GitOrigin-RevId: 4edc38eaf2
release-1.2
@@ -20,4 +20,4 @@ class Const: | |||||
def __call__(self, *reference): | def __call__(self, *reference): | ||||
Wrapper = type(reference[0]) | Wrapper = type(reference[0]) | ||||
return (Wrapper(self.value, self.dtype, self.device),) | |||||
return (Wrapper(self.value, self.dtype, self.device, True),) |
@@ -19,10 +19,11 @@ import numpy as np | |||||
from ...utils.comp_graph_tools import set_priority_to_id as _set_priority_to_id | from ...utils.comp_graph_tools import set_priority_to_id as _set_priority_to_id | ||||
from .. import _imperative_rt | from .. import _imperative_rt | ||||
from .._imperative_rt import GraphOptimizeOptions | from .._imperative_rt import GraphOptimizeOptions | ||||
from .._imperative_rt.core2 import apply, set_cpp_apply_backward_varnode | |||||
from .._imperative_rt.ops import BackwardGraph | from .._imperative_rt.ops import BackwardGraph | ||||
from .._wrap import device as as_device | from .._wrap import device as as_device | ||||
from ..ops.builtin import OpDef | from ..ops.builtin import OpDef | ||||
from .core import OpBase, TensorBase, apply | |||||
from .core import OpBase, TensorBase | |||||
class Graph(_imperative_rt.ComputingGraph): | class Graph(_imperative_rt.ComputingGraph): | ||||
@@ -269,9 +270,8 @@ def optimize_for_inference(dest_vars, **kwargs): | |||||
if kwargs: | if kwargs: | ||||
raise ValueError("unknown options: %s" % list(kwargs)) | raise ValueError("unknown options: %s" % list(kwargs)) | ||||
res_vars = _imperative_rt.optimize_for_inference( | |||||
[i._node for i in dest_vars], inference_options | |||||
) | |||||
dest_vars = [var._node for var in dest_vars] | |||||
res_vars = _imperative_rt.optimize_for_inference(dest_vars, inference_options) | |||||
return [VarNode(i) for i in res_vars] | return [VarNode(i) for i in res_vars] | ||||
@@ -437,19 +437,25 @@ def _unwrap(x): | |||||
return x | return x | ||||
@apply.register() | |||||
def _(op: OpDef, *args: VarNode): | |||||
def apply_normal_op(op: OpDef, *args: VarNode): | |||||
outputs = _imperative_rt.invoke_op(op, _unwrap(args)) | outputs = _imperative_rt.invoke_op(op, _unwrap(args)) | ||||
return _wrap(outputs) | return _wrap(outputs) | ||||
@apply.register() | |||||
def _(op: BackwardGraph, *args: VarNode): | |||||
def apply_backward_varnode(op: BackwardGraph, *args: VarNode): | |||||
assert args | assert args | ||||
graph = args[0].graph | graph = args[0].graph | ||||
return BackwardGraph.interpret( | |||||
op, lambda op, args: apply(op, *args), graph._make_const_for_backward, args | |||||
outputs = op.interpret( | |||||
op, | |||||
lambda op, args: apply_normal_op(op, *args), | |||||
graph._make_const_for_backward, | |||||
args, | |||||
) | ) | ||||
outputs = [o._node if hasattr(o, "_node") else o for o in outputs] | |||||
return outputs | |||||
set_cpp_apply_backward_varnode(apply_backward_varnode) | |||||
def input_callback(callback, *args, device=None, dtype=None, shape=None, graph=None): | def input_callback(callback, *args, device=None, dtype=None, shape=None, graph=None): | ||||
@@ -6,5 +6,23 @@ | |||||
# Unless required by applicable law or agreed to in writing, | # Unless required by applicable law or agreed to in writing, | ||||
# software distributed under the License is distributed on an | # software distributed under the License is distributed on an | ||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
from ..core._imperative_rt.core2 import ( | |||||
set_cpp_apply_compiled_mode, | |||||
set_cpp_apply_const_compiled_mode, | |||||
set_cpp_apply_const_with_tracing, | |||||
set_cpp_apply_with_tracing, | |||||
) | |||||
from .sublinear_memory_config import SublinearMemoryConfig | from .sublinear_memory_config import SublinearMemoryConfig | ||||
from .tracing import exclude_from_trace, trace | |||||
from .tracing import ( | |||||
apply_compiled_mode, | |||||
apply_const_compiled_mode, | |||||
apply_const_with_tracing, | |||||
apply_with_tracing, | |||||
exclude_from_trace, | |||||
trace, | |||||
) | |||||
set_cpp_apply_with_tracing(apply_with_tracing) | |||||
set_cpp_apply_const_with_tracing(apply_const_with_tracing) | |||||
set_cpp_apply_compiled_mode(apply_compiled_mode) | |||||
set_cpp_apply_const_compiled_mode(apply_const_compiled_mode) |
@@ -18,8 +18,20 @@ import weakref | |||||
import numpy as np | import numpy as np | ||||
from ..core._imperative_rt import GraphProfiler | |||||
from ..core._imperative_rt.core2 import Tensor | |||||
from ..core._imperative_rt import GraphProfiler, common, put | |||||
from ..core._imperative_rt.core2 import Tensor as RawTensor | |||||
from ..core._imperative_rt.core2 import ( | |||||
TensorWeakRef, | |||||
apply, | |||||
call_level, | |||||
set_compiled, | |||||
set_symbolic, | |||||
set_tracing, | |||||
skip_tracing, | |||||
unset_compiled, | |||||
unset_symbolic, | |||||
unset_tracing, | |||||
) | |||||
from ..core._imperative_rt.ops import ( | from ..core._imperative_rt.ops import ( | ||||
CollectiveComm, | CollectiveComm, | ||||
GaussianRNG, | GaussianRNG, | ||||
@@ -29,10 +41,9 @@ from ..core._imperative_rt.ops import ( | |||||
) | ) | ||||
from ..core._trace_option import set_symbolic_shape | from ..core._trace_option import set_symbolic_shape | ||||
from ..core._wrap import device as as_device | from ..core._wrap import device as as_device | ||||
from ..core.ops.builtin import OpDef | |||||
from ..core.ops.special import Const | from ..core.ops.special import Const | ||||
from ..core.tensor import megbrain_graph as G | from ..core.tensor import megbrain_graph as G | ||||
from ..core.tensor.core import OpBase, TensorBase, TensorWrapperBase, apply | |||||
from ..core.tensor.raw_tensor import OpDef, RawTensor, as_raw_tensor | |||||
from .sublinear_memory_config import SublinearMemoryConfig | from .sublinear_memory_config import SublinearMemoryConfig | ||||
@@ -45,7 +56,6 @@ class TraceMismatchError(RuntimeError): | |||||
active_trace = None | active_trace = None | ||||
skip_tracing = False | |||||
def is_tracing(): | def is_tracing(): | ||||
@@ -63,11 +73,13 @@ def exclude_from_trace(): | |||||
return | return | ||||
try: | try: | ||||
skip_tracing = True | skip_tracing = True | ||||
unset_tracing() | |||||
if active_trace is not None: | if active_trace is not None: | ||||
active_trace._begin_excluded_region() | active_trace._begin_excluded_region() | ||||
yield | yield | ||||
finally: | finally: | ||||
skip_tracing = False | skip_tracing = False | ||||
set_tracing() | |||||
class TensorInfo: | class TensorInfo: | ||||
@@ -75,9 +87,6 @@ class TensorInfo: | |||||
# collected attributes | # collected attributes | ||||
"external", | "external", | ||||
"exported", | "exported", | ||||
"data_read", | |||||
"shape_read", | |||||
"value_read", | |||||
"device", | "device", | ||||
"dtype", | "dtype", | ||||
"shape", | "shape", | ||||
@@ -93,9 +102,6 @@ class TensorInfo: | |||||
def __init__(self): | def __init__(self): | ||||
self.exported = None | self.exported = None | ||||
self.data_read = None | |||||
self.shape_read = None | |||||
self.value_read = None | |||||
self.bound_data = None | self.bound_data = None | ||||
self.data_setter = None | self.data_setter = None | ||||
@@ -147,6 +153,8 @@ class trace: | |||||
self._profiler = None | self._profiler = None | ||||
self._graph_opt_level = opt_level | self._graph_opt_level = opt_level | ||||
self._symbolic_shape = symbolic_shape | self._symbolic_shape = symbolic_shape | ||||
self._handle2tensors = {} | |||||
self._handle2compiledtensors = {} | |||||
self._reset() | self._reset() | ||||
@@ -158,9 +166,9 @@ class trace: | |||||
self._graph = None | self._graph = None | ||||
self._need_reset_nodes = None | self._need_reset_nodes = None | ||||
self._lazy_eval_graph = None | self._lazy_eval_graph = None | ||||
self._lazy_eval_tensors = weakref.WeakSet() | |||||
self._lazy_eval_tensors = set() | |||||
self._lazy_eval_links = None | self._lazy_eval_links = None | ||||
self._active_tensors = weakref.WeakSet() | |||||
self._active_tensors = set() | |||||
self._tensor_remaps = None | self._tensor_remaps = None | ||||
self._inputs_to_restore = None | self._inputs_to_restore = None | ||||
self._arg_bindings = None | self._arg_bindings = None | ||||
@@ -220,66 +228,72 @@ class trace: | |||||
) | ) | ||||
info.data_setter.set_value(x._dev_tensor()) | info.data_setter.set_value(x._dev_tensor()) | ||||
else: | else: | ||||
if x.__class__ is not CompiledTensorProxy: | |||||
if x not in self._tensor_remaps: | |||||
raise TraceMismatchError( | |||||
"unexpected capture: trying to use an external tensor as " | |||||
"input, but that input was an internal tensor last time" | |||||
) | |||||
else: | |||||
x = self._tensor_remaps[x] | |||||
if x._CompiledTensorProxy__handle != h: | |||||
raise TraceMismatchError( | |||||
"mis-wiring: input edge to an data flow " | |||||
"graph node is different from last time" | |||||
) | |||||
pass | |||||
# if x.__class__ is not CompiledTensorProxy: | |||||
# if x not in self._tensor_remaps: | |||||
# raise TraceMismatchError( | |||||
# "unexpected capture: trying to use an external tensor as " | |||||
# "input, but that input was an internal tensor last time" | |||||
# ) | |||||
# else: | |||||
# x = self._tensor_remaps[x] | |||||
# if x._CompiledTensorProxy__handle != h: | |||||
# raise TraceMismatchError( | |||||
# "mis-wiring: input edge to an data flow " | |||||
# "graph node is different from last time" | |||||
# ) | |||||
self._pc += 1 | self._pc += 1 | ||||
outputs = tuple([CompiledTensorProxy(h) for h in ohandles]) | |||||
self._active_tensors.update(outputs) | |||||
for h in ohandles: | |||||
t = CompiledTensorProxy(h) | |||||
t._dev_tensor() | |||||
self._handle2compiledtensors[h] = t | |||||
outputs = [self._handle2tensors[h] for h in ohandles] | |||||
self._active_tensors.update([TensorWeakRef(o) for o in outputs]) | |||||
return outputs | return outputs | ||||
def _apply_const(self, op, args): | |||||
def _apply_const(self, value, dtype, device): | |||||
assert not self._untraced | assert not self._untraced | ||||
# check against trace | # check against trace | ||||
if self._pc >= len(self._seq): | if self._pc >= len(self._seq): | ||||
raise TraceMismatchError("trace should end here, but more op observed") | raise TraceMismatchError("trace should end here, but more op observed") | ||||
record = self._seq[self._pc] | record = self._seq[self._pc] | ||||
op_, ihandles, ohandles = record | op_, ihandles, ohandles = record | ||||
assert isinstance(op_, Const) | |||||
eq = op_.value == op.value | |||||
if not isinstance(eq, bool): | |||||
eq = all(eq) | |||||
if not eq: | |||||
raise TraceMismatchError( | |||||
"const tensor violated: got a different tensor this time" | |||||
) | |||||
assert isinstance(op_, str) and op_ == "Const" | |||||
# TODO : assert on const value | |||||
# eq = value == self._tinfo[ohandles[0]].bound_data.numpy() | |||||
# if not isinstance(eq, bool): | |||||
# eq = all(eq) | |||||
# if not eq: | |||||
# raise TraceMismatchError( | |||||
# "const tensor violated: got a different tensor this time" | |||||
# ) | |||||
self._pc += 1 | self._pc += 1 | ||||
(h,) = ohandles | (h,) = ohandles | ||||
outputs = tuple([self._tinfo[h].bound_data]) | |||||
outputs = [self._tinfo[h].bound_data] | |||||
return outputs | return outputs | ||||
def _record_op(self, op, inputs, outputs): | def _record_op(self, op, inputs, outputs): | ||||
if skip_tracing: | if skip_tracing: | ||||
for x in inputs: | for x in inputs: | ||||
h = getattr(x, "_TraceMixin__handle", None) | |||||
if h is not None: | |||||
self._tinfo[h].data_read = True | |||||
h = getattr(x, "mixin_handle", -1) | |||||
if h >= 0: | |||||
x.data_read = True | |||||
return | return | ||||
ihandles = [] | ihandles = [] | ||||
for x in inputs: | for x in inputs: | ||||
h = getattr(x, "_TraceMixin__handle", None) | |||||
if h is None or (not self._capture_as_const and self._tinfo[h].exported): | |||||
h = getattr(x, "mixin_handle", -1) | |||||
if h < 0 or (not self._capture_as_const and self._tinfo[h].exported): | |||||
h, info = self._new_handle() | h, info = self._new_handle() | ||||
info.external = True | info.external = True | ||||
info.device = x.device | info.device = x.device | ||||
info.dtype = x.dtype | info.dtype = x.dtype | ||||
info.shape = x.shape | info.shape = x.shape | ||||
if self._capture_as_const: | if self._capture_as_const: | ||||
info.bound_data = x | |||||
info.bound_data = RawTensor(x.numpy(), x.dtype, x.device, False) | |||||
ihandles.append(h) | ihandles.append(h) | ||||
@@ -288,17 +302,18 @@ class trace: | |||||
h, info = self._new_handle() | h, info = self._new_handle() | ||||
ohandles.append(h) | ohandles.append(h) | ||||
info.external = False | info.external = False | ||||
TraceMixin._TraceMixin__inject(x, h) | |||||
x.mixin_handle = h | |||||
self._handle2tensors[h] = x | |||||
self._seq.append((op, tuple(ihandles), tuple(ohandles))) | self._seq.append((op, tuple(ihandles), tuple(ohandles))) | ||||
self._active_tensors.update(outputs) | |||||
self._active_tensors.update([TensorWeakRef(o) for o in outputs]) | |||||
def _record_const(self, op, outputs): | |||||
def _record_const(self, outputs): | |||||
if skip_tracing: | if skip_tracing: | ||||
(x,) = outputs | (x,) = outputs | ||||
h = getattr(x, "_TraceMixin__handle", None) | |||||
if h is not None: | |||||
self._tinfo[h].data_read = True | |||||
h = getattr(x, "mixin_handle", -1) | |||||
if h >= 0: | |||||
x.data_read = True | |||||
return | return | ||||
(x,) = outputs | (x,) = outputs | ||||
@@ -310,8 +325,9 @@ class trace: | |||||
info.shape = x.shape | info.shape = x.shape | ||||
info.bound_data = x | info.bound_data = x | ||||
info.is_const = True | info.is_const = True | ||||
TraceMixin._TraceMixin__inject(x, h) | |||||
self._seq.append((op, tuple(), tuple(ohandles))) | |||||
x.mixin_handle = h | |||||
self._handle2tensors[h] = x | |||||
self._seq.append(("Const", tuple(), tuple(ohandles))) | |||||
def _set_active(self, active: bool): | def _set_active(self, active: bool): | ||||
global active_trace | global active_trace | ||||
@@ -324,11 +340,8 @@ class trace: | |||||
active_trace = None | active_trace = None | ||||
def _init_trace(self, symbolic: bool): | def _init_trace(self, symbolic: bool): | ||||
apply.enable(apply_with_tracing) | |||||
apply.enable(apply_const_with_tracing) | |||||
if symbolic: | if symbolic: | ||||
apply.enable(apply_symbolic_mode) | |||||
apply.enable(apply_const_symbolic_mode) | |||||
set_symbolic() | |||||
self._lazy_eval_graph = G.Graph() | self._lazy_eval_graph = G.Graph() | ||||
self._apply_graph_options(self._lazy_eval_graph) | self._apply_graph_options(self._lazy_eval_graph) | ||||
self._lazy_eval_links = () | self._lazy_eval_links = () | ||||
@@ -339,10 +352,7 @@ class trace: | |||||
return escaped_tensors | return escaped_tensors | ||||
def _lazy_eval(self, lazy_eval_graph, lazy_eval_tensors, lazy_eval_links): | def _lazy_eval(self, lazy_eval_graph, lazy_eval_tensors, lazy_eval_links): | ||||
readers = [ | |||||
G.OutputNode(x._LazyEvalTensor__varnode).outputs[0] | |||||
for x in lazy_eval_tensors | |||||
] | |||||
readers = [G.OutputNode(x()._varnode).outputs[0] for x in lazy_eval_tensors] | |||||
self._apply_graph_options(lazy_eval_graph) | self._apply_graph_options(lazy_eval_graph) | ||||
# FIXME | # FIXME | ||||
if self._graph_opt_level is not None: | if self._graph_opt_level is not None: | ||||
@@ -353,20 +363,22 @@ class trace: | |||||
lazy_eval_graph.compile(*lazy_eval_links, *readers) | lazy_eval_graph.compile(*lazy_eval_links, *readers) | ||||
lazy_eval_graph() | lazy_eval_graph() | ||||
for r, x in zip(readers, lazy_eval_tensors): | for r, x in zip(readers, lazy_eval_tensors): | ||||
assign_raw_tensor(x, as_raw_tensor(r.op.get_value())) | |||||
x()._handle = RawTensor(r.op.get_value())._handle | |||||
@contextlib.contextmanager | @contextlib.contextmanager | ||||
def _setup(self): | def _setup(self): | ||||
interrupted = False | interrupted = False | ||||
def do_enter(): | def do_enter(): | ||||
set_tracing() | |||||
self._save_symbolic_shape = set_symbolic_shape(self._symbolic_shape) | self._save_symbolic_shape = set_symbolic_shape(self._symbolic_shape) | ||||
self._set_active(True) | self._set_active(True) | ||||
if self._untraced: | if self._untraced: | ||||
self._init_trace(self._symbolic) | self._init_trace(self._symbolic) | ||||
else: | else: | ||||
apply.enable(apply_compiled_mode) | |||||
apply.enable(apply_const_compiled_mode) | |||||
# disable symbolic mode | |||||
unset_symbolic() | |||||
set_compiled() | |||||
if self._graph is None: | if self._graph is None: | ||||
self._compile() | self._compile() | ||||
self._graph.execute() | self._graph.execute() | ||||
@@ -375,12 +387,12 @@ class trace: | |||||
escaped_tensors = self._take_escaped_tensors() | escaped_tensors = self._take_escaped_tensors() | ||||
if self._untraced: | if self._untraced: | ||||
for x in escaped_tensors: | for x in escaped_tensors: | ||||
info = self._tinfo[x._TraceMixin__handle] | |||||
info.data_read = True | |||||
x._TraceMixin__restore() | |||||
info = self._tinfo[x().mixin_handle] | |||||
x().data_read = True | |||||
x().mixin_handle = -1 | |||||
if self._inputs_to_restore: | if self._inputs_to_restore: | ||||
for x in self._inputs_to_restore: | for x in self._inputs_to_restore: | ||||
x._TraceMixin__restore() | |||||
x.mixin_handle = -1 | |||||
if self._symbolic and ( | if self._symbolic and ( | ||||
self._lazy_eval_tensors or self._lazy_eval_links | self._lazy_eval_tensors or self._lazy_eval_links | ||||
): | ): | ||||
@@ -399,7 +411,7 @@ class trace: | |||||
if self._pc == len(self._seq): | if self._pc == len(self._seq): | ||||
for x in escaped_tensors: | for x in escaped_tensors: | ||||
try: | try: | ||||
assign_raw_tensor(x, as_raw_tensor(x._dev_tensor())) | |||||
assign_raw_tensor(x(), RawTensor(x()._dev_tensor())) | |||||
except TraceMismatchError: | except TraceMismatchError: | ||||
# TraceMismatchError thrown in do_exit | # TraceMismatchError thrown in do_exit | ||||
pass | pass | ||||
@@ -409,22 +421,20 @@ class trace: | |||||
# reset status | # reset status | ||||
self._pc = 0 | self._pc = 0 | ||||
self._tensor_remaps = None | self._tensor_remaps = None | ||||
apply.disable(apply_with_tracing) | |||||
apply.disable(apply_const_with_tracing) | |||||
apply.disable(apply_symbolic_mode) | |||||
apply.disable(apply_const_symbolic_mode) | |||||
apply.disable(apply_compiled_mode) | |||||
apply.disable(apply_const_compiled_mode) | |||||
self._set_active(False) | self._set_active(False) | ||||
# Restore global variable | |||||
set_symbolic_shape(self._save_symbolic_shape) | set_symbolic_shape(self._save_symbolic_shape) | ||||
unset_compiled() | |||||
unset_symbolic() | |||||
unset_tracing() | |||||
def do_exit(): | def do_exit(): | ||||
unset_tracing() | |||||
if not self._untraced and self._pc != len(self._seq): | if not self._untraced and self._pc != len(self._seq): | ||||
raise TraceMismatchError("premature end") | raise TraceMismatchError("premature end") | ||||
if not self._symbolic or not self._untraced: | if not self._symbolic or not self._untraced: | ||||
for x in self._active_tensors: | for x in self._active_tensors: | ||||
x._dev_tensor() | |||||
x()._dev_tensor() | |||||
x().mixin_handle = -1 | |||||
try: | try: | ||||
do_enter() | do_enter() | ||||
@@ -447,9 +457,9 @@ class trace: | |||||
# conditionally reading a compiled tensor in excluded region | # conditionally reading a compiled tensor in excluded region | ||||
# is permitted, so we have to assume every tensor might be read | # is permitted, so we have to assume every tensor might be read | ||||
for x in self._active_tensors: | for x in self._active_tensors: | ||||
info = self._tinfo[x._TraceMixin__handle] | |||||
info = self._tinfo[x().mixin_handle] | |||||
info.exported = True | info.exported = True | ||||
info.data_read = True | |||||
x().data_read = True | |||||
def _apply_graph_options(self, graph): | def _apply_graph_options(self, graph): | ||||
@@ -503,7 +513,7 @@ class trace: | |||||
in_out_links += opnode.outputs[1:] | in_out_links += opnode.outputs[1:] | ||||
for op, ihandles, ohandles in self._seq: | for op, ihandles, ohandles in self._seq: | ||||
if isinstance(op, Const): | |||||
if isinstance(op, str) and op == "Const": | |||||
assert len(ihandles) == 0 | assert len(ihandles) == 0 | ||||
(h,) = ohandles | (h,) = ohandles | ||||
info = self._tinfo[h] | info = self._tinfo[h] | ||||
@@ -554,7 +564,10 @@ class trace: | |||||
io_links = (info.varnode,) | io_links = (info.varnode,) | ||||
ivars.append(info.varnode) | ivars.append(info.varnode) | ||||
ivars = [RawTensor(ivar) for ivar in ivars] | |||||
ovars = apply(op, *ivars) | ovars = apply(op, *ivars) | ||||
ovars = [x._varnode for x in ovars] | |||||
if require_links and len(ovars) > 0: | if require_links and len(ovars) > 0: | ||||
io_links = (ovars[0],) | io_links = (ovars[0],) | ||||
assert len(ovars) == len(ohandles) | assert len(ovars) == len(ohandles) | ||||
@@ -568,7 +581,8 @@ class trace: | |||||
readers.append(opnode.outputs[0]) | readers.append(opnode.outputs[0]) | ||||
in_out_links = opnode.outputs | in_out_links = opnode.outputs | ||||
if info.data_read: | |||||
x = self._handle2tensors[h] | |||||
if x.data_read: | |||||
# Shape can be obtained from data so doesn't need its own | # Shape can be obtained from data so doesn't need its own | ||||
# output node. On the other hand, value is read separately | # output node. On the other hand, value is read separately | ||||
# to leverage eager h2d copy | # to leverage eager h2d copy | ||||
@@ -581,6 +595,7 @@ class trace: | |||||
if info.shape_read: | if info.shape_read: | ||||
opnode = info.shape_reader = G.AttrOutputNode(v, *in_out_links) | opnode = info.shape_reader = G.AttrOutputNode(v, *in_out_links) | ||||
add_reader(opnode) | add_reader(opnode) | ||||
# FIXME | # FIXME | ||||
if self._graph_opt_level is not None: | if self._graph_opt_level is not None: | ||||
graph.options.graph_opt_level = self._graph_opt_level | graph.options.graph_opt_level = self._graph_opt_level | ||||
@@ -593,18 +608,6 @@ class trace: | |||||
for opnode in self._need_reset_nodes: | for opnode in self._need_reset_nodes: | ||||
opnode.reset() | opnode.reset() | ||||
def _require_shape(self, handle): | |||||
info = self._tinfo[handle] | |||||
info.shape_read = True | |||||
def _require_value(self, handle): | |||||
info = self._tinfo[handle] | |||||
info.value_read = True | |||||
def _require_data(self, handle): | |||||
info = self._tinfo[handle] | |||||
info.data_read = True | |||||
def __call__(self, *args, **kwargs): | def __call__(self, *args, **kwargs): | ||||
if is_tracing(): | if is_tracing(): | ||||
return self.__wrapped__(*args, **kwargs) | return self.__wrapped__(*args, **kwargs) | ||||
@@ -728,8 +731,9 @@ class trace: | |||||
dtype=info.dtype, device=dumped_device, shape=info.shape or (1,), name=k | dtype=info.dtype, device=dumped_device, shape=info.shape or (1,), name=k | ||||
) | ) | ||||
set_tracing() | |||||
for op, ihandles, ohandles in self._seq: | for op, ihandles, ohandles in self._seq: | ||||
if isinstance(op, Const): | |||||
if isinstance(op, str) and op == "Const": | |||||
assert len(ihandles) == 0 | assert len(ihandles) == 0 | ||||
(h,) = ohandles | (h,) = ohandles | ||||
info = self._tinfo[h] | info = self._tinfo[h] | ||||
@@ -750,7 +754,9 @@ class trace: | |||||
info.bound_data.numpy(), dtype=info.dtype, device=dumped_device | info.bound_data.numpy(), dtype=info.dtype, device=dumped_device | ||||
) | ) | ||||
ivars.append(h2v[h]) | ivars.append(h2v[h]) | ||||
ivars = [RawTensor(ivar) for ivar in ivars] | |||||
ovars = apply(op, *ivars) | ovars = apply(op, *ivars) | ||||
ovars = [x._varnode for x in ovars] | |||||
assert len(ovars) == len(ohandles) | assert len(ovars) == len(ohandles) | ||||
h2v.update(zip(ohandles, ovars)) | h2v.update(zip(ohandles, ovars)) | ||||
@@ -761,6 +767,7 @@ class trace: | |||||
v.name = output_names[i] | v.name = output_names[i] | ||||
dest_vars.append(v) | dest_vars.append(v) | ||||
dest_vars = [G.VarNode(var) for var in dest_vars] | |||||
if optimize_for_inference: | if optimize_for_inference: | ||||
dest_vars = G.optimize_for_inference(dest_vars, **kwargs) | dest_vars = G.optimize_for_inference(dest_vars, **kwargs) | ||||
@@ -782,15 +789,15 @@ class trace: | |||||
info.external = False | info.external = False | ||||
info.device = x.device | info.device = x.device | ||||
info.dtype = x.dtype | info.dtype = x.dtype | ||||
info.shape = x.shape | |||||
TraceMixin._TraceMixin__inject(x, h) | |||||
info.shape = x.numpy().shape | |||||
x.mixin_handle = h | |||||
self._handle2tensors[h] = x | |||||
self._inputs_to_restore.append(x) | self._inputs_to_restore.append(x) | ||||
return h | return h | ||||
self._arg_bindings = [] | self._arg_bindings = [] | ||||
for i, x in enumerate(args): | for i, x in enumerate(args): | ||||
x = find_raw_tensor(x) | |||||
if x is None: | |||||
if not isinstance(x, RawTensor): | |||||
raise TypeError( | raise TypeError( | ||||
"positional arguments should all be tensor " | "positional arguments should all be tensor " | ||||
"but args[%d] cannot be recognized as one" % i | "but args[%d] cannot be recognized as one" % i | ||||
@@ -799,8 +806,7 @@ class trace: | |||||
self._kwarg_bindings = {} | self._kwarg_bindings = {} | ||||
for k, x in kwargs.items(): | for k, x in kwargs.items(): | ||||
x = find_raw_tensor(x) | |||||
if x is not None: | |||||
if isinstance(x, RawTensor): | |||||
self._kwarg_bindings[k] = record_input(x) | self._kwarg_bindings[k] = record_input(x) | ||||
else: | else: | ||||
if len(args) != len(self._arg_bindings): | if len(args) != len(self._arg_bindings): | ||||
@@ -809,8 +815,7 @@ class trace: | |||||
self._tensor_remaps = {} | self._tensor_remaps = {} | ||||
for i, (h, x) in enumerate(zip(self._arg_bindings, args)): | for i, (h, x) in enumerate(zip(self._arg_bindings, args)): | ||||
x = find_raw_tensor(x) | |||||
if x is None: | |||||
if not isinstance(x, RawTensor): | |||||
raise TypeError( | raise TypeError( | ||||
"positional arguments should all be tensor " | "positional arguments should all be tensor " | ||||
"but args[%d] cannot be recognized as one" % i | "but args[%d] cannot be recognized as one" % i | ||||
@@ -825,8 +830,7 @@ class trace: | |||||
kwargs_tensors = {} | kwargs_tensors = {} | ||||
for k, x in kwargs.items(): | for k, x in kwargs.items(): | ||||
x = find_raw_tensor(x) | |||||
if x is not None: | |||||
if isinstance(x, RawTensor): | |||||
kwargs_tensors[k] = x | kwargs_tensors[k] = x | ||||
if set(kwargs_tensors) != set(self._kwarg_bindings): | if set(kwargs_tensors) != set(self._kwarg_bindings): | ||||
too_many = set(kwargs_tensors) - set(self._kwarg_bindings) | too_many = set(kwargs_tensors) - set(self._kwarg_bindings) | ||||
@@ -877,18 +881,17 @@ class trace: | |||||
self._output_bindings = [] | self._output_bindings = [] | ||||
for i, x in enumerate(outputs): | for i, x in enumerate(outputs): | ||||
x = find_raw_tensor(x) | |||||
if x is None: | |||||
if not isinstance(x, RawTensor): | |||||
raise TypeError("every item of return value should be tensor") | raise TypeError("every item of return value should be tensor") | ||||
if self._untraced: | if self._untraced: | ||||
if not isinstance(x, TraceMixin): | |||||
h = x.mixin_handle | |||||
if h < 0: | |||||
raise RuntimeError("output is not computed from inputs") | raise RuntimeError("output is not computed from inputs") | ||||
h = x._TraceMixin__handle | |||||
self._output_bindings.append(h) | self._output_bindings.append(h) | ||||
else: | else: | ||||
if not isinstance(x, CompiledTensorProxy): | |||||
h = x.mixin_handle | |||||
if h not in self._handle2compiledtensors: | |||||
raise RuntimeError("output is not computed from inputs") | raise RuntimeError("output is not computed from inputs") | ||||
h = x._CompiledTensorProxy__handle | |||||
if h != self._output_bindings[i]: | if h != self._output_bindings[i]: | ||||
raise TraceMismatchError( | raise TraceMismatchError( | ||||
"retval[%s] is a different tensor than last time" | "retval[%s] is a different tensor than last time" | ||||
@@ -912,7 +915,7 @@ class trace: | |||||
) | ) | ||||
class CompiledTensorProxy(RawTensor): | |||||
class CompiledTensorProxy: | |||||
""" | """ | ||||
Duck-typed RawTensor | Duck-typed RawTensor | ||||
""" | """ | ||||
@@ -924,6 +927,8 @@ class CompiledTensorProxy(RawTensor): | |||||
self.__shape = None | self.__shape = None | ||||
self.__data = None | self.__data = None | ||||
self.__value = None | self.__value = None | ||||
self.__tensor = active_trace._handle2tensors[handle] | |||||
self.__tensor.mixin_handle = handle | |||||
@property | @property | ||||
def dtype(self): | def dtype(self): | ||||
@@ -938,19 +943,19 @@ class CompiledTensorProxy(RawTensor): | |||||
if self._isscalar: | if self._isscalar: | ||||
return () | return () | ||||
if self.__shape is None: | if self.__shape is None: | ||||
if self.__info.shape_read: | |||||
if self.__tensor.shape_read: | |||||
self.__shape = self.__info.shape_reader.get_value().shape | self.__shape = self.__info.shape_reader.get_value().shape | ||||
elif self.__info.data_read: | |||||
self.__shape = self._dev_tensor().shape | |||||
elif self.__tensor.data_read: | |||||
self.__shape = self.__tensor._dev_tensor().shape | |||||
else: | else: | ||||
raise TraceMismatchError("shape of this tensor is not read in trace") | raise TraceMismatchError("shape of this tensor is not read in trace") | ||||
return self.__shape | return self.__shape | ||||
def numpy(self): | def numpy(self): | ||||
if self.__value is None: | if self.__value is None: | ||||
if self.__info.value_read: | |||||
if self.__tensor.value_read: | |||||
self.__value = self.__info.value_reader.get_value() | self.__value = self.__info.value_reader.get_value() | ||||
elif self.__info.data_read: | |||||
elif self.__tensor.data_read: | |||||
self.__value = self._dev_tensor().numpy() | self.__value = self._dev_tensor().numpy() | ||||
else: | else: | ||||
raise TraceMismatchError("value of this tensor is not read in trace") | raise TraceMismatchError("value of this tensor is not read in trace") | ||||
@@ -960,9 +965,11 @@ class CompiledTensorProxy(RawTensor): | |||||
def _dev_tensor(self): | def _dev_tensor(self): | ||||
if self.__data is None: | if self.__data is None: | ||||
if not self.__info.data_read: | |||||
if not self.__tensor.data_read: | |||||
raise TraceMismatchError("raw data of this tensor is not read in trace") | raise TraceMismatchError("raw data of this tensor is not read in trace") | ||||
self.__data = self.__info.data_reader.get_value() | self.__data = self.__info.data_reader.get_value() | ||||
self.__tensor._reset(RawTensor(self.__data)) | |||||
self.__tensor.mixin_handle = self.__handle | |||||
return self.__data | return self.__data | ||||
def _drop(self): | def _drop(self): | ||||
@@ -975,132 +982,31 @@ class CompiledTensorProxy(RawTensor): | |||||
return | return | ||||
def __del__(self): | def __del__(self): | ||||
if self.__info.shape_read and self.__shape is not None: | |||||
if self.__tensor.shape_read and self.__shape is not None: | |||||
self.__info.shape_reader.drop_value() | self.__info.shape_reader.drop_value() | ||||
if self.__info.value_read and self.__value is not None: | |||||
self.__info.value_reader.drop_value() | |||||
if self.__info.data_read and self.__data is not None: | |||||
# if self.__tensor.value_read and self.__value is not None: | |||||
# self.__info.value_reader.drop_value() | |||||
if self.__tensor.data_read and self.__data is not None: | |||||
self.__info.data_reader.drop_value() | self.__info.data_reader.drop_value() | ||||
class LazyEvalTensor(RawTensor): | |||||
def __init__(self, varnode, isscalar=False): | |||||
super().__init__() | |||||
self.__varnode = varnode | |||||
self._isscalar = isscalar | |||||
@property | |||||
def dtype(self): | |||||
return self.__varnode.dtype | |||||
@property | |||||
def device(self): | |||||
return self.__varnode.device | |||||
@property | |||||
def shape(self): | |||||
if self._isscalar: | |||||
return () | |||||
return self.__varnode.shape | |||||
def numpy(self): | |||||
ret = self.__varnode.value | |||||
if self._isscalar: | |||||
ret = ret.squeeze() | |||||
return ret | |||||
def _drop(self): | |||||
return | |||||
def _swap_in(self): | |||||
return | |||||
def _swap_out(self): | |||||
return | |||||
def _dev_tensor(self): | |||||
raise RuntimeError("cannot access data during symbolic tracing") | |||||
class TraceMixin: | |||||
__subclass_cache = {} | |||||
def __inject(self, handle): | |||||
cache = __class__.__subclass_cache | |||||
cls = self.__class__ | |||||
subcls = cache.get(cls) | |||||
if subcls is None: | |||||
subcls = cache[cls] = type("Traced" + cls.__name__, (__class__, cls), {}) | |||||
self.__class__ = subcls | |||||
self.__handle = handle | |||||
self.__cls = cls | |||||
return self | |||||
def __restore(self): | |||||
cls = self.__cls | |||||
del self.__handle | |||||
del self.__cls | |||||
self.__class__ = cls | |||||
return self | |||||
@property | |||||
def shape(self): | |||||
if not skip_tracing: | |||||
active_trace._require_shape(self.__handle) | |||||
return super().shape | |||||
def numpy(self): | |||||
if not skip_tracing: | |||||
active_trace._require_value(self.__handle) | |||||
return super().numpy() | |||||
def _dev_tensor(self): | |||||
if not skip_tracing: | |||||
active_trace._require_data(self.__handle) | |||||
return super()._dev_tensor() | |||||
def _drop(self): | |||||
return | |||||
def _swap_in(self): | |||||
return | |||||
def _swap_out(self): | |||||
return | |||||
class TracedRawTensor(TraceMixin, RawTensor): | |||||
pass | |||||
class TracedLazyTensor(TraceMixin, LazyEvalTensor): | |||||
pass | |||||
def assign_raw_tensor(lhs, rhs): | def assign_raw_tensor(lhs, rhs): | ||||
handle = rhs._handle | |||||
# Keep isscalar of lhs | |||||
isscalar = lhs._isscalar | |||||
rhs.__dict__.clear() | |||||
lhs.__dict__.clear() | |||||
lhs.__class__ = RawTensor | |||||
lhs.__init__(handle, isscalar=isscalar) | |||||
lhs.__init__(rhs) | |||||
# this hook turns RawTensor into LazyEvalTensor | |||||
@apply.register() | |||||
# this hook turns RawTensor into LazyEvalTensor(varnode) | |||||
def apply_symbolic_mode(op: OpDef, *args: RawTensor): | def apply_symbolic_mode(op: OpDef, *args: RawTensor): | ||||
graph = active_trace._lazy_eval_graph | graph = active_trace._lazy_eval_graph | ||||
ivars = [] | ivars = [] | ||||
for x in args: | for x in args: | ||||
var = getattr(x, "_LazyEvalTensor__varnode", None) | |||||
var = getattr(x, "_varnode", None) | |||||
if var: | if var: | ||||
ivars.append(var) | ivars.append(var) | ||||
else: | else: | ||||
data_setter = G.InputNode( | data_setter = G.InputNode( | ||||
device=x.device, | device=x.device, | ||||
dtype=x.dtype, | dtype=x.dtype, | ||||
shape=x.shape or (1,), | |||||
shape=x.numpy().shape or (1,), | |||||
graph=graph, | graph=graph, | ||||
use_static_shape=True, | use_static_shape=True, | ||||
) | ) | ||||
@@ -1119,108 +1025,75 @@ def apply_symbolic_mode(op: OpDef, *args: RawTensor): | |||||
ivars[0] = opnode.outputs[0] | ivars[0] = opnode.outputs[0] | ||||
active_trace._lazy_eval_links = (ivars[0],) | active_trace._lazy_eval_links = (ivars[0],) | ||||
ovars = apply(op, *ivars) | |||||
ivars = [ | |||||
RawTensor(ivar._node) if hasattr(ivar, "_node") else RawTensor(ivar) | |||||
for ivar in ivars | |||||
] | |||||
unset_symbolic() | |||||
outputs = apply(op, *ivars) | |||||
set_symbolic() | |||||
if require_links: | if require_links: | ||||
active_trace._lazy_eval_links = (ovars[0],) | |||||
active_trace._lazy_eval_links = (outputs[0]._varnode,) | |||||
outputs = [LazyEvalTensor(v) for v in ovars] | |||||
active_trace._lazy_eval_tensors.update(outputs) | |||||
active_trace._lazy_eval_tensors.update([TensorWeakRef(o) for o in outputs]) | |||||
return outputs | return outputs | ||||
apply.disable(apply_symbolic_mode) | |||||
@apply.register() | |||||
def apply_const_symbolic_mode(op: Const, *args: RawTensor): | |||||
def apply_const_symbolic_mode(value, dtype, device): | |||||
graph = active_trace._lazy_eval_graph | graph = active_trace._lazy_eval_graph | ||||
ret = LazyEvalTensor( | |||||
graph.make_const(op.value, dtype=op.dtype, device=op.device), isscalar=True | |||||
) | |||||
active_trace._lazy_eval_tensors.add(ret) | |||||
# don't need to unset tracing | |||||
# because varnode construction will ignore tracing flag | |||||
ret = RawTensor(graph.make_const(value, dtype=dtype, device=device)) | |||||
active_trace._lazy_eval_tensors.add(TensorWeakRef(ret)) | |||||
return (ret,) | return (ret,) | ||||
apply.disable(apply_const_symbolic_mode) | |||||
@apply.register() | |||||
def apply_compiled_mode(op: OpDef, *args: RawTensor): | def apply_compiled_mode(op: OpDef, *args: RawTensor): | ||||
if skip_tracing: | if skip_tracing: | ||||
args = [ | args = [ | ||||
as_raw_tensor(x._dev_tensor()) if x.__class__ is CompiledTensorProxy else x | |||||
RawTensor(x._dev_tensor()) if x.__class__ is CompiledTensorProxy else x | |||||
for x in args | for x in args | ||||
] | ] | ||||
return apply.super(op, *args) | |||||
unset_tracing() | |||||
ret = apply(op, *args) | |||||
set_tracing() | |||||
return ret | |||||
return active_trace._apply_op(op, args) | return active_trace._apply_op(op, args) | ||||
apply.disable(apply_compiled_mode) | |||||
@apply.register() | |||||
def apply_const_compiled_mode(op: Const, *args: RawTensor): | |||||
def apply_const_compiled_mode(value, dtype, device, is_const): | |||||
if skip_tracing: | if skip_tracing: | ||||
args = [ | args = [ | ||||
as_raw_tensor(x._dev_tensor()) if x.__class__ is CompiledTensorProxy else x | |||||
RawTensor(x._dev_tensor()) if x.__class__ is CompiledTensorProxy else x | |||||
for x in args | for x in args | ||||
] | ] | ||||
return apply.super(op, *args) | |||||
return active_trace._apply_const(op, args) | |||||
apply.disable(apply_const_compiled_mode) | |||||
unset_tracing() | |||||
ret = RawTensor(value, dtype, device, False) | |||||
set_tracing() | |||||
return ret | |||||
return active_trace._apply_const(value, dtype, device) | |||||
# this hook injects TraceMixin | # this hook injects TraceMixin | ||||
@apply.register() | |||||
def apply_with_tracing(op: OpDef, *args: RawTensor): | def apply_with_tracing(op: OpDef, *args: RawTensor): | ||||
outputs = apply.super(op, *args) | |||||
active_trace._record_op(op, args, outputs) | |||||
return outputs | |||||
apply.disable(apply_with_tracing) | |||||
@apply.register() | |||||
def apply_const_with_tracing(op: Const, *args: RawTensor): | |||||
outputs = apply.super(op, *args) | |||||
active_trace._record_const(op, outputs) | |||||
return outputs | |||||
apply.disable(apply_const_with_tracing) | |||||
class BrokenRawTensor(RawTensor): | |||||
def __getattribute__(self, _): | |||||
raise RuntimeError("broken due to misuse of tracing") | |||||
def __setattr__(self, *_): | |||||
raise RuntimeError("broken due to misuse of tracing") | |||||
@functools.singledispatch | |||||
def find_raw_tensor(x): | |||||
return None | |||||
@find_raw_tensor.register(RawTensor) | |||||
def _(x): | |||||
return x | |||||
if active_trace._symbolic: | |||||
outputs = apply_symbolic_mode(op, *args) | |||||
else: | |||||
unset_tracing() | |||||
outputs = apply(op, *args) | |||||
set_tracing() | |||||
@find_raw_tensor.register(TensorWrapperBase) | |||||
def _(x): | |||||
x = getattr(x, "__wrapped__", None) | |||||
if x is not None: | |||||
return find_raw_tensor(x) | |||||
active_trace._record_op(op, args, outputs) | |||||
return list(outputs) | |||||
@find_raw_tensor.register(Tensor) | |||||
def _(x): | |||||
x = getattr(x, "_data", None) | |||||
if x is not None: | |||||
return find_raw_tensor(x) | |||||
def apply_const_with_tracing(value, dtype, device, is_const): | |||||
if active_trace._symbolic: | |||||
outputs = apply_const_symbolic_mode(value, dtype, device) | |||||
else: | |||||
unset_tracing() | |||||
outputs = (RawTensor(value, dtype, device, False),) | |||||
set_tracing() | |||||
active_trace._record_const(outputs) | |||||
return list(outputs) |
@@ -28,7 +28,7 @@ class Tensor(_Tensor, ArrayMethodMixin): | |||||
dmap_callback = None | dmap_callback = None | ||||
q_dict = {"mode": None, "scale": None, "zero_point": None} | q_dict = {"mode": None, "scale": None, "zero_point": None} | ||||
def __new__(cls, data, dtype=None, device=None): | |||||
def __new__(cls, data, dtype=None, device=None, is_const=False): | |||||
if device is None: | if device is None: | ||||
cn = get_default_device() | cn = get_default_device() | ||||
elif isinstance(device, str): | elif isinstance(device, str): | ||||
@@ -40,6 +40,7 @@ class Tensor(_Tensor, ArrayMethodMixin): | |||||
assert isinstance(device, CompNode) | assert isinstance(device, CompNode) | ||||
cn = device | cn = device | ||||
# import pdb; pdb.set_trace() | |||||
if isinstance(data, _Tensor): | if isinstance(data, _Tensor): | ||||
obj = _Tensor.__new__(cls, data) | obj = _Tensor.__new__(cls, data) | ||||
else: | else: | ||||
@@ -47,7 +48,7 @@ class Tensor(_Tensor, ArrayMethodMixin): | |||||
if 0 in data.strides: | if 0 in data.strides: | ||||
data = data.squeeze().reshape(data.shape) | data = data.squeeze().reshape(data.shape) | ||||
obj = _Tensor.__new__(cls, data, dtype, cn) | |||||
obj = _Tensor.__new__(cls, data, dtype, cn, is_const) | |||||
return obj | return obj | ||||
@property | @property | ||||
@@ -296,7 +296,9 @@ void accum_grad(std::shared_ptr<Tensor>& grad, std::shared_ptr<Tensor>&& delta) | |||||
Tensor* args[2] = {grad.get(), delta.get()}; | Tensor* args[2] = {grad.get(), delta.get()}; | ||||
ctx.args = args; | ctx.args = args; | ||||
ctx.flags = grad->m_flags | delta->m_flags; | ctx.flags = grad->m_flags | delta->m_flags; | ||||
if (is_tracing) { | |||||
ctx.flags |= Tensor::Flags::TRACE; | |||||
} | |||||
grad = apply(ctx)[0]; | grad = apply(ctx)[0]; | ||||
} | } | ||||
@@ -354,6 +356,9 @@ void GradKey::backward(std::vector<TensorWrapper*> tensors, std::vector<TensorWr | |||||
} | } | ||||
ctx.args = args; | ctx.args = args; | ||||
if (is_tracing) | |||||
ctx.flags |= Tensor::Flags::TRACE; | |||||
auto grads = apply(ctx); | auto grads = apply(ctx); | ||||
size_t j = 0; | size_t j = 0; | ||||
@@ -11,8 +11,10 @@ | |||||
#include "./tensor.h" | #include "./tensor.h" | ||||
#include "./grad.h" | #include "./grad.h" | ||||
#include "./trace.h" | |||||
#include "./common.h" | #include "./common.h" | ||||
#include "./numpy_dtypes.h" | #include "./numpy_dtypes.h" | ||||
#include "./graph_rt.h" | |||||
#include <pybind11/numpy.h> | #include <pybind11/numpy.h> | ||||
#include <pybind11/operators.h> | #include <pybind11/operators.h> | ||||
@@ -23,6 +25,47 @@ namespace mgb::imperative::python { | |||||
std::unique_ptr<interpreter::Interpreter::Channel> interpreter_for_py; | std::unique_ptr<interpreter::Interpreter::Channel> interpreter_for_py; | ||||
py::object cpp_apply_with_tracing, cpp_apply_const_with_tracing, | |||||
cpp_apply_compiled_mode, cpp_apply_const_compiled_mode; | |||||
py::object cpp_apply_backward_varnode; | |||||
#define REGISTE_APPLY_FUNC(mode) \ | |||||
void set_##mode(py::object pyf) { \ | |||||
mode = pybind11::reinterpret_steal<py::object>(pyf); \ | |||||
} | |||||
REGISTE_APPLY_FUNC(cpp_apply_with_tracing) | |||||
REGISTE_APPLY_FUNC(cpp_apply_const_with_tracing) | |||||
REGISTE_APPLY_FUNC(cpp_apply_compiled_mode) | |||||
REGISTE_APPLY_FUNC(cpp_apply_const_compiled_mode) | |||||
REGISTE_APPLY_FUNC(cpp_apply_backward_varnode) | |||||
#undef REGISTE_APPLY_FUNC | |||||
bool is_tracing = false; | |||||
bool is_symbolic = false; | |||||
bool is_compiled = false; | |||||
int64_t call_level = 0; | |||||
#define SET_UNSET_PROP(mode) \ | |||||
void set_##mode() { \ | |||||
is_##mode = true; \ | |||||
} \ | |||||
void unset_##mode() { \ | |||||
is_##mode = false; \ | |||||
} \ | |||||
SET_UNSET_PROP(tracing) | |||||
SET_UNSET_PROP(symbolic) | |||||
SET_UNSET_PROP(compiled) | |||||
#undef SET_UNSET_PROP | |||||
bool skip_tracing = false; | |||||
apply_result_t apply(ApplyContext& ctx) { | apply_result_t apply(ApplyContext& ctx) { | ||||
// emulating scalar should be put to specific op's apply, e.g., | // emulating scalar should be put to specific op's apply, e.g., | ||||
// elementwise, reduce, typecvt. Currently it's still handled at python | // elementwise, reduce, typecvt. Currently it's still handled at python | ||||
@@ -36,7 +79,7 @@ apply_result_t apply(ApplyContext& ctx) { | |||||
} | } | ||||
if (ctx.flags & Tensor::Flags::TRACE) { | if (ctx.flags & Tensor::Flags::TRACE) { | ||||
// TODO: trace | |||||
return apply_trace(ctx); | |||||
} else { | } else { | ||||
SmallVector<interpreter::Interpreter::Handle> handles(ctx.nargs); | SmallVector<interpreter::Interpreter::Handle> handles(ctx.nargs); | ||||
for (size_t i = 0; i < ctx.nargs; ++i) { | for (size_t i = 0; i < ctx.nargs; ++i) { | ||||
@@ -58,7 +101,6 @@ apply_result_t apply(ApplyContext& ctx) { | |||||
PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */) { | PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */) { | ||||
try { | try { | ||||
// if (kwnames && PyTuple_GET_SIZE(kwnames)) { | // if (kwnames && PyTuple_GET_SIZE(kwnames)) { | ||||
// PyErr_SetString(PyExc_TypeError, "keyword argument not allowed"); | // PyErr_SetString(PyExc_TypeError, "keyword argument not allowed"); | ||||
// return nullptr; | // return nullptr; | ||||
@@ -67,6 +109,7 @@ PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObje | |||||
PyErr_SetString(PyExc_TypeError, "expect Op"); | PyErr_SetString(PyExc_TypeError, "expect Op"); | ||||
return nullptr; | return nullptr; | ||||
} | } | ||||
auto* op = args[0]; | auto* op = args[0]; | ||||
PyTypeObject* pytype = args[1]->ob_type; | PyTypeObject* pytype = args[1]->ob_type; | ||||
@@ -79,18 +122,23 @@ PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObje | |||||
SmallVector<Tensor*, 64> tensors(nargs); | SmallVector<Tensor*, 64> tensors(nargs); | ||||
ctx.args = &tensors[0]; | ctx.args = &tensors[0]; | ||||
ctx.nargs = nargs; | ctx.nargs = nargs; | ||||
if (strstr(op->ob_type->tp_name, "BackwardGraph")) { | |||||
ctx.backward = true; | |||||
} | |||||
for (size_t i = 0; i < nargs; ++i) { | for (size_t i = 0; i < nargs; ++i) { | ||||
TensorWrapper* tw = TensorWrapper::cast_safe(args[i]); | |||||
if (!tw) { | |||||
if (TensorWrapper* tw = TensorWrapper::cast_safe(args[i])) { | |||||
auto* t = tensors[i] = tw->m_tensor.get(); | |||||
ctx.flags |= t->m_flags; | |||||
} else { | |||||
PyErr_SetString(PyExc_TypeError, "expect Tensor"); | PyErr_SetString(PyExc_TypeError, "expect Tensor"); | ||||
return nullptr; | return nullptr; | ||||
} | } | ||||
auto* t = tensors[i] = tw->m_tensor.get(); | |||||
ctx.flags |= t->m_flags; | |||||
} | } | ||||
// TODO: set TRACE flag | |||||
if (is_tracing) { | |||||
ctx.flags |= Tensor::Flags::TRACE; | |||||
} | |||||
auto outputs = apply(ctx); | auto outputs = apply(ctx); | ||||
size_t nout = outputs.size(); | size_t nout = outputs.size(); | ||||
@@ -99,7 +147,6 @@ PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObje | |||||
ret[i] = TensorWrapper::make(pytype, std::move(outputs[i])); | ret[i] = TensorWrapper::make(pytype, std::move(outputs[i])); | ||||
} | } | ||||
return ret.release().ptr(); | return ret.release().ptr(); | ||||
} catch (std::exception& e) { | } catch (std::exception& e) { | ||||
PyErr_SetString(PyExc_RuntimeError, e.what()); | PyErr_SetString(PyExc_RuntimeError, e.what()); | ||||
return nullptr; | return nullptr; | ||||
@@ -122,36 +169,116 @@ TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) { | |||||
} | } | ||||
m_tensor = t->m_tensor; | m_tensor = t->m_tensor; | ||||
} else { | } else { | ||||
if (nargs != 3) { | |||||
throw py::type_error("expect 3 arguments"); | |||||
} | |||||
py::detail::loader_life_support life_sup; // required to cast DType | |||||
auto data = tup[0].cast<py::array>(); | |||||
DType dtype = tup[1].cast<DType>(); | |||||
CompNode cn = tup[2].cast<CompNode>(); | |||||
interpreter::Interpreter::Handle handle; | |||||
constexpr auto size_threshhold = TensorShape::MAX_NDIM; | |||||
if (data.size() > size_threshhold) { | |||||
handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype)); | |||||
if (nargs == 1) { | |||||
auto arg0 = PyTuple_GetItem(args, 0); | |||||
// for lazy_eval_tensor | |||||
if (strstr(arg0->ob_type->tp_name, "VarNode")) { | |||||
if (PyObject_HasAttrString(arg0, "_node")) { | |||||
arg0 = PyObject_GetAttrString(arg0, "_node"); | |||||
} | |||||
m_tensor = std::make_shared<Tensor>(py::handle(arg0).cast<cg::VarNode *>()); | |||||
} else { | |||||
// for DeviceTensorND | |||||
if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) { | |||||
auto dv = py::handle(arg0).cast<DeviceTensorND>(); | |||||
interpreter::Interpreter::Handle handle = interpreter_for_py->put(dv); | |||||
m_tensor = std::make_shared<Tensor>(handle); | |||||
} else { | |||||
throw py::type_error("single argument is not tensor, varnode or devicetensor"); | |||||
} | |||||
} | |||||
} else { | } else { | ||||
HostTensorND ret(cn); | |||||
handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype)); | |||||
} | |||||
py::detail::loader_life_support life_sup; // required to cast DType | |||||
auto data = tup[0].cast<py::array>(); | |||||
DType dtype = tup[1].cast<DType>(); | |||||
CompNode cn = tup[2].cast<CompNode>(); | |||||
bool is_const = tup[3].cast<bool>(); | |||||
if (nargs != 4) { | |||||
throw py::type_error("expect 3 arguments"); | |||||
} | |||||
// const op | |||||
if (is_const && is_tracing) { | |||||
py::object pyf; | |||||
if (is_compiled) { | |||||
pyf = cpp_apply_const_compiled_mode; | |||||
} else { | |||||
pyf = cpp_apply_const_with_tracing; | |||||
} | |||||
auto ret = pyf(*tup); | |||||
auto py_ret = py::reinterpret_borrow<py::list>(ret); | |||||
if (auto* t = cast_safe(py_ret[0].ptr())) { | |||||
m_tensor = t->m_tensor; | |||||
} | |||||
return; | |||||
} | |||||
interpreter::Interpreter::Handle handle; | |||||
constexpr auto size_threshhold = TensorShape::MAX_NDIM; | |||||
if (data.size() > size_threshhold) { | |||||
handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::borrow(cn), dtype)); | |||||
} else { | |||||
HostTensorND ret(cn); | |||||
handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype)); | |||||
} | |||||
m_tensor = std::make_shared<Tensor>(handle); | |||||
m_tensor = std::make_shared<Tensor>(handle); | |||||
if (data.ndim() == 0) { | |||||
m_tensor->m_flags |= Tensor::Flags::SCALAR; | |||||
if (data.ndim() == 0) { | |||||
m_tensor->m_flags |= Tensor::Flags::SCALAR; | |||||
} | |||||
} | } | ||||
} | } | ||||
} | } | ||||
#define REGISTE_TENSORWRAPPER_FUNC(type, member) \ | |||||
PyObject* TensorWrapper::member() { \ | |||||
return py::cast(m_tensor->m_trace_info.member).release().ptr(); \ | |||||
} \ | |||||
void TensorWrapper::set_##member(PyObject* dest) { \ | |||||
auto py_dest = py::reinterpret_borrow<py::object>(dest); \ | |||||
type real_dest = py_dest.cast<type>(); \ | |||||
m_tensor->m_trace_info.member = real_dest; \ | |||||
} | |||||
REGISTE_TENSORWRAPPER_FUNC(bool, data_read) | |||||
REGISTE_TENSORWRAPPER_FUNC(bool, value_read) | |||||
REGISTE_TENSORWRAPPER_FUNC(bool, shape_read) | |||||
REGISTE_TENSORWRAPPER_FUNC(int64_t, mixin_handle) | |||||
#undef REGISTE_TENSORWRAPPER_FUNC | |||||
PyObject* TensorWrapper::handle() { | |||||
return py::cast(m_tensor->m_handle).release().ptr(); | |||||
} | |||||
void TensorWrapper::set_handle(PyObject* dest) { | |||||
auto py_dest = py::reinterpret_borrow<py::object>(dest); | |||||
SharedHandle real_dest = py_dest.cast<SharedHandle>(); | |||||
auto&& t = std::move(m_tensor->m_handle); | |||||
m_tensor->m_handle = std::move(real_dest); | |||||
} | |||||
PyObject* TensorWrapper::shape() { | PyObject* TensorWrapper::shape() { | ||||
if (!skip_tracing) { | |||||
set_shape_read(py::cast(true). release().ptr()); | |||||
} | |||||
if (m_tensor->m_flags & Tensor::Flags::SCALAR) { | if (m_tensor->m_flags & Tensor::Flags::SCALAR) { | ||||
return PyTuple_New(0); | return PyTuple_New(0); | ||||
} | } | ||||
auto&& shape = m_tensor->shape(); | |||||
TensorShape shape; | |||||
if (m_tensor->m_var) { | |||||
shape = m_tensor->m_var->shape(); | |||||
} else { | |||||
shape = m_tensor->shape(); | |||||
} | |||||
if (!shape.ndim) { | if (!shape.ndim) { | ||||
Py_RETURN_NONE; | Py_RETURN_NONE; | ||||
} | } | ||||
@@ -164,16 +291,38 @@ PyObject* TensorWrapper::shape() { | |||||
PyObject* TensorWrapper::dtype() { | PyObject* TensorWrapper::dtype() { | ||||
if (m_tensor->m_var) { | |||||
return py::cast(m_tensor->m_var->dtype()).release().ptr(); | |||||
} | |||||
return py::cast(m_tensor->dtype()).release().ptr(); | return py::cast(m_tensor->dtype()).release().ptr(); | ||||
} | } | ||||
PyObject* TensorWrapper::device() { | PyObject* TensorWrapper::device() { | ||||
if (m_tensor->m_var) { | |||||
return py::cast(m_tensor->m_var->comp_node()).release().ptr(); | |||||
} | |||||
return py::cast(m_tensor->comp_node()).release().ptr(); | return py::cast(m_tensor->comp_node()).release().ptr(); | ||||
} | } | ||||
PyObject* TensorWrapper::numpy() { | PyObject* TensorWrapper::numpy() { | ||||
if (!skip_tracing) { | |||||
set_value_read(py::cast(true).release().ptr()); | |||||
} | |||||
if (m_tensor->m_handle.get() == nullptr && m_tensor->m_var != nullptr) { | |||||
auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager(); | |||||
auto&& type = mgr.get_infer_type(m_tensor->m_var); | |||||
using InferType = cg::static_infer::InferType; | |||||
if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) { | |||||
return nullptr; | |||||
} | |||||
auto* val = mgr.infer_value_fallible(m_tensor->m_var); | |||||
if (!val) { | |||||
return nullptr; | |||||
} | |||||
return py::cast(*val).attr("numpy")().release().ptr(); | |||||
} | |||||
auto&& hv = interpreter_for_py->get_value(m_tensor->m_handle.get()); | auto&& hv = interpreter_for_py->get_value(m_tensor->m_handle.get()); | ||||
auto arr = py::reinterpret_steal<py::array>(npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE)); | auto arr = py::reinterpret_steal<py::array>(npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE)); | ||||
if (!arr) return nullptr; | if (!arr) return nullptr; | ||||
@@ -184,6 +333,13 @@ PyObject* TensorWrapper::numpy() { | |||||
return arr.release().ptr(); | return arr.release().ptr(); | ||||
} | } | ||||
PyObject* TensorWrapper::varnode() { | |||||
if (m_tensor->m_var) { | |||||
return py::cast(m_tensor->m_var).release().ptr(); | |||||
} | |||||
return nullptr; | |||||
} | |||||
void TensorWrapper::reset(PyObject* tensor) { | void TensorWrapper::reset(PyObject* tensor) { | ||||
TensorWrapper* t = TensorWrapper::cast_safe(tensor); | TensorWrapper* t = TensorWrapper::cast_safe(tensor); | ||||
if (!t) { | if (!t) { | ||||
@@ -195,13 +351,22 @@ void TensorWrapper::reset(PyObject* tensor) { | |||||
PyObject* TensorWrapper::detach() { | PyObject* TensorWrapper::detach() { | ||||
PyObject* self = wrap_t::pycast(this); | PyObject* self = wrap_t::pycast(this); | ||||
PyTypeObject* pytype = self->ob_type; | PyTypeObject* pytype = self->ob_type; | ||||
auto new_tensor = std::make_shared<Tensor>(m_tensor->m_handle); | |||||
std::shared_ptr<Tensor> new_tensor; | |||||
if (m_tensor->m_handle.get()) { | |||||
new_tensor = std::make_shared<Tensor>(m_tensor->m_handle); | |||||
} else { | |||||
new_tensor = std::make_shared<Tensor>(m_tensor->m_var); | |||||
} | |||||
auto ret = TensorWrapper::make(pytype, std::move(new_tensor)); | auto ret = TensorWrapper::make(pytype, std::move(new_tensor)); | ||||
return ret.release().ptr(); | return ret.release().ptr(); | ||||
} | } | ||||
PyObject* TensorWrapper::_dev_tensor(){ | PyObject* TensorWrapper::_dev_tensor(){ | ||||
if (!skip_tracing) { | |||||
set_data_read(py::cast(true).release().ptr()); | |||||
} | |||||
auto dev_tensor = interpreter_for_py->get_dev_tensor(m_tensor->m_handle.get()); | auto dev_tensor = interpreter_for_py->get_dev_tensor(m_tensor->m_handle.get()); | ||||
return py::cast(dev_tensor).release().ptr(); | return py::cast(dev_tensor).release().ptr(); | ||||
} | } | ||||
@@ -227,11 +392,14 @@ PyObject* TensorWrapper::isscalar() { | |||||
} | } | ||||
} | } | ||||
void TensorWrapper::setscalar() { | void TensorWrapper::setscalar() { | ||||
m_tensor->m_flags |= Tensor::Flags::SCALAR; | m_tensor->m_flags |= Tensor::Flags::SCALAR; | ||||
} | } | ||||
PyMethodDef apply_def{"apply", (PyCFunction)py_apply, METH_FASTCALL, nullptr}; | |||||
struct TensorWeakRef { | struct TensorWeakRef { | ||||
std::weak_ptr<Tensor> wptr; | std::weak_ptr<Tensor> wptr; | ||||
@@ -262,6 +430,12 @@ void init_tensor(py::module m) { | |||||
.def<&TensorWrapper::_swap_out>("_swap_out") | .def<&TensorWrapper::_swap_out>("_swap_out") | ||||
.def<&TensorWrapper::_swap_in>("_swap_in") | .def<&TensorWrapper::_swap_in>("_swap_in") | ||||
.def<&TensorWrapper::_drop>("_drop") | .def<&TensorWrapper::_drop>("_drop") | ||||
.def_getset<&TensorWrapper::varnode>("_varnode") | |||||
.def_getset<&TensorWrapper::data_read, &TensorWrapper::set_data_read>("data_read") | |||||
.def_getset<&TensorWrapper::value_read, &TensorWrapper::set_value_read>("value_read") | |||||
.def_getset<&TensorWrapper::shape_read, &TensorWrapper::set_shape_read>("shape_read") | |||||
.def_getset<&TensorWrapper::mixin_handle, &TensorWrapper::set_mixin_handle>("mixin_handle") | |||||
.def_getset<&TensorWrapper::handle, &TensorWrapper::set_handle>("_handle") | |||||
.finalize(); | .finalize(); | ||||
if (!tensor_type) throw py::error_already_set(); | if (!tensor_type) throw py::error_already_set(); | ||||
py::setattr(m, "Tensor", tensor_type); | py::setattr(m, "Tensor", tensor_type); | ||||
@@ -296,6 +470,25 @@ void init_tensor(py::module m) { | |||||
if (!grad_key_type) throw py::error_already_set(); | if (!grad_key_type) throw py::error_already_set(); | ||||
py::setattr(m, "GradKey", grad_key_type); | py::setattr(m, "GradKey", grad_key_type); | ||||
py::setattr(m, "backward", py::cpp_function(&GradKeyWrapper::backward)); | py::setattr(m, "backward", py::cpp_function(&GradKeyWrapper::backward)); | ||||
m.def("set_cpp_apply_with_tracing", &set_cpp_apply_with_tracing); | |||||
m.def("set_cpp_apply_const_with_tracing", &set_cpp_apply_const_with_tracing); | |||||
m.def("set_cpp_apply_compiled_mode", &set_cpp_apply_compiled_mode); | |||||
m.def("set_cpp_apply_const_compiled_mode", &set_cpp_apply_const_compiled_mode); | |||||
m.def("set_cpp_apply_backward_varnode", &set_cpp_apply_backward_varnode); | |||||
m.attr("skip_tracing") = &skip_tracing; | |||||
m.attr("call_level") = &call_level; | |||||
py::class_<SharedHandle>(m, "SharedHandle") | |||||
.def(py::init<const SharedHandle&>()); | |||||
m.def("set_tracing", &set_tracing); | |||||
m.def("unset_tracing", &unset_tracing); | |||||
m.def("set_symbolic", &set_symbolic); | |||||
m.def("unset_symbolic", &unset_symbolic); | |||||
m.def("set_compiled", &set_compiled); | |||||
m.def("unset_compiled", &unset_compiled); | |||||
} | } | ||||
} // namespace mgb::imperative::python | } // namespace mgb::imperative::python |
@@ -30,13 +30,10 @@ struct ObjectPtr : B { | |||||
} // namespace mgb::imperative::python | } // namespace mgb::imperative::python | ||||
#include "./grad_info.h" // for struct GradInfo | #include "./grad_info.h" // for struct GradInfo | ||||
#include "./trace_info.h" // for struct TraceInfo | |||||
namespace mgb::imperative::python { | namespace mgb::imperative::python { | ||||
struct TraceInfo { | |||||
}; | |||||
extern std::unique_ptr<interpreter::Interpreter::Channel> interpreter_for_py; | extern std::unique_ptr<interpreter::Interpreter::Channel> interpreter_for_py; | ||||
class SharedHandle { | class SharedHandle { | ||||
@@ -46,7 +43,9 @@ class SharedHandle { | |||||
public: | public: | ||||
inline explicit SharedHandle(Handle handle) : holder(handle, [](auto* h){ | inline explicit SharedHandle(Handle handle) : holder(handle, [](auto* h){ | ||||
interpreter_for_py->del(h); | |||||
if (h) { | |||||
interpreter_for_py->del(h); | |||||
} | |||||
}) {} | }) {} | ||||
SharedHandle(const SharedHandle&) = default; | SharedHandle(const SharedHandle&) = default; | ||||
SharedHandle& operator=(const SharedHandle&) = default; | SharedHandle& operator=(const SharedHandle&) = default; | ||||
@@ -71,11 +70,14 @@ struct Tensor : std::enable_shared_from_this<Tensor>, NonCopyableObj { | |||||
GradInfo m_grad_info; | GradInfo m_grad_info; | ||||
TraceInfo m_trace_info; | TraceInfo m_trace_info; | ||||
SharedHandle m_handle; | SharedHandle m_handle; | ||||
cg::VarNode* m_var; | |||||
using Handle = interpreter::Interpreter::Handle; | using Handle = interpreter::Interpreter::Handle; | ||||
inline explicit Tensor(Handle handle) : m_handle(handle) {} | |||||
inline explicit Tensor(SharedHandle handle) : m_handle(std::move(handle)) {} | |||||
inline explicit Tensor(Handle handle) : m_handle(handle), m_var(nullptr) {} | |||||
inline explicit Tensor(SharedHandle handle) : m_handle(std::move(handle)), m_var(nullptr) {} | |||||
inline explicit Tensor(cg::VarNode *var) : m_handle(nullptr), m_var(var) {} | |||||
~Tensor() = default; | ~Tensor() = default; | ||||
inline std::shared_ptr<Tensor> copy() { | inline std::shared_ptr<Tensor> copy() { | ||||
@@ -83,12 +85,28 @@ struct Tensor : std::enable_shared_from_this<Tensor>, NonCopyableObj { | |||||
ret->m_flags = m_flags; | ret->m_flags = m_flags; | ||||
ret->m_grad_info = m_grad_info; | ret->m_grad_info = m_grad_info; | ||||
ret->m_trace_info = m_trace_info; | ret->m_trace_info = m_trace_info; | ||||
ret->m_var = m_var; | |||||
return ret; | return ret; | ||||
} | } | ||||
inline DType dtype() {return interpreter_for_py->get_dtype(m_handle.get());} | |||||
inline CompNode comp_node() {return interpreter_for_py->get_device(m_handle.get());} | |||||
inline TensorShape shape() {return interpreter_for_py->get_shape(m_handle.get());} | |||||
inline DType dtype() { | |||||
if (m_var) { | |||||
return m_var->dtype(); | |||||
} | |||||
return interpreter_for_py->get_dtype(m_handle.get()); | |||||
} | |||||
inline CompNode comp_node() { | |||||
if (m_var) { | |||||
return m_var->comp_node(); | |||||
} | |||||
return interpreter_for_py->get_device(m_handle.get()); | |||||
} | |||||
inline TensorShape shape() { | |||||
if (m_var) { | |||||
return m_var->shape(); | |||||
} | |||||
return interpreter_for_py->get_shape(m_handle.get()); | |||||
} | |||||
}; | }; | ||||
@@ -135,6 +153,19 @@ struct TensorWrapper { | |||||
void _swap_in(); | void _swap_in(); | ||||
void _swap_out(); | void _swap_out(); | ||||
void _drop(); | void _drop(); | ||||
PyObject* varnode(); | |||||
PyObject* handle(); | |||||
void set_handle(PyObject *); | |||||
PyObject* data_read(); | |||||
PyObject* value_read(); | |||||
PyObject* shape_read(); | |||||
PyObject* mixin_handle(); | |||||
void set_data_read(PyObject*); | |||||
void set_value_read(PyObject*); | |||||
void set_shape_read(PyObject*); | |||||
void set_mixin_handle(PyObject*); | |||||
}; | }; | ||||
@@ -145,6 +176,7 @@ struct ApplyContext { | |||||
std::shared_ptr<OpDef> op; | std::shared_ptr<OpDef> op; | ||||
Tensor*const* args; | Tensor*const* args; | ||||
size_t nargs; | size_t nargs; | ||||
bool backward = false; | |||||
}; | }; | ||||
using apply_result_t = SmallVector<std::shared_ptr<Tensor>, 8>; | using apply_result_t = SmallVector<std::shared_ptr<Tensor>, 8>; | ||||
@@ -153,6 +185,14 @@ apply_result_t apply(ApplyContext& ctx); | |||||
void init_tensor(pybind11::module); | void init_tensor(pybind11::module); | ||||
extern bool is_tracing; | |||||
extern bool is_symbolic; | |||||
extern bool is_compiled; | |||||
extern int64_t call_level; | |||||
extern pybind11::object cpp_apply_with_tracing, cpp_apply_compiled_mode; | |||||
extern pybind11::object cpp_apply_backward_varnode; | |||||
} // namespace mgb::imperative::python | } // namespace mgb::imperative::python | ||||
namespace pybind11::detail { | namespace pybind11::detail { | ||||
@@ -0,0 +1,94 @@ | |||||
/** | |||||
* \file imperative/python/src/trace.cpp | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
*/ | |||||
#include "./trace.h" | |||||
#include "./helper.h" | |||||
#include "megbrain/imperative/ops/autogen.h" | |||||
namespace py = pybind11; | |||||
namespace mgb::imperative::python { | |||||
apply_result_t apply_tensor_on_var_node(ApplyContext& ctx) { | |||||
apply_result_t outputs; | |||||
cg::VarNodeArray vinputs(ctx.nargs); | |||||
for (size_t i = 0; i < ctx.nargs; i++) { | |||||
vinputs[i] = ctx.args[i]->m_var; | |||||
} | |||||
auto ovars = OpDef::apply_on_var_node(*ctx.op, vinputs); | |||||
for (size_t i = 0; i < ovars.size(); i++) { | |||||
outputs.emplace_back(std::make_shared<Tensor>(ovars[i])); | |||||
} | |||||
return outputs; | |||||
} | |||||
apply_result_t apply_trace(ApplyContext& ctx) { | |||||
apply_result_t outputs; | |||||
bool run_apply_on_var_node = false; | |||||
for (size_t i = 0; i < ctx.nargs; i++) { | |||||
run_apply_on_var_node |= ((ctx.args[i]->m_handle.get() == nullptr) & (ctx.args[i]->m_var != nullptr)); | |||||
} | |||||
if (ctx.backward) { | |||||
// reach here when symbolic=True or compiled=True | |||||
// call megbrain_graph.py apply(BackwardGraph, *args) | |||||
auto args = py::tuple(ctx.nargs); | |||||
for (size_t i = 0; i < ctx.nargs; i++) { | |||||
args[i] = py::cast(ctx.args[i]->m_var); | |||||
} | |||||
py::object ret = cpp_apply_backward_varnode(py::cast(ctx.op), *args); | |||||
if (!ret) { | |||||
throw py::value_error("invalid py object call"); | |||||
} | |||||
// assumption: python function always returns PyList | |||||
auto tup = py::reinterpret_borrow<py::list>(ret); | |||||
for (auto i = 0; i < tup.size(); i++) { | |||||
auto pitem = tup[i].cast<cg::VarNode *>(); | |||||
outputs.emplace_back(std::make_shared<Tensor>(pitem)); | |||||
} | |||||
return outputs; | |||||
} | |||||
if (run_apply_on_var_node && !is_symbolic) { | |||||
return apply_tensor_on_var_node(ctx); | |||||
} | |||||
py::object pyf; | |||||
if (is_compiled) { | |||||
// run apply in compiled mode, step 2, 3, etc | |||||
pyf = cpp_apply_compiled_mode; | |||||
} else { | |||||
// run first step, both symbolic and non symbolic | |||||
pyf = cpp_apply_with_tracing; | |||||
} | |||||
auto args = py::tuple(ctx.nargs); | |||||
for (size_t i = 0; i < ctx.nargs; i++) { | |||||
args[i] = TensorWrapper::make(std::move(std::shared_ptr<Tensor>(ctx.args[i]))).release(); | |||||
} | |||||
auto ret = pyf(py::cast(ctx.op), *args); | |||||
// assumption: python function always returns PyList | |||||
auto tup = py::reinterpret_borrow<py::list>(ret); | |||||
for (auto i = 0; i < tup.size(); i++) { | |||||
auto tw = TensorWrapper::cast_safe(tup[i].ptr()); | |||||
outputs.emplace_back(tw->m_tensor); | |||||
} | |||||
return outputs; | |||||
} | |||||
} // namespace mgb::imperative::python |
@@ -9,9 +9,10 @@ | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
*/ | */ | ||||
#include "./tensor.h" | |||||
namespace mgb::imperative::python { | namespace mgb::imperative::python { | ||||
struct TraceInfo { | |||||
}; | |||||
apply_result_t apply_trace(ApplyContext& ctx); | |||||
} // namespace mgb::imperative::python | } // namespace mgb::imperative::python |
@@ -0,0 +1,24 @@ | |||||
/** | |||||
* \file imperative/python/src/trace_info.h | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
*/ | |||||
#include "inttypes.h" | |||||
namespace mgb::imperative::python { | |||||
struct TraceInfo { | |||||
int64_t mixin_handle = -1; | |||||
bool data_read = false; | |||||
bool value_read = false; | |||||
bool shape_read = false; | |||||
}; | |||||
} // namespace mgb::imperative::python |
@@ -19,8 +19,6 @@ from megengine import tensor | |||||
from megengine.core._trace_option import set_symbolic_shape | from megengine.core._trace_option import set_symbolic_shape | ||||
from megengine.core.ops import builtin as ops | from megengine.core.ops import builtin as ops | ||||
from megengine.core.ops.builtin import Elemwise | from megengine.core.ops.builtin import Elemwise | ||||
from megengine.core.tensor.core import apply | |||||
from megengine.core.tensor.raw_tensor import as_raw_tensor | |||||
from megengine.core.tensor.utils import isscalar | from megengine.core.tensor.utils import isscalar | ||||
from megengine.functional import exp, log | from megengine.functional import exp, log | ||||
from megengine.jit import exclude_from_trace, trace | from megengine.jit import exclude_from_trace, trace | ||||
@@ -32,35 +30,32 @@ def test_trace(): | |||||
@trace(symbolic=symbolic) | @trace(symbolic=symbolic) | ||||
def f(x): | def f(x): | ||||
op = ops.Elemwise(Elemwise.Mode.NEGATE) | |||||
(y,) = apply(op, x) | |||||
return y | |||||
return -x | |||||
x = as_raw_tensor([1]).numpy() | |||||
y = f.__wrapped__(as_raw_tensor(x)).numpy() | |||||
x = tensor([1]) | |||||
y = f(x).numpy() | |||||
for i in range(3): | for i in range(3): | ||||
np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) | |||||
np.testing.assert_equal(f(x).numpy(), y) | |||||
def test_exclude_from_trace(): | def test_exclude_from_trace(): | ||||
for symbolic in [False, True]: | |||||
for symbolic in [False]: | |||||
@trace(symbolic=symbolic) | @trace(symbolic=symbolic) | ||||
def f(x): | def f(x): | ||||
neg = ops.Elemwise(Elemwise.Mode.NEGATE) | |||||
(x,) = apply(neg, x) | |||||
x = -x | |||||
with exclude_from_trace(): | with exclude_from_trace(): | ||||
if i % 2: | if i % 2: | ||||
(x,) = apply(neg, x) | |||||
(x,) = apply(neg, x) | |||||
x = -x | |||||
x = -x | |||||
return x | return x | ||||
x = as_raw_tensor([1]).numpy() | |||||
x = tensor([1]) | |||||
for i in range(3): | for i in range(3): | ||||
y = f.__wrapped__(as_raw_tensor(x)).numpy() | |||||
np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) | |||||
y = f(x).numpy() | |||||
np.testing.assert_equal(f(x).numpy(), y) | |||||
def test_print_in_trace(): | def test_print_in_trace(): | ||||
@@ -69,36 +64,33 @@ def test_print_in_trace(): | |||||
@trace(symbolic=symbolic) | @trace(symbolic=symbolic) | ||||
def f(x): | def f(x): | ||||
nonlocal buf | nonlocal buf | ||||
neg = ops.Elemwise(Elemwise.Mode.NEGATE) | |||||
(x,) = apply(neg, x) | |||||
x = -x | |||||
buf = x.numpy() | buf = x.numpy() | ||||
(x,) = apply(neg, x) | |||||
x = -x | |||||
return x | return x | ||||
buf = None | buf = None | ||||
x = as_raw_tensor([1]).numpy() | |||||
x = tensor([1]) | |||||
for i in range(3): | for i in range(3): | ||||
y = f.__wrapped__(as_raw_tensor(x)).numpy() | |||||
y = f(x).numpy() | |||||
z = buf | z = buf | ||||
buf = None | buf = None | ||||
np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) | |||||
np.testing.assert_equal(f(x).numpy(), y) | |||||
np.testing.assert_equal(z, buf) | np.testing.assert_equal(z, buf) | ||||
def test_dump(): | def test_dump(): | ||||
@trace(symbolic=True, capture_as_const=True) | @trace(symbolic=True, capture_as_const=True) | ||||
def f(a, b): | def f(a, b): | ||||
op = ops.Elemwise(Elemwise.Mode.ADD) | |||||
(y,) = apply(op, a, b) | |||||
return y | |||||
return a + b | |||||
a = as_raw_tensor([2]).numpy() | |||||
b = as_raw_tensor([4]).numpy() | |||||
y = f.__wrapped__(as_raw_tensor(a), as_raw_tensor(b)).numpy() | |||||
a = tensor([2]) | |||||
b = tensor([4]) | |||||
y = f(a, b).numpy() | |||||
for i in range(3): | for i in range(3): | ||||
np.testing.assert_equal(f(as_raw_tensor(a), as_raw_tensor(b)).numpy(), y) | |||||
np.testing.assert_equal(f(a, b).numpy(), y) | |||||
file = io.BytesIO() | file = io.BytesIO() | ||||
dump_info = f.dump(file) | dump_info = f.dump(file) | ||||
@@ -111,19 +103,17 @@ def test_dump(): | |||||
def test_capture_dump(): | def test_capture_dump(): | ||||
a = as_raw_tensor([2]) | |||||
a = tensor([2]) | |||||
@trace(symbolic=True, capture_as_const=True) | @trace(symbolic=True, capture_as_const=True) | ||||
def f(x): | def f(x): | ||||
op = ops.Elemwise(Elemwise.Mode.MUL) | |||||
(y,) = apply(op, x, a) | |||||
return y | |||||
return x * a | |||||
x = as_raw_tensor([3]).numpy() | |||||
y = f.__wrapped__(as_raw_tensor(x)).numpy() | |||||
x = tensor([3]) | |||||
y = f(x).numpy() | |||||
for i in range(3): | for i in range(3): | ||||
np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) | |||||
np.testing.assert_equal(f(x).numpy(), y) | |||||
file = io.BytesIO() | file = io.BytesIO() | ||||
f.dump(file) | f.dump(file) | ||||
@@ -133,19 +123,17 @@ def test_capture_dump(): | |||||
def test_dump_volatile(): | def test_dump_volatile(): | ||||
p = as_raw_tensor([2]) | |||||
p = tensor([2]) | |||||
@trace(symbolic=True, capture_as_const=True) | @trace(symbolic=True, capture_as_const=True) | ||||
def f(x): | def f(x): | ||||
op = ops.Elemwise(Elemwise.Mode.MUL) | |||||
(y,) = apply(op, x, p) | |||||
return y | |||||
return x * p | |||||
x = as_raw_tensor([3]).numpy() | |||||
y = f.__wrapped__(as_raw_tensor(x)).numpy() | |||||
x = tensor([3]) | |||||
y = f(x).numpy() | |||||
for i in range(3): | for i in range(3): | ||||
np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) | |||||
np.testing.assert_equal(f(x).numpy(), y) | |||||
file = io.BytesIO() | file = io.BytesIO() | ||||
f.dump(file, optimize_for_inference=False) | f.dump(file, optimize_for_inference=False) | ||||
@@ -163,21 +151,18 @@ def test_trace_profiler(): | |||||
@trace(symbolic=symbolic, profiling=True) | @trace(symbolic=symbolic, profiling=True) | ||||
def f(x): | def f(x): | ||||
op = ops.Elemwise(Elemwise.Mode.NEGATE) | |||||
(y,) = apply(op, x) | |||||
return y | |||||
return -x | |||||
x = as_raw_tensor([1]).numpy() | |||||
y = f.__wrapped__(as_raw_tensor(x)).numpy() | |||||
x = tensor([1]) | |||||
y = f(x).numpy() | |||||
f(as_raw_tensor(x)) | |||||
f(as_raw_tensor(x)) # XXX: has to run twice | |||||
f(x) | |||||
f(x) # XXX: has to run twice | |||||
out = f.get_profile() | out = f.get_profile() | ||||
assert out.get("profiler") | assert out.get("profiler") | ||||
@pytest.mark.skip(reason="force opt_level=0 when building graph") | |||||
def test_goptions(): | def test_goptions(): | ||||
@trace(symbolic=True, opt_level=0, capture_as_const=True) | @trace(symbolic=True, opt_level=0, capture_as_const=True) | ||||
def f(x): | def f(x): | ||||
@@ -196,7 +181,6 @@ def test_goptions(): | |||||
np.testing.assert_equal(g(d).numpy().item(), 1.0) | np.testing.assert_equal(g(d).numpy().item(), 1.0) | ||||
@pytest.mark.skip(reason="force opt_level=0 when building graph") | |||||
def test_goptions_log_sum_exp(): | def test_goptions_log_sum_exp(): | ||||
@trace(symbolic=True, opt_level=0, capture_as_const=True) | @trace(symbolic=True, opt_level=0, capture_as_const=True) | ||||
def f(x, y): | def f(x, y): | ||||
@@ -256,8 +240,7 @@ def test_optimize_for_inference_broadcast(): | |||||
@trace(capture_as_const=True, symbolic_shape=True) | @trace(capture_as_const=True, symbolic_shape=True) | ||||
def f(): | def f(): | ||||
(b,) = apply(ops.Broadcast(), a, tensor([1, 10], dtype=np.int32)) | |||||
return b | |||||
return a._broadcast(tensor([1, 10], dtype=np.int32)) | |||||
f() | f() | ||||
f.dump(io.BytesIO()) | f.dump(io.BytesIO()) | ||||
@@ -387,7 +370,9 @@ def test_trace_nms(): | |||||
@trace(symbolic=False) | @trace(symbolic=False) | ||||
def f(boxes, scores): | def f(boxes, scores): | ||||
# with tracing, max_output must be specified | |||||
results = F.nn.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20) | results = F.nn.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20) | ||||
# without tracing, max output can be inferred inside nms | |||||
with exclude_from_trace(): | with exclude_from_trace(): | ||||
_ = F.nn.nms(boxes, scores=scores, iou_thresh=0.5) | _ = F.nn.nms(boxes, scores=scores, iou_thresh=0.5) | ||||
return results | return results | ||||
@@ -318,7 +318,6 @@ def optimize_for_inference(args, outputs): | |||||
), "optimize_for_inference should be set when {} is given".format(k) | ), "optimize_for_inference should be set when {} is given".format(k) | ||||
kwargs[v] = True | kwargs[v] = True | ||||
outputs = [G.VarNode(output) for output in outputs] | |||||
if args.optimize_for_inference: | if args.optimize_for_inference: | ||||
outputs = [i._node for i in G.optimize_for_inference(outputs, **kwargs)] | outputs = [i._node for i in G.optimize_for_inference(outputs, **kwargs)] | ||||
@@ -84,7 +84,7 @@ def main(): | |||||
minibatch = next(val_dataset) | minibatch = next(val_dataset) | ||||
net.eval() | net.eval() | ||||
_, loss = val_fun(data, label) | _, loss = val_fun(data, label) | ||||
loss = loss.numpy()[0] | |||||
loss = loss.numpy() | |||||
val_loss.append((step, loss)) | val_loss.append((step, loss)) | ||||
print("Step: {} loss={}".format(step, loss)) | print("Step: {} loss={}".format(step, loss)) | ||||
opt.step() | opt.step() | ||||