GitOrigin-RevId: c0530a949e
tags/v1.3.0
@@ -36,6 +36,9 @@ ConvolutionBackwardDataImpl::AlgoPack::AlgoPack() { | |||
int8_algos.push_back(&algo); | |||
} | |||
int8_algos.push_back(&int8_nchw_dotprod); | |||
all_algos.push_back(&int8_nchw_dotprod); | |||
all_algos.reserve(all_algos.size() * 2); | |||
// add gconv algos by AlgoGroupConvGeneral | |||
@@ -39,7 +39,8 @@ public: | |||
CUDA_CHANWISE_SMALL, | |||
CUDA_BFLOAT16, | |||
CUDA_GROUP_CONV_GENERAL, | |||
CUDA_IMPLICIT_GEMM_NCHW4_DOTPROD_INT8 | |||
CUDA_IMPLICIT_GEMM_NCHW4_DOTPROD_INT8, | |||
CUDA_IMPLICIT_GEMM_NCHW_DOTPROD_INT8 | |||
}; | |||
using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>; | |||
@@ -254,12 +255,6 @@ public: | |||
int warp_k; | |||
int stage; | |||
std::string to_string() { | |||
/// default algorithm | |||
if (threadblock_m == 128 && threadblock_n == 128 && | |||
threadblock_k == 32 && warp_m == 32 && warp_n == 64 && | |||
warp_k == 32 && stage == 2) { | |||
return ""; | |||
} | |||
return ssprintf("_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m, | |||
threadblock_n, threadblock_k, warp_m, warp_n, | |||
warp_k, stage); | |||
@@ -284,6 +279,24 @@ private: | |||
std::string m_name; | |||
}; | |||
class ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm final | |||
: public AlgoBase { | |||
public: | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { | |||
return "INT8_NCHW_DOTPROD_IMPLICIT_GEMM"; | |||
} | |||
AlgoAttribute attribute() const override { | |||
return AlgoAttribute::REPRODUCIBLE; | |||
} | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_GEMM_NCHW_DOTPROD_INT8); | |||
private: | |||
WorkspaceBundle get_workspace_bundle(dt_byte* raw_ptr, | |||
const SizeArgs& args) const; | |||
}; | |||
class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj { | |||
// defined in cudnn.cpp | |||
void fill_cudnn_algos(); | |||
@@ -303,6 +316,7 @@ public: | |||
std::unordered_map<AlgoBase*, AlgoGroupConvGeneral*> algo2gconv; | |||
AlgoBFloat16 bfloat16; | |||
std::vector<AlgoInt8NCHW4DotProdImplicitGemm> int8_nchw4_dotprod; | |||
AlgoInt8NCHWDotProdImplicitGemm int8_nchw_dotprod; | |||
std::vector<AlgoBase*> | |||
//! all algorithms | |||
@@ -1,5 +1,5 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/implicit_gemm_int8_nchw4_dp4a.cpp | |||
* \file dnn/src/cuda/convolution/backward_data/implicit_gemm_int8_nchw4_dp4a.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
@@ -0,0 +1,154 @@ | |||
/** | |||
* \file | |||
* dnn/src/cuda/convolution/backward_data/implicit_gemm_int8_nchw4_dp4a.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "./algo.h" | |||
#include "src/cuda/utils.h" | |||
#include "src/cuda/convolution_helper/parameter.cuh" | |||
#include "src/cuda/convolution/backward_data/cutlass_deconvolution_wrapper.cuh" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
bool ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm:: | |||
is_available(const SizeArgs& args) const { | |||
auto&& fm = args.filter_meta; | |||
if (fm.format != Param::Format::NCHW) | |||
return false; | |||
bool available = true; | |||
auto src_dtype = args.diff_layout->dtype, | |||
filter_dtype = args.filter_layout->dtype, | |||
dst_dtype = args.grad_layout->dtype; | |||
available &= (src_dtype.enumv() == DTypeEnum::QuantizedS8 && | |||
filter_dtype.enumv() == DTypeEnum::QuantizedS8 && | |||
dst_dtype.enumv() == DTypeEnum::QuantizedS8); | |||
// TODO support group deconv int8 | |||
available &= (fm.group == 1); | |||
// ic and oc must be multiples of 4 | |||
available &= ((fm.group * fm.icpg) % 4 == 0 && (fm.group * fm.ocpg) % 4 == 0); | |||
// mode must be cross correlation | |||
available &= !fm.should_flip; | |||
// mode must be 2D | |||
available &= fm.spatial_ndim == 2; | |||
// TODO: support dialtion | |||
available &= (fm.dilation[0] == 1 && fm.dilation[1] == 1); | |||
// FIXME: too large filter size is not supported now | |||
available &= fm.spatial[0] * fm.spatial[1] <= 64; | |||
// only support sm_61 or later, platform should have fast native int8 | |||
// support | |||
available &= is_compute_capability_required(6, 1); | |||
return available; | |||
} | |||
WorkspaceBundle ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm:: | |||
get_workspace_bundle(dt_byte* raw_ptr, const SizeArgs& args) const { | |||
size_t ws_filter = args.filter_layout->span().dist_byte(); | |||
size_t ws_diff = args.diff_layout->span().dist_byte(); | |||
size_t ws_grad = args.grad_layout->span().dist_byte(); | |||
return WorkspaceBundle{raw_ptr, {ws_filter, ws_diff, ws_grad}}; | |||
} | |||
size_t ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm:: | |||
get_workspace_in_bytes(const SizeArgs& args) const { | |||
return get_workspace_bundle(nullptr, args).total_size_in_bytes(); | |||
} | |||
void ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm::exec( | |||
const ExecArgs& args) const { | |||
auto&& fm = args.filter_meta; | |||
size_t n = args.diff_layout->operator[](0), | |||
co = args.diff_layout->operator[](1), | |||
ho = args.diff_layout->operator[](2), | |||
wo = args.diff_layout->operator[](3); | |||
size_t ci = args.grad_layout->operator[](1), | |||
hi = args.grad_layout->operator[](2), | |||
wi = args.grad_layout->operator[](3); | |||
size_t fh = fm.spatial[0], fw = fm.spatial[1]; | |||
size_t sh = fm.stride[0], sw = fm.stride[1]; | |||
size_t ph = fm.padding[0], pw = fm.padding[1]; | |||
auto&& stream = cuda_stream(args.opr->handle()); | |||
auto bundle = get_workspace_bundle(args.workspace.raw_ptr, args); | |||
int8_t* inner_filter_ptr = nullptr; | |||
int8_t* inner_diff_ptr = nullptr; | |||
// TODO: weight preprocess | |||
{ | |||
inner_filter_ptr = reinterpret_cast<int8_t*>(bundle.get(0)); | |||
// reformat filter from nchw to n4hwc4 | |||
TensorLayout exec_src{{co / 4, 4, ci, fh, fw}, dtype::Int8()}; | |||
TensorLayout exec_dst{{co / 4, fh, fw, ci, 4}, dtype::Int8()}; | |||
exec_src = exec_src.dimshuffle({0, 3, 4, 2, 1}); | |||
auto&& relayout = | |||
args.opr->handle()->create_operator<RelayoutForward>(); | |||
relayout->exec({args.filter_tensor->raw_ptr, exec_src}, | |||
{inner_filter_ptr, exec_dst}); | |||
} | |||
{ | |||
inner_diff_ptr = reinterpret_cast<int8_t*>(bundle.get(1)); | |||
// reformat diff from nchw to nchw4 | |||
TensorLayout exec_src{{n, co / 4, 4, ho, wo}, dtype::Int8()}; | |||
TensorLayout exec_dst{{n, co / 4, ho, wo, 4}, dtype::Int8()}; | |||
exec_src = exec_src.dimshuffle({0, 1, 3, 4, 2}); | |||
auto&& relayout = | |||
args.opr->handle()->create_operator<RelayoutForward>(); | |||
relayout->exec({args.diff_tensor->raw_ptr, exec_src}, | |||
{inner_diff_ptr, exec_dst}); | |||
} | |||
int8_t* inner_grad_ptr = reinterpret_cast<int8_t*>(bundle.get(2)); | |||
convolution::ConvParam kern_param; | |||
kern_param.n = n, kern_param.co = co, kern_param.ci = ci, | |||
kern_param.hi = hi, kern_param.wi = wi, kern_param.ho = ho, | |||
kern_param.wo = wo, kern_param.ph = ph, kern_param.pw = pw, | |||
kern_param.sh = sh, kern_param.sw = sw, kern_param.fh = fh, | |||
kern_param.fw = fw; | |||
float diff_scale = | |||
args.diff_layout->dtype.param<dtype::QuantizedS8>().scale, | |||
filter_scale = | |||
args.filter_layout->dtype.param<dtype::QuantizedS8>().scale, | |||
grad_scale = | |||
args.grad_layout->dtype.param<dtype::QuantizedS8>().scale; | |||
float alpha = diff_scale * filter_scale / grad_scale; | |||
// only use 16x64x8_16x64x8_2stages impl | |||
cutlass_wrapper::do_deconv_int8_implicit_gemm_dp4a_ncdiv4hw4( | |||
inner_diff_ptr, inner_filter_ptr, inner_grad_ptr, nullptr, | |||
kern_param, alpha, cutlass_wrapper::GemmCoord{16, 64, 8}, | |||
cutlass_wrapper::GemmCoord{16, 64, 8}, 2, stream); | |||
after_kernel_launch(); | |||
{ | |||
// reformat grad from nchw4 to nchw | |||
TensorLayout exec_src{{n, ci / 4, hi, wi, 4}, dtype::Int8()}; | |||
TensorLayout exec_dst{{n, ci / 4, 4, hi, wi}, dtype::Int8()}; | |||
exec_src = exec_src.dimshuffle({0, 1, 4, 2, 3}); | |||
auto&& relayout = | |||
args.opr->handle()->create_operator<RelayoutForward>(); | |||
relayout->exec({inner_grad_ptr, exec_src}, | |||
{args.grad_tensor->raw_ptr, exec_dst}); | |||
} | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -106,6 +106,7 @@ public: | |||
class AlgoGroupConvGeneral; | |||
class AlgoBFloat16; | |||
class AlgoInt8NCHW4DotProdImplicitGemm; | |||
class AlgoInt8NCHWDotProdImplicitGemm; | |||
class AlgoPack; | |||
@@ -434,7 +434,7 @@ std::vector<TestArg> convolution::get_args_int8_nchw4_conv_bwd_data() { | |||
param::Convolution cur_param; | |||
// clang-format off | |||
for (auto mode : {param::ConvBias::Mode::CROSS_CORRELATION}) { | |||
for (auto mode : {param::Convolution::Mode::CROSS_CORRELATION}) { | |||
for (size_t b : {64, 16}) { | |||
for (size_t ic : {16, 32}) { | |||
for (size_t oc : {16, 32}) { | |||
@@ -449,8 +449,8 @@ std::vector<TestArg> convolution::get_args_int8_nchw4_conv_bwd_data() { | |||
size_t f = kernel_size; | |||
cur_param.mode = mode; | |||
cur_param.format = param::ConvBias::Format::NCHW4; | |||
cur_param.sparse = param::ConvBias::Sparse::DENSE; | |||
cur_param.format = param::Convolution::Format::NCHW4; | |||
cur_param.sparse = param::Convolution::Sparse::DENSE; | |||
cur_param.pad_h = cur_param.pad_w = p; | |||
cur_param.stride_h = cur_param.stride_w = s; | |||
@@ -460,6 +460,54 @@ std::vector<TestArg> convolution::get_args_int8_nchw4_conv_bwd_data() { | |||
} } } } } } } } } | |||
// clang-format on | |||
cur_param.pad_h = cur_param.pad_w = 1; | |||
cur_param.stride_h = cur_param.stride_w = 1; | |||
args.emplace_back(cur_param, TensorShape{16, 4, 8, 11, 4}, | |||
TensorShape{16, 4, 3, 3, 4}); | |||
return args; | |||
} | |||
std::vector<TestArg> convolution::get_args_int8_nchw_conv_bwd_data() { | |||
std::vector<TestArg> args; | |||
param::Convolution cur_param; | |||
// clang-format off | |||
for (auto mode : {param::Convolution::Mode::CROSS_CORRELATION}) { | |||
for (size_t b : {64, 16}) { | |||
for (size_t ic : {16, 32}) { | |||
for (size_t oc : {16, 32}) { | |||
for (size_t h : {8}) { | |||
for (size_t w : {8, 11}) { | |||
for (size_t kernel_size : {3, 4, 5, 7}) { | |||
for (int p : {0, static_cast<int>(kernel_size / 2)}) { | |||
for (size_t s : {2}) { | |||
if (kernel_size >= 7) { | |||
b = std::min(b, 32_z); | |||
} | |||
size_t f = kernel_size; | |||
cur_param.mode = mode; | |||
cur_param.format = param::Convolution::Format::NCHW; | |||
cur_param.sparse = param::Convolution::Sparse::DENSE; | |||
cur_param.pad_h = cur_param.pad_w = p; | |||
cur_param.stride_h = cur_param.stride_w = s; | |||
//! bias channel | |||
args.emplace_back(cur_param, TensorShape{b, ic, h, w}, | |||
TensorShape{oc, ic, f, f}); | |||
} } } } } } } } } | |||
// clang-format on | |||
// test stride = 1 | |||
cur_param.pad_h = cur_param.pad_w = 1; | |||
cur_param.stride_h = cur_param.stride_w = 1; | |||
args.emplace_back(cur_param, TensorShape{16, 16, 8, 11}, | |||
TensorShape{16, 16, 3, 3}); | |||
return args; | |||
} | |||
@@ -49,6 +49,7 @@ std::vector<TestArg> get_1x1_args(); | |||
std::vector<TestArg> get_dilated_args(); | |||
std::vector<TestArg> get_chanwise_args(); | |||
std::vector<TestArg> get_args_int8_nchw4_conv_bwd_data(); | |||
std::vector<TestArg> get_args_int8_nchw_conv_bwd_data(); | |||
//! \param stage 0 for fwd, 1 for bwd data, 2 for bwd filter | |||
using ConvEPSGetter = | |||
@@ -266,19 +266,78 @@ TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_MATMUL) { | |||
} | |||
} | |||
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_DP4A) { | |||
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A) { | |||
if (!cuda::is_compute_capability_required(6, 1)) { | |||
printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_DP4A test as current " | |||
"device doesn't support\n"); | |||
printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A test as " | |||
"current device doesn't support\n"); | |||
return; | |||
} | |||
using namespace convolution; | |||
std::vector<TestArg> args = get_args_int8_nchw4_conv_bwd_data(); | |||
struct AlgoParam { | |||
int threadblock_m; | |||
int threadblock_n; | |||
int threadblock_k; | |||
int warp_m; | |||
int warp_n; | |||
int warp_k; | |||
int stage; | |||
std::string to_string() { | |||
return ssprintf("_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m, | |||
threadblock_n, threadblock_k, warp_m, warp_n, | |||
warp_k, stage); | |||
} | |||
}; | |||
std::vector<AlgoParam> all_params; | |||
all_params.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 2}); | |||
all_params.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2}); | |||
all_params.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1}); | |||
all_params.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2}); | |||
all_params.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32, 2}); | |||
for (auto algo_param : all_params) { | |||
Checker<ConvolutionBackwardData> checker(handle_cuda()); | |||
std::string algo_name(ssprintf("INT8_NCHW4_DOTPROD_IMPLICIT_GEMM%s", | |||
algo_param.to_string().c_str())); | |||
checker.set_before_exec_callback( | |||
AlgoChecker<ConvolutionBackwardData>(algo_name.c_str())); | |||
checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1); | |||
for (auto&& arg : args) { | |||
UniformIntRNG rng(-3, 3); | |||
auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f}); | |||
auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f}); | |||
TensorLayout dst; | |||
dst.dtype = dtype::QuantizedS8{1.2f}; | |||
{ | |||
auto opr = handle_cuda()->create_operator<Convolution>(); | |||
opr->param() = arg.param; | |||
opr->deduce_layout(src, filter, dst); | |||
} | |||
checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec( | |||
TensorLayoutArray{filter, dst, src}); | |||
} | |||
} | |||
} | |||
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A) { | |||
if (!cuda::is_compute_capability_required(6, 1)) { | |||
printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A test as " | |||
"current device doesn't support\n"); | |||
return; | |||
} | |||
using namespace convolution; | |||
std::vector<TestArg> args = get_args_int8_nchw_conv_bwd_data(); | |||
Checker<ConvolutionBackwardData> checker(handle_cuda()); | |||
checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>( | |||
"INT8_NCHW4_DOTPROD_IMPLICIT_GEMM")); | |||
"INT8_NCHW_DOTPROD_IMPLICIT_GEMM")); | |||
checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1); | |||
@@ -459,7 +459,8 @@ void FuseWarpPerspectiveDimshufflePass::apply(OptState& opt) const { | |||
opr::WarpPerspective::Param new_param, | |||
megdnn::DType dst_dtype, | |||
SymbolVar& new_warp) { | |||
OperatorNodeConfig new_config(dst_dtype); | |||
OperatorNodeConfig new_config = warp->config(); | |||
new_config.output_dtype(dst_dtype); | |||
if (warp->input().size() == 3) { | |||
auto src = rewriter.get_var(warp->input(0)), | |||
mat = rewriter.get_var(warp->input(1)), | |||
@@ -1514,6 +1514,46 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() { | |||
return new_opr; | |||
}; | |||
auto replace_deconv_opr = [trans_nchw4, conv_format]( | |||
OperatorNodeBase* opr, | |||
const VarNodeArray& new_inp) { | |||
if (new_inp[1]->dtype().enumv() == DTypeEnum::Float32) { | |||
return serialization::copy_opr_shallow(*opr, new_inp, | |||
opr->config()); | |||
} | |||
mgb_assert(opr->input().size() == new_inp.size()); | |||
auto& deconv_opr = opr->cast_final_safe<opr::ConvolutionBackwardData>(); | |||
if ((deconv_opr.param().format != | |||
megdnn::param::Convolution::Format::NCHW) || | |||
(deconv_opr.param().sparse != | |||
megdnn::param::Convolution::Sparse::DENSE)) { | |||
return serialization::copy_opr_shallow(*opr, new_inp, | |||
opr->config()); | |||
} | |||
VarNode *deconv_src = new_inp[1], *deconv_filter = new_inp[0]; | |||
auto deconv_mode = trans_nchw4(deconv_opr.param().sparse, deconv_filter); | |||
// src: NCHW --> NCWH4 | |||
if (deconv_src->shape().ndim != 5) { | |||
mgb_assert(deconv_src->shape().ndim == 4); | |||
auto new_src = | |||
RelayoutPlaceholder::make(deconv_src, deconv_mode.src); | |||
deconv_src = new_src.node(); | |||
} | |||
// weight: NCHW --> NCHW4 | |||
auto new_filter = | |||
RelayoutPlaceholder::make(deconv_filter, deconv_mode.weight); | |||
deconv_filter = new_filter.node(); | |||
// format: NCHW --> NCHW4 | |||
auto new_param = deconv_opr.param(); | |||
new_param.format = conv_format; | |||
// dst | |||
auto new_deconv_opr = opr::ConvolutionBackwardData::make_deconv( | |||
deconv_src, deconv_filter, new_param, | |||
deconv_opr.execution_policy(), deconv_opr.config()); | |||
OperatorNodeBase* new_opr = new_deconv_opr.node()->owner_opr(); | |||
return new_opr; | |||
}; | |||
auto replace_batch_conv_bias_opr = [batch_conv_bias_format, | |||
src_to_nchw4_mode]( | |||
OperatorNodeBase* opr, | |||
@@ -1806,6 +1846,8 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() { | |||
auto&& replace_func = ret->m_opr_replace_func; | |||
//! supportted nchw4 | |||
replace_func[opr::Convolution::typeinfo()] = replace_conv_opr; | |||
replace_func[opr::ConvolutionBackwardData::typeinfo()] = | |||
replace_deconv_opr; | |||
replace_func[opr::ConvBias::typeinfo()] = replace_conv_bias_opr; | |||
replace_func[opr::BatchConvBias::typeinfo()] = replace_batch_conv_bias_opr; | |||
replace_func[opr::PoolingForward::typeinfo()] = replace_pooling_opr; | |||
@@ -1818,8 +1860,6 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() { | |||
replace_func[opr::PowC::typeinfo()] = replace_elemwise_opr; | |||
//! not supported nchw4 | |||
replace_func[opr::Concat::typeinfo()] = relayout_inp_to_nchw; | |||
replace_func[opr::ConvolutionBackwardData::typeinfo()] = | |||
relayout_inp_to_nchw; | |||
replace_func[opr::Subtensor::typeinfo()] = relayout_inp_to_nchw; | |||
replace_func[opr::GetVarShape::typeinfo()] = relayout_inp_to_nchw; | |||
replace_func[opr::Dimshuffle::typeinfo()] = relayout_inp_to_nchw; | |||
@@ -2923,6 +2923,7 @@ TEST(TestGoptInference, ConvertFormatNCHW4GPU) { | |||
auto conv1 = opr::ConvBiasForward::make( | |||
x, w1, b1, param_conv_bias, {}, | |||
OperatorNodeConfig{dtype::QuantizedS8{2.5f}}); | |||
// group | |||
// icpg != 1 && ocpg != 1 | |||
param_conv_bias.sparse = opr::ConvBias::Param::Sparse::GROUP; | |||
@@ -2932,8 +2933,19 @@ TEST(TestGoptInference, ConvertFormatNCHW4GPU) { | |||
conv1, w2, b2, param_conv_bias, {}, | |||
OperatorNodeConfig{dtype::QuantizedS8{2.5f}}); | |||
auto conv2_fp32 = opr::TypeCvt::make(conv2, dtype::Float32()); | |||
auto y = conv2_fp32 + opr::TypeCvt::make(b2, dtype::Float32()); | |||
opr::Convolution::Param param_deconv; | |||
param_deconv.format = opr::Convolution::Param::Format::NCHW; | |||
param_deconv.stride_h = param_deconv.stride_w = 2; | |||
param_deconv.pad_h = param_deconv.pad_w = 2; | |||
// dense | |||
param_deconv.sparse = opr::Convolution::Param::Sparse::DENSE; | |||
auto w3 = mkcvar("w3", {8, 8, 4, 4}, dtype::QuantizedS8(2.5f)); | |||
auto deconv1 = opr::ConvolutionBackwardData::make_deconv( | |||
conv2, w3, param_deconv, {}, | |||
OperatorNodeConfig{dtype::QuantizedS8{2.5f}}); | |||
auto deconv1_fp32 = opr::TypeCvt::make(deconv1, dtype::Float32()); | |||
auto y = deconv1_fp32 + opr::TypeCvt::make(b2, dtype::Float32()); | |||
SymbolVar y_opt; | |||
{ | |||
@@ -2944,6 +2956,8 @@ TEST(TestGoptInference, ConvertFormatNCHW4GPU) { | |||
ASSERT_EQ(opr::ConvBias::Param::Format::NCHW4, | |||
find_opr<opr::ConvBias>(y_opt).param().format); | |||
ASSERT_EQ(opr::ConvolutionBackwardData::Param::Format::NCHW4, | |||
find_opr<opr::ConvolutionBackwardData>(y_opt).param().format); | |||
auto nr_reshape = find_opr_num<mgb::opr::Reshape>(y_opt); | |||
ASSERT_EQ(2u, nr_reshape); | |||
@@ -51,7 +51,7 @@ decl_opr('ConvolutionBackwardData', | |||
], | |||
desc='batched deconvolution on channeled 2D images; the underlying ' | |||
'computation is in fact gradient of convolution w.r.t. data', | |||
version=2) | |||
version=2, has_out_dtype=True) | |||
decl_opr('MaskConvolution', | |||
inputs=[Doc('src', | |||
@@ -609,10 +609,11 @@ TEST(TestOprDNN, DeconvolutionExePolicy_QuantizedS8) { | |||
using S = Policy::Strategy; | |||
#if MGB_ENABLE_FASTRUN | |||
for (auto strategy : {S::PROFILE, S::HEURISTIC, S::PROFILE_REPRODUCIBLE, | |||
S::PROFILE_HEURISTIC}) { | |||
for (auto strategy : | |||
{S::PROFILE, S::HEURISTIC, S(S::PROFILE | S::REPRODUCIBLE), | |||
S(S::PROFILE | S::HEURISTIC)}) { | |||
#else | |||
for (auto strategy : {S : HEURISTIC, S::PROFILE_HEURISTIC}) { | |||
for (auto strategy: {S:HEURISTIC, S(S::PROFILE | S::HEURISTIC)}) { | |||
#endif | |||
auto graph = ComputingGraph::make(); | |||
HostTensorGenerator<> gen; | |||