GitOrigin-RevId: 7ed0447bfe
release-1.7
@@ -225,7 +225,7 @@ def _shuffle(inp: Tensor, seed: int, handle: int) -> Tensor: | |||
assert inp.size > 0, "size needs to be greater than 0" | |||
op = ShuffleRNG(seed=seed, handle=handle) | |||
output, _ = apply(op, inp) | |||
inp._reset(output) | |||
return output | |||
class RNG: | |||
@@ -554,12 +554,15 @@ class RNG: | |||
_seed = self._seed() if callable(self._seed) else self._seed | |||
return _poisson(lam=lam, size=size, seed=_seed, handle=self._handle) | |||
def permutation(self, n: int, *, dtype: str = "int32"): | |||
r"""Generates a random permutation of integers from :math:`0` to :math:`n - 1`. | |||
def permutation(self, n: Union[int, Tensor], *, dtype: str = "int32"): | |||
r"""Randomly permute a sequence, or return a permuted range. | |||
If ``n`` is a multi-dimensional tensor, it is only shuffled along its first index. | |||
Args: | |||
n: the upper bound. Must be larger than 0. | |||
dtype: the output data type. int32, int16 and float32 are supported. Default: int32 | |||
n: If ``n`` is an integer, random permutation of integers from :math:`0` to :math:`n - 1`. | |||
If ``n`` is an tensor, make a copy and shuffle the elements randomly. | |||
dtype: the output data type when ``n`` is an integer. | |||
int32, int16 and float32 are supported. Default: int32 | |||
Returns: | |||
the output tensor. | |||
@@ -568,13 +571,18 @@ class RNG: | |||
.. testcode:: | |||
import numpy as np | |||
import megengine as mge | |||
import megengine.random as rand | |||
x = rand.permutation(n=10, dtype="int32") | |||
x = rand.permutation(10, dtype="int32") | |||
print(x.numpy()) | |||
x = rand.permutation(10, dtype="float32") | |||
print(x.numpy()) | |||
x = rand.permutation(n=10, dtype="float32") | |||
x = mge.tensor(np.arange(18)).reshape(6,3) | |||
x = rand.permutation(x) | |||
print(x.numpy()) | |||
Outputs: | |||
@@ -584,11 +592,20 @@ class RNG: | |||
[4 5 0 7 3 8 6 1 9 2] | |||
[3. 4. 9. 0. 6. 8. 7. 1. 5. 2.] | |||
[[12 13 14] | |||
[ 3 4 5] | |||
[15 16 17] | |||
[ 0 1 2] | |||
[ 9 10 11] | |||
[ 6 7 8]] | |||
""" | |||
_seed = self._seed() if callable(self._seed) else self._seed | |||
return _permutation( | |||
n=n, seed=_seed, device=self._device, handle=self._handle, dtype=dtype | |||
) | |||
if isinstance(n, int): | |||
return _permutation( | |||
n=n, seed=_seed, device=self._device, handle=self._handle, dtype=dtype | |||
) | |||
assert isinstance(n, Tensor) | |||
return _shuffle(inp=n, seed=_seed, handle=self._handle) | |||
def shuffle(self, inp: Tensor): | |||
r"""Modify a sequence in-place by shuffling its contents. | |||
@@ -627,7 +644,7 @@ class RNG: | |||
[ 6. 7. 8.]] | |||
""" | |||
_seed = self._seed() if callable(self._seed) else self._seed | |||
_shuffle(inp=inp, seed=_seed, handle=self._handle) | |||
inp._reset(_shuffle(inp=inp, seed=_seed, handle=self._handle)) | |||
def __del__(self): | |||
if self._handle != 0: | |||
@@ -28,6 +28,7 @@ from megengine.core.ops.builtin import ( | |||
UniformRNG, | |||
) | |||
from megengine.device import get_device_count | |||
from megengine.jit import trace | |||
from megengine.random import RNG | |||
from megengine.random import seed as set_global_seed | |||
from megengine.random import uniform | |||
@@ -370,21 +371,22 @@ def test_PoissonRNG(): | |||
@pytest.mark.skipif( | |||
get_device_count("xpu") <= 1, reason="xpu counts need > 1", | |||
) | |||
def test_PermutationRNG(): | |||
@pytest.mark.parametrize("symbolic", [True, False]) | |||
def test_PermutationRNG(symbolic): | |||
m1 = RNG(seed=111, device="xpu0") | |||
m2 = RNG(seed=111, device="xpu1") | |||
m3 = RNG(seed=222, device="xpu0") | |||
out1 = m1.permutation(n=1000) | |||
out1 = m1.permutation(1000) | |||
out1_ = m1.uniform(size=(1000,)) | |||
out2 = m2.permutation(n=1000) | |||
out3 = m3.permutation(n=1000) | |||
out2 = m2.permutation(1000) | |||
out3 = m3.permutation(1000) | |||
np.testing.assert_equal(out1.numpy(), out2.numpy()) | |||
assert out1.device == "xpu0" and out2.device == "xpu1" | |||
assert not (out1.numpy() == out3.numpy()).all() | |||
assert not (out1.numpy() == out1_.numpy()).all() | |||
out = m1.permutation(n=1000) | |||
out = m1.permutation(1000) | |||
out_shp = out.shape | |||
if isinstance(out_shp, tuple): | |||
assert out_shp == (1000,) | |||
@@ -397,6 +399,24 @@ def test_PermutationRNG(): | |||
assert sum_result(out, lambda x: x) < 500 | |||
assert sum_result(out, np.sort) == 1000 | |||
def func(): | |||
out = m1.permutation(Tensor(7)) | |||
out_shp = out.shape | |||
if isinstance(out_shp, tuple): | |||
assert out_shp == (1,) | |||
else: | |||
assert all(out.shape.numpy() == np.array([1])) | |||
n, m = 6, 3 | |||
out = m1.permutation(Tensor(np.arange(n * m), dtype="float32").reshape(n, m)) | |||
out_shp = out.shape | |||
if isinstance(out_shp, tuple): | |||
assert out_shp == (n, m) | |||
else: | |||
assert all(out.shape.numpy() == np.array([n, m])) | |||
func = trace(symbolic=symbolic)(func) | |||
func() | |||
@pytest.mark.skipif( | |||
get_device_count("xpu") <= 1, reason="xpu counts need > 1", | |||
@@ -214,8 +214,12 @@ ShuffleRNGForward::ShuffleRNGForward(VarNode* data, const Param& param, | |||
const OperatorNodeConfig& config) | |||
: Super({data->owner_graph(), config, "shuffle_rng", {data}}, param) { | |||
add_input({data}); | |||
add_output(None)->dtype(data->dtype()); | |||
add_output(None)->dtype(dtype::Int32{}); | |||
add_output(None) | |||
->dtype(data->dtype()) | |||
.add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE); | |||
add_output(None) | |||
->dtype(dtype::Int32{}) | |||
.add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE); | |||
cg::add_workspace_output(this); | |||
add_equivalence_component<ScalarHash<void*>>(this); | |||
} | |||
@@ -266,12 +270,27 @@ void ShuffleRNGForward::add_input_layout_constraint() { | |||
}; | |||
void ShuffleRNGForward::scn_do_execute() { | |||
auto&& ret = output(0); | |||
if (ret->layout().is_empty()) { | |||
mgb_assert(ret->dev_tensor().empty()); | |||
return; | |||
} | |||
m_dnn_opr->exec(input(0)->dev_tensor().as_megdnn(), | |||
output(0)->dev_tensor().as_megdnn(), | |||
output(1)->dev_tensor().as_megdnn(), | |||
get_megdnn_workspace_from_var(output(2))); | |||
} | |||
cg::OperatorNodeBase::NodeProp* ShuffleRNGForward::do_make_node_prop() const { | |||
auto prop = Super::do_make_node_prop(); | |||
prop->add_flag(NodeProp::Flag::IMPURE_FUNC); | |||
for (auto i : input()) { | |||
prop->add_dep_type_existing_var(i, | |||
NodeProp::DepType::VALUE_ALLOW_EMPTY); | |||
} | |||
return prop; | |||
} | |||
#if MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(ShuffleRNGForward) { | |||
mgb_assert(out_grad.size() == 3 && wrt_idx == 0 && !out_grad[2]); | |||