GitOrigin-RevId: bc56f09037
tags/v0.4.0
@@ -469,22 +469,23 @@ using Split = SplitForward; | |||
* large number of inputs and can handle alignment requirements. Axis is also | |||
* not supported. | |||
* | |||
* The table can be generated by gen_table(). The \p srcs in ParamPackSplit and | |||
* The offsets can be generated by gen_offsets(). The \p srcs in ParamPackSplit and | |||
* \p dsts in ParamPackConcat must be on CPU, and must remain valid until the | |||
* execution stream is synchronized. | |||
*/ | |||
class ParamPackConcatSplitBase : public OperatorBase { | |||
protected: | |||
void check_exec(const TensorLayout& concated, const TensorLayout& table, | |||
void check_exec(const TensorLayout& concated, const TensorLayout& offsets, | |||
const TensorLayout& parts); | |||
public: | |||
using Param = megdnn::param::Empty; | |||
ParamPackConcatSplitBase(Handle* handle) : OperatorBase(handle) {} | |||
//! generate table to be used with ParamPackConcat and ParamPackSplit | |||
static std::vector<dt_int32> gen_table(const TensorShapeArray& shapes, | |||
size_t alignment, size_t dtype_size); | |||
//! generate offsets to be used with ParamPackConcat and ParamPackSplit | |||
static std::vector<dt_int32> gen_offsets(const TensorShapeArray& shapes, | |||
size_t alignment, | |||
size_t dtype_size); | |||
}; | |||
/** | |||
@@ -29,7 +29,7 @@ void ParamPackConcatSplitBase::check_exec(const TensorLayout& concated, | |||
"concated=%zu table=%zu", concated.shape[0], table.shape[0]); | |||
} | |||
std::vector<dt_int32> ParamPackConcatSplitBase::gen_table( | |||
std::vector<dt_int32> ParamPackConcatSplitBase::gen_offsets( | |||
const TensorShapeArray& shapes, size_t alignment, size_t dtype_size) { | |||
megdnn_assert(alignment && (alignment & (alignment - 1)) == 0, | |||
"alignment must be power of 2: %zu", alignment); | |||
@@ -46,30 +46,13 @@ std::vector<dt_int32> ParamPackConcatSplitBase::gen_table( | |||
return v + ((alignment - mod) & (alignment - 1)); | |||
}; | |||
std::vector<dt_int32> offsets(shapes.size()); | |||
size_t offset = 0; | |||
for (auto&& i : shapes) { | |||
offset = get_aligned(offset) + i.total_nr_elems(); | |||
for (size_t i = 0; i < shapes.size(); i++) { | |||
offsets[i] = offset; | |||
offset = get_aligned(offset) + shapes[i].total_nr_elems(); | |||
} | |||
std::vector<dt_int32> table(offset * 2); | |||
auto outer_table = table.data(), inner_table = outer_table + offset; | |||
offset = 0; | |||
for (size_t i = 0; i < shapes.size(); ++i) { | |||
auto aligned = get_aligned(offset); | |||
for (size_t j = offset; j < aligned; ++j) { | |||
inner_table[j] = outer_table[j] = -1; | |||
} | |||
offset = aligned; | |||
auto cur_size = shapes[i].total_nr_elems(); | |||
for (size_t j = 0; j < cur_size; ++j) { | |||
outer_table[offset + j] = i; | |||
inner_table[offset + j] = j; | |||
} | |||
offset += cur_size; | |||
} | |||
megdnn_assert(offset * 2 == table.size()); | |||
return table; | |||
return offsets; | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -112,8 +112,8 @@ void test_param_pack_split(Handle* handle, const TensorShapeArray& shapes, | |||
std::vector<int32_t> table = | |||
create_table<T>(shapes, handle->alignment_requirement()); | |||
ASSERT_EQ(table, | |||
ParamPackSplit::gen_table(shapes, handle->alignment_requirement(), | |||
sizeof(T))); | |||
ParamPackSplit::gen_offsets( | |||
shapes, handle->alignment_requirement(), sizeof(T))); | |||
size_t pack_size = table.size() / 2; | |||
int32_t* table_gpu = create_device_data<int32_t>(handle, table.data(), | |||
table.size()); | |||
@@ -47,19 +47,19 @@ SymbolVarArray _Opr::param_pack_split( | |||
shapearr[i] = npy::vec2shape(shapes[i]); | |||
} | |||
auto cn = src.node()->comp_node(); | |||
auto table_val = megdnn::ParamPackSplit::gen_offsets( | |||
shapearr, cn.get_mem_addr_alignment(), src.dtype().size()); | |||
if (!table.node()) { | |||
auto cn = src.node()->comp_node(); | |||
if (config.has_comp_node_set()) { | |||
cn = config.get_single_comp_node(); | |||
} | |||
auto table_val = megdnn::ParamPackSplit::gen_table( | |||
shapearr, cn.get_mem_addr_alignment(), src.dtype().size()); | |||
HostTensorND hv{cn, TensorShape{table_val.size()}, dtype::Int32{}}; | |||
HostTensorND hv{cn, TensorShape{{table_val.size()}}, dtype::Int32{}}; | |||
memcpy(hv.raw_ptr(), table_val.data(), table_val.size() * sizeof(int)); | |||
table = opr::ImmutableTensor::make(*src.node()->owner_graph(), hv); | |||
} | |||
return mgb::opr::ParamPackSplit::make(src, table, shapearr, config); | |||
return mgb::opr::ParamPackSplit::make(src, table, table_val, shapearr, config); | |||
} | |||
#if MGB_ENABLE_OPR_MM | |||
@@ -1430,20 +1430,22 @@ void ParamPackConcat::on_output_comp_node_stream_changed(){ | |||
/* f{{{ ======================= ParamPackSplit ======================= */ | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(ParamPackSplit); | |||
ParamPackSplit::ParamPackSplit(VarNode* src, VarNode* table, | |||
TensorShapeArray& shapes, const OperatorNodeConfig& config) | |||
: Super{src->owner_graph(), config, "ParamPackSplit", {src, table}}, | |||
m_shapes(shapes){ | |||
mgb_assert(src->comp_node() == table->comp_node()); | |||
ParamPackSplit::ParamPackSplit(VarNode* src, VarNode* offsets, | |||
const std::vector<dt_int32> offsets_val, | |||
TensorShapeArray& shapes, | |||
const OperatorNodeConfig& config) | |||
: Super{src->owner_graph(), config, "ParamPackSplit", {src, offsets}}, | |||
m_shapes(shapes), m_offsets(offsets_val) { | |||
mgb_assert(src->comp_node() == offsets->comp_node()); | |||
add_input({src}); | |||
add_input({table}); | |||
add_input({offsets}); | |||
m_mem_fwd_success.resize(m_shapes.size()); | |||
for (size_t i = 0; i < shapes.size(); i++) { | |||
mgb_assert(shapes[i].total_nr_elems(), "empty param is not allowed!"); | |||
add_output(ssprintf("param_pack_o%zu", i))->dtype(src->dtype()); | |||
add_output(ssprintf("param_pack_o%zu", i)) | |||
->dtype(src->dtype()).shape(shapes[i]); | |||
} | |||
cg::add_workspace_output(this); | |||
} | |||
void ParamPackSplit::add_input_layout_constraint(){ | |||
@@ -1451,17 +1453,19 @@ void ParamPackSplit::add_input_layout_constraint(){ | |||
} | |||
SymbolVarArray ParamPackSplit::make(const SymbolVar& src, | |||
const SymbolVar& table, | |||
const SymbolVar& offsets, | |||
const std::vector<dt_int32> offsets_val, | |||
TensorShapeArray shapes, | |||
const OperatorNodeConfig& config) { | |||
auto&& out = src.node() | |||
->owner_graph() | |||
->insert_opr(std::make_unique<ParamPackSplit>( | |||
src.node(), table.node(), shapes, config)) | |||
src.node(), offsets.node(), offsets_val, | |||
shapes, config)) | |||
->output(); | |||
SymbolVarArray ret; | |||
ret.resize(out.size() - 1); // do not return workspace | |||
ret.resize(out.size()); | |||
for (size_t i = 0; i < ret.size(); ++i) { | |||
ret[i] = out[i]; | |||
} | |||
@@ -1469,41 +1473,25 @@ SymbolVarArray ParamPackSplit::make(const SymbolVar& src, | |||
} | |||
void ParamPackSplit::scn_do_execute() { | |||
mgb_assert(m_opr.comp_node() == comp_node()); | |||
megdnn::TensorND src = input(0)->dev_tensor().as_megdnn(), | |||
table = input(1)->dev_tensor().as_megdnn(); | |||
auto outputs = output(); | |||
m_inp_ptr.resize(outputs.size() - 1); | |||
auto ptr = m_inp_ptr.data(); | |||
for (size_t i = 0; i < outputs.size() - 1; i++) { | |||
ptr[i] = outputs[i]->dev_tensor().as_megdnn().raw_ptr; | |||
} | |||
megdnn::TensorND dsts( | |||
ptr, megdnn::TensorLayout({outputs.size() - 1}, dtype::Int32())); | |||
m_opr->exec(src, table, dsts, | |||
get_megdnn_workspace_from_var(outputs.back())); | |||
} | |||
void ParamPackSplit::on_output_comp_node_stream_changed() { | |||
Super::on_output_comp_node_stream_changed(); | |||
init_megdnn_opr(); | |||
} | |||
void ParamPackSplit::init_megdnn_opr(){ | |||
m_opr = intl::create_megdnn_opr<megdnn::ParamPackSplit>(comp_node()); | |||
} | |||
void ParamPackSplit::init_output_dtype() { | |||
// already initialized in constructor | |||
} | |||
void ParamPackSplit::mem_plan_fwd_in2out_readonly() { | |||
mgb_assert(m_offsets.size() == output().size()); | |||
for (size_t i = 0; i < output().size(); i++) { | |||
auto layout = output(i)->layout(); | |||
auto spec = SubTensorSpec::make_from_offset_elem(layout, m_offsets[i]); | |||
m_mem_fwd_success[i] = output(i)->set_fwd_in2out_readonly( | |||
input(0), spec); | |||
mgb_assert(m_mem_fwd_success[i]); | |||
} | |||
} | |||
bool ParamPackSplit::infer_shape(size_t index, TensorShape& dest, | |||
const cg::static_infer::InpVal& inp) { | |||
if (!m_opr.get()){ | |||
init_megdnn_opr(); | |||
} | |||
dest = m_shapes[index]; | |||
return true; | |||
} | |||
@@ -1515,33 +1503,19 @@ void ParamPackSplit::init_output_static_infer_desc() { | |||
DepVal shp_deps{{input(0), DepType::SHAPE}, {input(1), DepType::SHAPE}}; | |||
auto infer_wk = [this](TensorShape &dst, const InpVal &inp){ | |||
dst.ndim = 1; | |||
if(!m_opr.get()){ | |||
init_megdnn_opr(); | |||
} | |||
dst.shape[0] = m_opr->get_workspace_in_bytes( | |||
inp.val.at(0).shape(), inp.val.at(1).shape(), m_shapes); | |||
return true; | |||
}; | |||
for (size_t i = 0; i < output().size() - 1; i++) { | |||
for (size_t i = 0; i < output().size(); i++) { | |||
auto ov = output(i); | |||
mgr.register_shape_infer( | |||
ov, {SourceType::DEP, shp_deps, | |||
std::bind(&ParamPackSplit::infer_shape, this, i, _1, _2)}); | |||
} | |||
mgr.register_shape_infer( | |||
output().back(), {SourceType::DEP, shp_deps, infer_wk}); | |||
} | |||
MGB_IMPL_OPR_GRAD(ParamPackSplit) { | |||
mgb_assert(out_grad.size() == opr.output().size()); | |||
SmallVector<SymbolVar> grad; | |||
// last var is workspace, ignore it | |||
for (size_t i = 0; i < out_grad.size() - 1; ++i) { | |||
for (size_t i = 0; i < out_grad.size(); ++i) { | |||
auto gval = out_grad[i]; | |||
if (!gval) { | |||
gval = SymbolVar{opr.output(i)}.fill_retain_dtype(0).node(); | |||
@@ -185,9 +185,10 @@ namespace opr { | |||
const cg::OperatorNodeBase &opr_, const VarNodeArray &inputs, | |||
const OperatorNodeConfig &config){ | |||
auto &&opr = opr_.cast_final_safe<ParamPackSplit>(); | |||
auto &&offsets = opr.get_offsets(); | |||
auto &&shape = opr.get_output_shapes(); | |||
return ParamPackSplit::make(inputs[0], inputs[1], shape, config).at(0). | |||
return ParamPackSplit::make(inputs[0], inputs[1], offsets, shape, config).at(0). | |||
node()->owner_opr(); | |||
} | |||
@@ -570,31 +570,31 @@ public: | |||
* \brief Opr used to split parameter | |||
*/ | |||
MGB_DEFINE_OPR_CLASS(ParamPackSplit, cg::SingleCNOperatorNodeBase) // { | |||
//! input pointer buffer | |||
SmallVector<void*> m_inp_ptr; | |||
intl::UniqPtrWithCN<megdnn::ParamPackSplit> m_opr; | |||
TensorShapeArray m_shapes; | |||
std::vector<dt_int32> m_offsets; | |||
std::vector<bool> m_mem_fwd_success; | |||
void scn_do_execute() override; | |||
void init_output_static_infer_desc() override; | |||
void on_output_comp_node_stream_changed() override; | |||
bool infer_shape(size_t index, TensorShape &dest, | |||
const cg::static_infer::InpVal &inp); | |||
void init_output_dtype() override; | |||
void mem_plan_fwd_in2out_readonly() override; | |||
void add_input_layout_constraint() override; | |||
void init_megdnn_opr(); | |||
public: | |||
ParamPackSplit(VarNode* src, VarNode* table, TensorShapeArray& shapes, | |||
const OperatorNodeConfig &config); | |||
ParamPackSplit(VarNode* src, VarNode* offsets, | |||
const std::vector<dt_int32> offsets_val, | |||
TensorShapeArray& shapes, const OperatorNodeConfig& config); | |||
static SymbolVarArray make(const SymbolVar& src, const SymbolVar& offsets, | |||
const std::vector<dt_int32> offsets_val, | |||
TensorShapeArray shapes, | |||
const OperatorNodeConfig& config = {}); | |||
static SymbolVarArray make(const SymbolVar &src, const SymbolVar &table, | |||
TensorShapeArray shapes, const OperatorNodeConfig &config = {}); | |||
const std::vector<dt_int32>& get_offsets() const { | |||
return m_offsets; | |||
} | |||
const TensorShapeArray& get_output_shapes() const { | |||
return m_shapes; | |||
@@ -1898,7 +1898,7 @@ void test_param_pack_concat(const TensorShapeArray &shapes, DType type){ | |||
srcs.push_back(nd); | |||
} | |||
auto host_table_gen = megdnn::ParamPackSplit::gen_table(shapes, | |||
auto host_table_gen = megdnn::ParamPackSplit::gen_offsets(shapes, | |||
cn.get_mem_addr_alignment(), 4); | |||
ASSERT_EQ(host_table_gen.size(), size * 2); | |||
auto host_table = std::make_shared<HostTensorND>(); | |||
@@ -1944,7 +1944,7 @@ void test_param_pack_split(const TensorShapeArray& shapes) { | |||
auto make_graph = [&](const typename Checker::SymInpArray& inputs) -> | |||
typename Checker::SymOutArray { | |||
auto table_val = megdnn::ParamPackSplit::gen_table( | |||
auto table_val = megdnn::ParamPackSplit::gen_offsets( | |||
shapes, cn.get_mem_addr_alignment(), 4); | |||
HostTensorND table; | |||
std::copy_n(table_val.data(), table_val.size(), | |||
@@ -1954,7 +1954,8 @@ void test_param_pack_split(const TensorShapeArray& shapes) { | |||
.ptr<dt_int32>()); | |||
auto sym_table = opr::SharedDeviceTensor::make( | |||
*inputs[0].node()->owner_graph(), table); | |||
auto out = opr::ParamPackSplit::make(inputs[0], sym_table, shapes); | |||
auto out = opr::ParamPackSplit::make(inputs[0], sym_table, table_val, | |||
shapes); | |||
mgb_assert(out.size() == nr_out); | |||
typename Checker::SymOutArray ret; | |||
for (size_t i = 0; i < nr_out; ++i) { | |||