { | |||||
benchmarker.proxy()->target_algo = nullptr; | |||||
} | |||||
auto time_in_ms = | |||||
benchmarker.execs({{arg.ci / 4, arg.hi, arg.wi, arg.n, 4}, | |||||
{arg.ci / 4, arg.f, arg.f, arg.co, 4}, | |||||
{arg.co / 4, 1, 1, 1, 4}, | |||||
{arg.co / 4, ho, wo, arg.n, 4}, | |||||
{}}) / | |||||
if (algo) { | |||||
time_in_ms = | |||||
algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>, | |||||
CUTimer>(benchmarker, | |||||
{get_tensor_shape(src, format), | |||||
get_tensor_shape(filter, format), | |||||
get_tensor_shape(bias, format), | |||||
get_tensor_shape(z, format), | |||||
{}}, | |||||
algo) / | |||||
RUNS; | RUNS; | ||||
float time_in_ms_cudnn = 0.f; | |||||
if (arg.ci % 32 == 0 && arg.co % 32 == 0) { | |||||
param.format = Format::NCHW32; | |||||
benchmarker_cudnn.set_param(param); | |||||
time_in_ms_cudnn = | |||||
benchmarker_cudnn.execs( | |||||
{{arg.n, arg.ci / 32, arg.hi, arg.wi, 32}, | |||||
{arg.co, arg.ci / 32, arg.f, arg.f, 32}, | |||||
{1, arg.co / 32, 1, 1, 32}, | |||||
{arg.n, arg.co / 32, ho, wo, 32}, | |||||
{}}) / | |||||
RUNS; | |||||
} else { | |||||
param.format = Format::NCHW4; | |||||
benchmarker_cudnn.set_param(param); | |||||
time_in_ms_cudnn = | |||||
benchmarker_cudnn.execs( | |||||
{{arg.n, arg.ci / 4, arg.hi, arg.wi, 4}, | |||||
{arg.co, arg.ci / 4, arg.f, arg.f, 4}, | |||||
{1, arg.co / 4, 1, 1, 4}, | |||||
{arg.n, arg.co / 4, ho, wo, 4}, | |||||
{}}) / | |||||
RUNS; | |||||
} | |||||
float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * | |||||
arg.f / (1e12); | |||||
TensorShape src{arg.n, arg.ci, arg.hi, arg.wi}, | |||||
filter{arg.co, arg.ci, arg.f, arg.f}; | |||||
printf("src=%s, filter=%s, time(algo=%s)=%.2f %.2fTops, " | |||||
"time(cudnn)=%.2f %.2fTops, " | |||||
"perf(algo=%s)/perf(cudnn)=%.2f\n", | |||||
src.to_string().c_str(), filter.to_string().c_str(), algo, | |||||
time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn, | |||||
(flo / (time_in_ms_cudnn * 1e-3)), algo, | |||||
time_in_ms_cudnn / time_in_ms); | |||||
} else { | |||||
time_in_ms = benchmarker.execs({get_tensor_shape(src, format), | |||||
get_tensor_shape(filter, format), | |||||
get_tensor_shape(bias, format), | |||||
get_tensor_shape(z, format), | |||||
{}}) / | |||||
RUNS; | |||||
} | } | ||||
time_in_ms_cudnn = | |||||
benchmarker_cudnn.execs({get_tensor_shape(src, format_cudnn), | |||||
get_tensor_shape(filter, format_cudnn), | |||||
get_tensor_shape(bias, format_cudnn), | |||||
get_tensor_shape(z, format_cudnn), | |||||
{}}) / | |||||
RUNS; | |||||
printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, " | |||||
"time(cudnn)=%.2f %.2fTops, " | |||||
"perf(algo=%s)/perf(cudnn)=%.2f\n", | |||||
src.to_string().c_str(), filter.to_string().c_str(), | |||||
dst.to_string().c_str(), algo, time_in_ms, | |||||
(flo / (time_in_ms * 1e-3)), time_in_ms_cudnn, | |||||
(flo / (time_in_ms_cudnn * 1e-3)), algo, | |||||
time_in_ms_cudnn / time_in_ms); | |||||
} | } | ||||
} | } | ||||
#endif | #endif | ||||
@@ -1166,6 +1078,77 @@ TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_1x1_ALGO_2) { | |||||
} | } | ||||
#if CUDA_VERSION >= 10020 | |||||
/// \note: we only check several cases and block sizes in megdnn_test, the full | |||||
/// testcases are written in cutlass repository | |||||
TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NCHW32_IMMA) { | |||||
require_compute_capability_eq(7, 5); | |||||
Checker<ConvBiasForward> checker(handle_cuda()); | |||||
auto check = [&checker](const std::string& algo) { | |||||
checker.set_before_exec_callback( | |||||
conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo.c_str())); | |||||
UniformIntRNG rng{-8, 8}; | |||||
UniformIntRNG bias_rng{-50, 50}; | |||||
UniformIntRNG const_rng{1, 1}; | |||||
// use scale that are all integers to avoid rouding error | |||||
checker.set_rng(0, &rng) | |||||
.set_rng(1, &rng) | |||||
.set_rng(2, &bias_rng) | |||||
.set_rng(3, &rng) | |||||
.set_dtype(0, dtype::QuantizedS8{6.0f}) | |||||
.set_dtype(1, dtype::QuantizedS8{1.0f}) | |||||
.set_dtype(2, dtype::QuantizedS32{6.0f}) | |||||
.set_dtype(3, dtype::QuantizedS8{1.0f}) | |||||
.set_dtype(4, dtype::QuantizedS8{6.0f}) | |||||
.set_epsilon(1e-3); | |||||
param::ConvBias param; | |||||
param.pad_h = param.pad_w = 1; | |||||
param.stride_h = param.stride_w = 1; | |||||
param.format = param::ConvBias::Format::NCHW32; | |||||
checker.set_param(param).execs({{16, 16, 7, 7, 32}, | |||||
{512, 16, 3, 3, 32}, | |||||
{1, 16, 1, 1, 32}, | |||||
{}, | |||||
{}}); | |||||
param.nonlineMode = param::ConvBias::NonlineMode::RELU; | |||||
checker.set_param(param).execs({{16, 16, 7, 7, 32}, | |||||
{512, 16, 1, 1, 32}, | |||||
{1, 16, 1, 1, 32}, | |||||
{}, | |||||
{}}); | |||||
param.nonlineMode = param::ConvBias::NonlineMode::H_SWISH; | |||||
checker.set_param(param).execs({{16, 16, 7, 7, 32}, | |||||
{512, 16, 3, 3, 32}, | |||||
{1, 16, 1, 1, 32}, | |||||
{}, | |||||
{}}); | |||||
// use non integer scale | |||||
param.nonlineMode = param::ConvBias::NonlineMode::H_SWISH; | |||||
checker.set_dtype(0, dtype::QuantizedS8{1.1f}) | |||||
.set_dtype(1, dtype::QuantizedS8{1.2f}) | |||||
.set_dtype(2, dtype::QuantizedS32{1.1f * 1.2f}) | |||||
.set_dtype(3, dtype::QuantizedS8{1.1f}) | |||||
.set_dtype(4, dtype::QuantizedS8{6.0f}) | |||||
.set_epsilon(1 + 1e-3) | |||||
.set_max_avg_error(1e-1) | |||||
.set_max_avg_biased_error(1e-1) | |||||
.execs({{16, 16, 7, 7, 32}, | |||||
{512, 16, 3, 3, 32}, | |||||
{1, 16, 1, 1, 32}, | |||||
{16, 16, 7, 7, 32}, | |||||
{}}); | |||||
}; | |||||
std::string algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||||
"INT8_NCHW32_IMMA_IMPLICIT_GEMM_256X128X64_64X64X64", | |||||
ConvBias::DirectParam{}); | |||||
check(algo); | |||||
algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||||
"INT8_NCHW32_IMMA_IMPLICIT_GEMM_32X64X64_32X16X64", | |||||
ConvBias::DirectParam{}); | |||||
check(algo); | |||||
} | |||||
#endif | |||||
#if MEGDNN_WITH_BENCHMARK | #if MEGDNN_WITH_BENCHMARK | ||||
TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_CHWN4) { | TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_CHWN4) { | ||||
require_compute_capability(6, 1); | require_compute_capability(6, 1); | ||||
@@ -1233,6 +1216,18 @@ TEST_F(CUDA, BENCHMARK_CONV_BIAS_INT8_CHWN4_SMALL_CHANNEL) { | |||||
param::ConvBias::Format::CHWN4); | param::ConvBias::Format::CHWN4); | ||||
} | } | ||||
#if CUDA_VERSION >= 10020 | |||||
TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NCHW32) { | |||||
require_compute_capability(7, 5); | |||||
benchmark_target_algo_with_cudnn_tsc( | |||||
handle_cuda(), get_resnet50_bench_args(256), | |||||
dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f}, | |||||
dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f}, | |||||
"DIRECT:INT8_NCHW32_IMMA_IMPLICIT_GEMM", | |||||
param::ConvBias::Format::NCHW32); | |||||
} | |||||
#endif | |||||
#endif | #endif | ||||
} // namespace test | } // namespace test | ||||
@@ -34,7 +34,7 @@ bool check_compute_capability_eq(int major, int minor); | |||||
do { \ | do { \ | ||||
if (!megdnn::test::check_compute_capability((x), (y))) { \ | if (!megdnn::test::check_compute_capability((x), (y))) { \ | ||||
printf("skip testcase due to cuda compute capability not " \ | printf("skip testcase due to cuda compute capability not " \ | ||||
"require.(expected:%d.%d)", \ | |||||
"require.(expected:%d.%d)\n", \ | |||||
(x), (y)); \ | (x), (y)); \ | ||||
return; \ | return; \ | ||||
} \ | } \ | ||||
@@ -44,7 +44,7 @@ bool check_compute_capability_eq(int major, int minor); | |||||
do { \ | do { \ | ||||
if (!megdnn::test::check_compute_capability_eq((x), (y))) { \ | if (!megdnn::test::check_compute_capability_eq((x), (y))) { \ | ||||
printf("skip testcase due to cuda compute capability not " \ | printf("skip testcase due to cuda compute capability not " \ | ||||
"equal to %d.%d", \ | |||||
"equal to %d.%d\n", \ | |||||
(x), (y)); \ | (x), (y)); \ | ||||
return; \ | return; \ | ||||
} \ | } \ | ||||