GitOrigin-RevId: d5fbd59a30
release-1.6
@@ -197,7 +197,11 @@ public: | |||
protected: | |||
//! get origin coord | |||
std::pair<float, int> get_origin_coord(float scale, int size, int idx, bool cubic=false); | |||
std::pair<float, int> get_cubic_coord(float scale, int idx); | |||
std::tuple<float, int, float, int> get_nearest_linear_coord( | |||
InterpolationMode imode, float scale, int size, int idx); | |||
//! get nearest index in src | |||
int get_nearest_src(float scale, int size, int idx); | |||
@@ -6,12 +6,14 @@ | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/arm_common/resize/opr_impl.h" | |||
#include "src/arm_common/handle.h" | |||
#include "src/arm_common/resize/resize_cv.h" | |||
#include "src/arm_common/simd_macro/marm_neon.h" | |||
using namespace megdnn; | |||
using namespace arm_common; | |||
@@ -19,9 +21,58 @@ using namespace arm_common; | |||
void ResizeImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in dst, | |||
_megdnn_workspace workspace) { | |||
check_exec(src.layout, dst.layout, workspace.size); | |||
if (param().format == param::Resize::Format::NCHW || | |||
(src.layout[3] != 1 && src.layout[3] != 3) || | |||
!is_nhwc_contig_wc(src.layout)) { | |||
if (param().format == param::Resize::Format::NCHW44 || | |||
param().format == param::Resize::Format::NCHW88) { | |||
bool is_contiguous = | |||
src.layout.is_contiguous() && dst.layout.is_contiguous(); | |||
bool dtype_same = src.layout.dtype == dst.layout.dtype; | |||
bool nchw44_enable = param().format == param::Resize::Format::NCHW44 && | |||
src.layout.dtype == dtype::Float32(); | |||
bool nchw88_enable = | |||
param().format == param::Resize::Format::NCHW88 && | |||
DNN_FLOAT16_SELECT(src.layout.dtype == dtype::Float16(), false); | |||
bool interp_supported = | |||
param().imode == | |||
param::Resize::InterpolationMode::INTER_NEAREST || | |||
param().imode == param::Resize::InterpolationMode::INTER_LINEAR; | |||
bool is_upsample2 = | |||
param().imode == | |||
param::Resize::InterpolationMode::INTER_NEAREST && | |||
src.layout.shape[2] * 2 == dst.layout.shape[2] && | |||
src.layout.shape[3] * 2 == dst.layout.shape[3]; | |||
bool need_fallback = !is_contiguous || !dtype_same || | |||
!interp_supported || | |||
(!nchw44_enable && !nchw88_enable); | |||
if (need_fallback) { | |||
fallback::ResizeImpl::exec(src, dst, workspace); | |||
} else if (nchw44_enable) { | |||
auto kern_param = KernParam<float>::from_tensors( | |||
param().format, param().imode, src, dst, workspace); | |||
if (is_upsample2) { | |||
MEGDNN_DISPATCH_CPU_KERN_OPR( | |||
kern_nearest_upsample2_pack_simd_width(src, dst)); | |||
} else { | |||
MEGDNN_DISPATCH_CPU_KERN_OPR(kern_nchw44_fp32(kern_param)); | |||
} | |||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
} else if (nchw88_enable) { | |||
auto kern_param = KernParam<dt_float16>::from_tensors( | |||
param().format, param().imode, src, dst, workspace); | |||
if (is_upsample2) { | |||
MEGDNN_DISPATCH_CPU_KERN_OPR( | |||
kern_nearest_upsample2_pack_simd_width(src, dst)); | |||
} else { | |||
MEGDNN_DISPATCH_CPU_KERN_OPR(kern_nchw88_fp16(kern_param)); | |||
} | |||
#endif | |||
} else { | |||
fallback::ResizeImpl::exec(src, dst, workspace); | |||
} | |||
} else if (param().format == param::Resize::Format::NCHW || | |||
(src.layout[3] != 1 && src.layout[3] != 3) || | |||
!is_nhwc_contig_wc(src.layout)) { | |||
fallback::ResizeImpl::exec(src, dst, workspace); | |||
} else { | |||
megdnn_assert(param().format == param::Resize::Format::NHWC, | |||
@@ -30,4 +81,143 @@ void ResizeImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in dst, | |||
} | |||
} | |||
template <typename ctype> | |||
void ResizeImpl::kern_nchw44_fp32(const KernParam<ctype>& kern_param) { | |||
UNPACK_RESIZE_FWD_KERN_PARAM(kern_param); | |||
float scale_h = static_cast<float>(OH) / IH; | |||
float scale_w = static_cast<float>(OW) / IW; | |||
for (size_t n = 0; n < N; ++n) { | |||
for (size_t c = 0; c < C / 4; ++c) { | |||
for (size_t oh = 0; oh < OH; ++oh) { | |||
for (size_t ow = 0; ow < OW; ++ow) { | |||
int ih0, ih1, iw0, iw1; | |||
float ah0, ah1, aw0, aw1; | |||
std::tie(ah0, ih0, ah1, ih1) = get_nearest_linear_coord( | |||
kern_param.imode, scale_h, IH, oh); | |||
std::tie(aw0, iw0, aw1, iw1) = get_nearest_linear_coord( | |||
kern_param.imode, scale_w, IW, ow); | |||
#define SRC_ADDRESS(ih, iw) \ | |||
(sptr + n * C * IH * IW + (c * IH * IW + ih * IW + iw) * 4) | |||
#define DST_ADDRESS(oh, ow) \ | |||
(dptr + n * C * OH * OW + (c * OH * OW + oh * OW + ow) * 4) | |||
float32x4_t r0 = vld1q_f32(SRC_ADDRESS(ih0, iw0)); | |||
float32_t a0 = ah0 * aw0; | |||
float32x4_t r1 = vld1q_f32(SRC_ADDRESS(ih0, iw1)); | |||
float32_t a1 = ah0 * aw1; | |||
float32x4_t r2 = vld1q_f32(SRC_ADDRESS(ih1, iw0)); | |||
float32_t a2 = ah1 * aw0; | |||
float32x4_t r3 = vld1q_f32(SRC_ADDRESS(ih1, iw1)); | |||
float32_t a3 = ah1 * aw1; | |||
r0 = vmulq_n_f32(r0, a0); | |||
#if defined(__ARM_FEATURE_FMA) && defined(__aarch64__) | |||
r0 = vfmaq_n_f32(r0, r1, a1); | |||
r0 = vfmaq_n_f32(r0, r2, a2); | |||
r0 = vfmaq_n_f32(r0, r3, a3); | |||
#else | |||
r0 = vaddq_f32(r0, vmulq_n_f32(r1, a1)); | |||
r0 = vaddq_f32(r0, vmulq_n_f32(r2, a2)); | |||
r0 = vaddq_f32(r0, vmulq_n_f32(r3, a3)); | |||
#endif | |||
vst1q_f32(DST_ADDRESS(oh, ow), r0); | |||
#undef SRC_ADDRESS | |||
#undef DST_ADDRESS | |||
} | |||
} | |||
} | |||
} | |||
} | |||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
template <typename ctype> | |||
void ResizeImpl::kern_nchw88_fp16(const KernParam<ctype>& kern_param) { | |||
UNPACK_RESIZE_FWD_KERN_PARAM(kern_param); | |||
float scale_h = static_cast<float>(OH) / IH; | |||
float scale_w = static_cast<float>(OW) / IW; | |||
const float16_t* src_ptr = reinterpret_cast<float16_t*>(sptr); | |||
float16_t* dst_ptr = reinterpret_cast<float16_t*>(dptr); | |||
for (size_t n = 0; n < N; ++n) { | |||
for (size_t c = 0; c < C / 8; ++c) { | |||
for (size_t oh = 0; oh < OH; ++oh) { | |||
for (size_t ow = 0; ow < OW; ++ow) { | |||
int ih0, ih1, iw0, iw1; | |||
float ah0, ah1, aw0, aw1; | |||
std::tie(ah0, ih0, ah1, ih1) = get_nearest_linear_coord( | |||
kern_param.imode, scale_h, IH, oh); | |||
std::tie(aw0, iw0, aw1, iw1) = get_nearest_linear_coord( | |||
kern_param.imode, scale_w, IW, ow); | |||
#define SRC_ADDRESS(ih, iw) \ | |||
(src_ptr + n * C * IH * IW + (c * IH * IW + ih * IW + iw) * 8) | |||
#define DST_ADDRESS(oh, ow) \ | |||
(dst_ptr + n * C * OH * OW + (c * OH * OW + oh * OW + ow) * 8) | |||
float16x8_t r0 = vld1q_f16(SRC_ADDRESS(ih0, iw0)); | |||
float32_t a0 = ah0 * aw0; | |||
float16x8_t r1 = vld1q_f16(SRC_ADDRESS(ih0, iw1)); | |||
float32_t a1 = ah0 * aw1; | |||
float16x8_t r2 = vld1q_f16(SRC_ADDRESS(ih1, iw0)); | |||
float32_t a2 = ah1 * aw0; | |||
float16x8_t r3 = vld1q_f16(SRC_ADDRESS(ih1, iw1)); | |||
float32_t a3 = ah1 * aw1; | |||
r0 = vmulq_n_f16(r0, a0); | |||
#if defined(__ARM_FEATURE_FMA) && defined(__aarch64__) | |||
r0 = vfmaq_n_f16(r0, r1, a1); | |||
r0 = vfmaq_n_f16(r0, r2, a2); | |||
r0 = vfmaq_n_f16(r0, r3, a3); | |||
#else | |||
r0 = vaddq_f16(r0, vmulq_n_f16(r1, a1)); | |||
r0 = vaddq_f16(r0, vmulq_n_f16(r2, a2)); | |||
r0 = vaddq_f16(r0, vmulq_n_f16(r3, a3)); | |||
#endif | |||
vst1q_f16(DST_ADDRESS(oh, ow), r0); | |||
#undef SRC_ADDRESS | |||
#undef DST_ADDRESS | |||
} | |||
} | |||
} | |||
} | |||
} | |||
#endif | |||
void ResizeImpl::kern_nearest_upsample2_pack_simd_width( | |||
_megdnn_tensor_in src, _megdnn_tensor_out dst) { | |||
const uint8_t* src_ptr = reinterpret_cast<uint8_t*>(src.raw_ptr); | |||
uint8_t* dst_ptr = reinterpret_cast<uint8_t*>(dst.raw_ptr); | |||
size_t S = 2; | |||
size_t N = src.layout.shape[0]; | |||
size_t IC = src.layout.shape[1]; | |||
size_t IH = src.layout.shape[2]; | |||
size_t IW = src.layout.shape[3]; | |||
size_t OH = dst.layout.shape[2]; | |||
size_t OW = dst.layout.shape[3]; | |||
for (size_t i = 0; i < N * IC; ++i) { | |||
for (size_t ih = 0; ih < IH; ++ih) { | |||
for (size_t iw = 0; iw < IW; ++iw) { | |||
size_t oh = ih * S; | |||
size_t ow = iw * S; | |||
uint8x16_t r0 = vld1q_u8(src_ptr + i * IH * IW * 16 + | |||
ih * IW * 16 + iw * 16); | |||
for (size_t fh = 0; fh < S; ++fh) { | |||
for (size_t fw = 0; fw < S; ++fw) { | |||
vst1q_u8(dst_ptr + i * OH * OW * 16 + | |||
(oh + fh) * OW * 16 + (ow + fw) * 16, | |||
r0); | |||
} | |||
} | |||
} | |||
} | |||
} | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -6,7 +6,8 @@ | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include "megdnn/oprs.h" | |||
@@ -25,6 +26,16 @@ public: | |||
const TensorLayout&) override { | |||
return 0; | |||
} | |||
private: | |||
template <typename ctype> | |||
void kern_nchw44_fp32(const KernParam<ctype>& kern_param); | |||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
template <typename ctype> | |||
void kern_nchw88_fp16(const KernParam<ctype>& kern_param); | |||
#endif | |||
void kern_nearest_upsample2_pack_simd_width(_megdnn_tensor_in src, | |||
_megdnn_tensor_out dst); | |||
}; | |||
} // namespace arm_common | |||
@@ -40,11 +40,29 @@ void ResizeBase::check_layout_fwd(const TensorLayout& src, | |||
megdnn_assert(src.dtype.enumv() == DTypeEnum::QuantizedS8); | |||
megdnn_assert(src.shape[4] == 4); | |||
megdnn_assert(dst.shape[4] == 4); | |||
} else if (param().format == Param::Format::NCHW44) { | |||
megdnn_assert(src.ndim == 5); | |||
megdnn_assert(src.shape[4] == 4); | |||
megdnn_assert(dst.shape[4] == 4); | |||
megdnn_assert(param().imode == | |||
param::Resize::InterpolationMode::INTER_LINEAR || | |||
param().imode == | |||
param::Resize::InterpolationMode::INTER_NEAREST); | |||
} else if (param().format == Param::Format::NCHW88) { | |||
megdnn_assert(src.ndim == 5); | |||
megdnn_assert(src.shape[4] == 8); | |||
megdnn_assert(dst.shape[4] == 8); | |||
megdnn_assert(param().imode == | |||
param::Resize::InterpolationMode::INTER_LINEAR || | |||
param().imode == | |||
param::Resize::InterpolationMode::INTER_NEAREST); | |||
} else { | |||
megdnn_assert(param().format == Param::Format::NHWCD4, | |||
"invalid resize tensor format"); | |||
megdnn_assert(param().imode == | |||
param::Resize::InterpolationMode::INTER_LINEAR); | |||
param::Resize::InterpolationMode::INTER_LINEAR || | |||
param().imode == | |||
param::Resize::InterpolationMode::INTER_NEAREST); | |||
megdnn_assert(dst.shape[2] == src.shape[2], "%s", errmsg().c_str()); | |||
} | |||
} | |||
@@ -67,24 +85,39 @@ void ResizeBackward::check_exec(const TensorLayout& diff, | |||
"Backward resize only supports Float32 and NCHW."); | |||
} | |||
std::pair<float, int> ResizeBase::get_origin_coord(float scale, int size, | |||
int idx, bool cubic) { | |||
//! copy from resize_cv.cpp | |||
std::pair<float, int> ResizeBase::get_cubic_coord(float scale, int idx) { | |||
float alpha = (idx + 0.5f) / scale - 0.5f; | |||
int origin_idx = static_cast<int>(floor(alpha)); | |||
alpha -= origin_idx; | |||
if (!cubic) { | |||
if (origin_idx < 0) { | |||
origin_idx = 0; | |||
alpha = 0; | |||
} else if (origin_idx + 1 >= size) { | |||
origin_idx = size - 2; | |||
alpha = 1; | |||
} | |||
} | |||
return {alpha, origin_idx}; | |||
} | |||
std::tuple<float, int, float, int> ResizeBase::get_nearest_linear_coord( | |||
InterpolationMode imode, float scale, int size, int idx) { | |||
if (size == 1) { | |||
return std::make_tuple(1.0f, 0, 0.0f, 0); | |||
} | |||
float alpha = (idx + 0.5f) / scale - 0.5f; | |||
int origin_idx = static_cast<int>(floor(alpha)); | |||
alpha -= origin_idx; | |||
if (imode == InterpolationMode::INTER_NEAREST) { | |||
origin_idx = get_nearest_src(scale, size, idx); | |||
alpha = 0; | |||
} | |||
if (origin_idx < 0) { | |||
origin_idx = 0; | |||
alpha = 0; | |||
} else if (origin_idx + 1 >= size) { | |||
origin_idx = size - 2; | |||
alpha = 1; | |||
} | |||
return std::make_tuple(1 - alpha, origin_idx, alpha, origin_idx + 1); | |||
} | |||
int ResizeBase::get_nearest_src(float scale, int size, int idx) { | |||
return std::min(static_cast<int>(idx / scale), size - 1); | |||
} | |||
@@ -6,13 +6,14 @@ | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/fallback/resize/opr_impl.h" | |||
#include <vector> | |||
#include "src/fallback/handle.h" | |||
#include "src/common/rounding_converter.cuh" | |||
#include "src/fallback/handle.h" | |||
using namespace megdnn; | |||
using namespace fallback; | |||
@@ -30,37 +31,36 @@ void ResizeImpl::kern_fallback(const KernParam<ctype>& kern_param) { | |||
float scale_h = static_cast<float>(OH) / IH; | |||
float scale_w = static_cast<float>(OW) / IW; | |||
auto build_table = [this](float scale, int isize, | |||
int osize) -> std::vector<std::pair<float, int>> { | |||
std::vector<std::pair<float, int>> table; | |||
rep(i, osize) { table.push_back(get_origin_coord(scale, isize, i)); } | |||
auto build_table = [this](InterpolationMode imode, float scale, int isize, | |||
int osize) { | |||
std::vector<std::tuple<float, int, float, int>> table; | |||
rep(i, osize) { | |||
table.push_back(get_nearest_linear_coord(imode, scale, isize, i)); | |||
} | |||
return table; | |||
}; | |||
auto table_h = build_table(scale_h, IH, OH); | |||
auto table_w = build_table(scale_w, IW, OW); | |||
auto table_h = build_table(kern_param.imode, scale_h, IH, OH); | |||
auto table_w = build_table(kern_param.imode, scale_w, IW, OW); | |||
rep(n, N) { | |||
rep(c, static_cast<int>(C)) { | |||
rep(oh, OH) { | |||
auto coord_h = table_h[oh]; | |||
float alphah = coord_h.first; | |||
int ih0 = coord_h.second; | |||
int ih1 = ih0 + 1; | |||
float ah0, ah1, aw0, aw1; | |||
int ih0, ih1, iw0, iw1; | |||
std::tie(ah0, ih0, ah1, ih1) = table_h[oh]; | |||
rep(ow, OW) { | |||
auto coord_w = table_w[ow]; | |||
float alphaw = coord_w.first; | |||
int iw0 = coord_w.second; | |||
int iw1 = iw0 + 1; | |||
std::tie(aw0, iw0, aw1, iw1) = table_w[ow]; | |||
dptr[c * OH * OW + oh * OW + ow] = output_converter( | |||
sptr[c * S_IC + ih0 * S_IH + iw0 * S_IW] * | |||
(1.0f - alphaw) * (1.0f - alphah) + | |||
sptr[c * S_IC + ih0 * S_IH + iw1 * S_IW] * | |||
alphaw * (1.0f - alphah) + | |||
sptr[c * S_IC + ih1 * S_IH + iw0 * S_IW] * | |||
(1.0f - alphaw) * alphah + | |||
sptr[c * S_IC + ih1 * S_IH + iw1 * S_IW] * | |||
alphaw * alphah); | |||
sptr[c * S_IC + ih0 * S_IH + iw0 * S_IW] * ah0 * | |||
aw0 + | |||
sptr[c * S_IC + ih0 * S_IH + iw1 * S_IW] * ah0 * | |||
aw1 + | |||
sptr[c * S_IC + ih1 * S_IH + iw0 * S_IW] * ah1 * | |||
aw0 + | |||
sptr[c * S_IC + ih1 * S_IH + iw1 * S_IW] * ah1 * | |||
aw1); | |||
} | |||
} | |||
} | |||
@@ -76,35 +76,31 @@ void ResizeImpl::kern_fallback_nhwc(const KernParam<ctype>& kern_param) { | |||
float scale_h = static_cast<float>(OH) / IH; | |||
float scale_w = static_cast<float>(OW) / IW; | |||
auto build_table = [this](float scale, int isize, | |||
int osize) -> std::vector<std::pair<float, int>> { | |||
std::vector<std::pair<float, int>> table; | |||
rep(i, osize) { table.push_back(get_origin_coord(scale, isize, i)); } | |||
auto build_table = [this](InterpolationMode imode, float scale, int isize, | |||
int osize) { | |||
std::vector<std::tuple<float, int, float, int>> table; | |||
rep(i, osize) { | |||
table.push_back(get_nearest_linear_coord(imode, scale, isize, i)); | |||
} | |||
return table; | |||
}; | |||
auto table_h = build_table(scale_h, IH, OH); | |||
auto table_w = build_table(scale_w, IW, OW); | |||
auto table_h = build_table(kern_param.imode, scale_h, IH, OH); | |||
auto table_w = build_table(kern_param.imode, scale_w, IW, OW); | |||
rep(n, N) { | |||
rep(oh, OH) { | |||
auto coord_h = table_h[oh]; | |||
float alphah = coord_h.first; | |||
int ih0 = coord_h.second; | |||
int ih1 = ih0 + 1; | |||
float ah0, ah1, aw0, aw1; | |||
int ih0, ih1, iw0, iw1; | |||
std::tie(ah0, ih0, ah1, ih1) = table_h[oh]; | |||
rep(ow, OW) { | |||
auto coord_w = table_w[ow]; | |||
float alphaw = coord_w.first; | |||
int iw0 = coord_w.second; | |||
int iw1 = iw0 + 1; | |||
std::tie(aw0, iw0, aw1, iw1) = table_w[ow]; | |||
rep(c, C) { | |||
dptr[(oh * OW + ow) * C + c] = output_converter( | |||
sptr[(ih0 * IW + iw0) * C + c] * (1.0f - alphaw) * | |||
(1.0f - alphah) + | |||
sptr[(ih0 * IW + iw1) * C + c] * alphaw * | |||
(1.0f - alphah) + | |||
sptr[(ih1 * IW + iw0) * C + c] * (1.0f - alphaw) * | |||
alphah + | |||
sptr[(ih1 * IW + iw1) * C + c] * alphaw * alphah); | |||
sptr[(ih0 * IW + iw0) * C + c] * ah0 * aw0 + | |||
sptr[(ih0 * IW + iw1) * C + c] * ah0 * aw1 + | |||
sptr[(ih1 * IW + iw0) * C + c] * ah1 * aw0 + | |||
sptr[(ih1 * IW + iw1) * C + c] * ah1 * aw1); | |||
} | |||
} | |||
} | |||
@@ -117,6 +113,8 @@ void ResizeImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in dst, | |||
_megdnn_workspace workspace) { | |||
check_exec(src.layout, dst.layout, workspace.size); | |||
if (param().format == param::Resize::Format::NCHW4 || | |||
param().format == param::Resize::Format::NCHW44 || | |||
param().format == param::Resize::Format::NCHW88 || | |||
(param().format == param::Resize::Format::NCHW && | |||
param().imode != param::Resize::InterpolationMode::INTER_LINEAR)) { | |||
naive::ResizeImpl::exec(src, dst, workspace); | |||
@@ -125,12 +123,12 @@ void ResizeImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in dst, | |||
if ((param().format == param::Resize::Format::NCHW || | |||
(src.layout[3] != 1 && src.layout[3] != 3)) || | |||
(param().imode == param::Resize::InterpolationMode::LINEAR)) { | |||
#define cb(dt, ct) \ | |||
case DTypeTrait<dt>::enumv: { \ | |||
auto kparam = KernParam<ct>::from_tensors(param().format, src, dst, \ | |||
workspace); \ | |||
MEGDNN_DISPATCH_CPU_KERN_OPR(kern_fallback(kparam)); \ | |||
return; \ | |||
#define cb(dt, ct) \ | |||
case DTypeTrait<dt>::enumv: { \ | |||
auto kparam = KernParam<ct>::from_tensors( \ | |||
param().format, param().imode, src, dst, workspace); \ | |||
MEGDNN_DISPATCH_CPU_KERN_OPR(kern_fallback(kparam)); \ | |||
return; \ | |||
} | |||
switch (src.layout.dtype.enumv()) { | |||
@@ -141,10 +139,9 @@ void ResizeImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in dst, | |||
cb(dtype::Uint8, uint8_t); | |||
cb(dtype::Quantized8Asymm, uint8_t); | |||
default: | |||
megdnn_throw( | |||
ssprintf("Unsupported input DType in Resize: %s", | |||
src.layout.dtype.name()) | |||
.c_str()); | |||
megdnn_throw(ssprintf("Unsupported input DType in Resize: %s", | |||
src.layout.dtype.name()) | |||
.c_str()); | |||
return; | |||
} | |||
@@ -6,7 +6,8 @@ | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/naive/resize/opr_impl.h" | |||
@@ -27,10 +28,11 @@ using namespace resize; | |||
template <typename ctype> | |||
ResizeImpl::KernParam<ctype> ResizeImpl::KernParam<ctype>::from_tensors( | |||
Format format, _megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) { | |||
Format format, InterpolationMode imode, _megdnn_tensor_in src, | |||
_megdnn_tensor_out dst, _megdnn_workspace workspace) { | |||
KernParam<ctype> ret; | |||
ret.format = format; | |||
ret.imode = imode; | |||
ret.n = src.layout.shape[0]; | |||
if (format == Format::NCHW) { | |||
ret.c = src.layout.shape[1]; | |||
@@ -54,6 +56,18 @@ ResizeImpl::KernParam<ctype> ResizeImpl::KernParam<ctype>::from_tensors( | |||
ret.iw = src.layout.shape[3]; | |||
ret.oh = dst.layout.shape[2]; | |||
ret.ow = dst.layout.shape[3]; | |||
} else if (format == Format::NCHW44) { | |||
ret.c = src.layout.shape[1] * 4; | |||
ret.ih = src.layout.shape[2]; | |||
ret.iw = src.layout.shape[3]; | |||
ret.oh = dst.layout.shape[2]; | |||
ret.ow = dst.layout.shape[3]; | |||
} else if (format == Format::NCHW88) { | |||
ret.c = src.layout.shape[1] * 8; | |||
ret.ih = src.layout.shape[2]; | |||
ret.iw = src.layout.shape[3]; | |||
ret.oh = dst.layout.shape[2]; | |||
ret.ow = dst.layout.shape[3]; | |||
} else { | |||
megdnn_assert(format == Format::NHWCD4); | |||
ret.c = src.layout.shape[2] * 4; | |||
@@ -115,33 +129,30 @@ void ResizeImpl::kern_nchw(const KernParam<ctype>& kern_param, | |||
break; | |||
} | |||
case InterpolationMode::INTER_LINEAR: { | |||
auto coord_h = get_origin_coord(scale_h, IH, oh); | |||
auto coord_w = get_origin_coord(scale_w, IW, ow); | |||
float alphah = coord_h.first; | |||
float alphaw = coord_w.first; | |||
int ih0, ih1, iw0, iw1; | |||
float ah0, ah1, aw0, aw1; | |||
int ih0 = coord_h.second; | |||
int ih1 = ih0 + 1; | |||
int iw0 = coord_w.second; | |||
int iw1 = iw0 + 1; | |||
std::tie(ah0, ih0, ah1, ih1) = get_nearest_linear_coord( | |||
kern_param.imode, scale_h, IH, oh); | |||
std::tie(aw0, iw0, aw1, iw1) = get_nearest_linear_coord( | |||
kern_param.imode, scale_w, IW, ow); | |||
rep(c, static_cast<int>(C)) { | |||
dptr[c * OH * OW + oh * OW + ow] = output_converter( | |||
sptr[c * S_IC + ih0 * S_IH + iw0 * S_IW] * | |||
(1.0f - alphaw) * (1.0f - alphah) + | |||
sptr[c * S_IC + ih0 * S_IH + iw1 * S_IW] * | |||
alphaw * (1.0f - alphah) + | |||
sptr[c * S_IC + ih1 * S_IH + iw0 * S_IW] * | |||
(1.0f - alphaw) * alphah + | |||
sptr[c * S_IC + ih1 * S_IH + iw1 * S_IW] * | |||
alphaw * alphah); | |||
sptr[c * S_IC + ih0 * S_IH + iw0 * S_IW] * ah0 * | |||
aw0 + | |||
sptr[c * S_IC + ih0 * S_IH + iw1 * S_IW] * ah0 * | |||
aw1 + | |||
sptr[c * S_IC + ih1 * S_IH + iw0 * S_IW] * ah1 * | |||
aw0 + | |||
sptr[c * S_IC + ih1 * S_IH + iw1 * S_IW] * ah1 * | |||
aw1); | |||
} | |||
break; | |||
} | |||
case InterpolationMode::INTER_CUBIC: { | |||
auto coord_h = get_origin_coord(scale_h, IH, oh, true); | |||
auto coord_w = get_origin_coord(scale_w, IW, ow, true); | |||
auto coord_h = get_cubic_coord(scale_h, oh); | |||
auto coord_w = get_cubic_coord(scale_w, ow); | |||
float alphah = coord_h.first; | |||
float alphaw = coord_w.first; | |||
@@ -193,7 +204,19 @@ void ResizeImpl::kern_naive(const KernParam<ctype>& kern_param) { | |||
return; | |||
} else if (kern_param.format == Format::NCHW4) { | |||
MIDOUT_BEGIN(megdnn_naive_resize_layout, midout_iv(2)) { | |||
kern_naive_nchw4(kern_param); | |||
kern_naive_nchwx<ctype, 4>(kern_param); | |||
} | |||
MIDOUT_END(); | |||
return; | |||
} else if (kern_param.format == Format::NCHW44) { | |||
MIDOUT_BEGIN(megdnn_naive_resize_layout, midout_iv(3)) { | |||
kern_naive_nchwx<ctype, 4>(kern_param); | |||
} | |||
MIDOUT_END(); | |||
return; | |||
} else if (kern_param.format == Format::NCHW88) { | |||
MIDOUT_BEGIN(megdnn_naive_resize_layout, midout_iv(4)) { | |||
kern_naive_nchwx<ctype, 8>(kern_param); | |||
} | |||
MIDOUT_END(); | |||
return; | |||
@@ -209,25 +232,20 @@ void ResizeImpl::kern_naive_nhwc(const KernParam<ctype>& kern_param) { | |||
rep(n, N) { | |||
rep(oh, OH) rep(ow, OW) { | |||
auto coord_h = get_origin_coord(scale_h, IH, oh); | |||
auto coord_w = get_origin_coord(scale_w, IW, ow); | |||
int ih0, ih1, iw0, iw1; | |||
float ah0, ah1, aw0, aw1; | |||
float alphah = coord_h.first; | |||
float alphaw = coord_w.first; | |||
std::tie(ah0, ih0, ah1, ih1) = | |||
get_nearest_linear_coord(kern_param.imode, scale_h, IH, oh); | |||
std::tie(aw0, iw0, aw1, iw1) = | |||
get_nearest_linear_coord(kern_param.imode, scale_w, IW, ow); | |||
int ih0 = coord_h.second; | |||
int ih1 = ih0 + 1; | |||
int iw0 = coord_w.second; | |||
int iw1 = iw0 + 1; | |||
rep(c, C) { | |||
dptr[(oh * OW + ow) * C + c] = output_converter( | |||
sptr[(ih0 * IW + iw0) * C + c] * (1.0f - alphaw) * | |||
(1.0f - alphah) + | |||
sptr[(ih0 * IW + iw1) * C + c] * alphaw * | |||
(1.0f - alphah) + | |||
sptr[(ih1 * IW + iw0) * C + c] * (1.0f - alphaw) * | |||
alphah + | |||
sptr[(ih1 * IW + iw1) * C + c] * alphaw * alphah); | |||
sptr[(ih0 * IW + iw0) * C + c] * ah0 * aw0 + | |||
sptr[(ih0 * IW + iw1) * C + c] * ah0 * aw1 + | |||
sptr[(ih1 * IW + iw0) * C + c] * ah1 * aw0 + | |||
sptr[(ih1 * IW + iw1) * C + c] * ah1 * aw1); | |||
} | |||
} | |||
sptr += C * IH * IW; | |||
@@ -251,26 +269,20 @@ void ResizeImpl::kern_naive_nhwcd4(const KernParam<ctype>& kern_param) { | |||
rep(n, N) { | |||
rep(oh, OH) rep(ow, OW) { | |||
auto coord_h = get_origin_coord(scale_h, IH, oh); | |||
auto coord_w = get_origin_coord(scale_w, IW, ow); | |||
int ih0, ih1, iw0, iw1; | |||
float ah0, ah1, aw0, aw1; | |||
float alphah = coord_h.first; | |||
float alphaw = coord_w.first; | |||
std::tie(ah0, ih0, ah1, ih1) = | |||
get_nearest_linear_coord(kern_param.imode, scale_h, IH, oh); | |||
std::tie(aw0, iw0, aw1, iw1) = | |||
get_nearest_linear_coord(kern_param.imode, scale_w, IW, ow); | |||
int ih0 = coord_h.second; | |||
int ih1 = ih0 + 1; | |||
int iw0 = coord_w.second; | |||
int iw1 = iw0 + 1; | |||
rep(c, C) { | |||
dptr[get_tensor_addr(oh, ow, c, OW, C)] = output_converter( | |||
sptr[get_tensor_addr(ih0, iw0, c, IW, C)] * | |||
(1.0f - alphaw) * (1.0f - alphah) + | |||
sptr[get_tensor_addr(ih0, iw1, c, IW, C)] * alphaw * | |||
(1.0f - alphah) + | |||
sptr[get_tensor_addr(ih1, iw0, c, IW, C)] * | |||
(1.0f - alphaw) * alphah + | |||
sptr[get_tensor_addr(ih1, iw1, c, IW, C)] * alphaw * | |||
alphah); | |||
sptr[get_tensor_addr(ih0, iw0, c, IW, C)] * ah0 * aw0 + | |||
sptr[get_tensor_addr(ih0, iw1, c, IW, C)] * ah0 * aw1 + | |||
sptr[get_tensor_addr(ih1, iw0, c, IW, C)] * ah1 * aw0 + | |||
sptr[get_tensor_addr(ih1, iw1, c, IW, C)] * ah1 * aw1); | |||
} | |||
} | |||
sptr += IH * (C / 4) * IW * 4; | |||
@@ -278,41 +290,46 @@ void ResizeImpl::kern_naive_nhwcd4(const KernParam<ctype>& kern_param) { | |||
} | |||
} | |||
template <typename ctype> | |||
void ResizeImpl::kern_naive_nchw4(const KernParam<ctype>& kern_param) { | |||
template <typename ctype, size_t pack_size> | |||
void ResizeImpl::kern_naive_nchwx(const KernParam<ctype>& kern_param) { | |||
UNPACK_RESIZE_FWD_KERN_PARAM(kern_param); | |||
rounding::RoundingConverter<ctype> output_converter; | |||
float scale_h = static_cast<float>(OH) / IH; | |||
float scale_w = static_cast<float>(OW) / IW; | |||
megdnn_assert(pack_size == 4 || pack_size == 8); | |||
size_t log_pack_size = 2; | |||
if (pack_size == 8) { | |||
log_pack_size = 3; | |||
} | |||
auto get_tensor_addr = [&](size_t h, size_t w, size_t c, size_t H, size_t W, | |||
size_t C) -> size_t { | |||
megdnn_assert((C & 0x3) == 0); | |||
return (((c >> 2) * H * W + h * W + w) << 2) + (c & 0b11); | |||
megdnn_assert((C & (pack_size - 1)) == 0); | |||
return (((c >> log_pack_size) * H * W + h * W + w) << log_pack_size) + | |||
(c & (pack_size - 1)); | |||
}; | |||
rep(n, N) { | |||
rep(oh, OH) rep(ow, OW) { | |||
auto coord_h = get_origin_coord(scale_h, IH, oh); | |||
auto coord_w = get_origin_coord(scale_w, IW, ow); | |||
int ih0, ih1, iw0, iw1; | |||
float ah0, ah1, aw0, aw1; | |||
float alphah = coord_h.first; | |||
float alphaw = coord_w.first; | |||
std::tie(ah0, ih0, ah1, ih1) = | |||
get_nearest_linear_coord(kern_param.imode, scale_h, IH, oh); | |||
std::tie(aw0, iw0, aw1, iw1) = | |||
get_nearest_linear_coord(kern_param.imode, scale_w, IW, ow); | |||
int ih0 = coord_h.second; | |||
int ih1 = ih0 + 1; | |||
int iw0 = coord_w.second; | |||
int iw1 = iw0 + 1; | |||
rep(c, C) { | |||
dptr[get_tensor_addr(oh, ow, c, OH, OW, C)] = output_converter( | |||
sptr[get_tensor_addr(ih0, iw0, c, IH, IW, C)] * | |||
(1.0f - alphaw) * (1.0f - alphah) + | |||
sptr[get_tensor_addr(ih0, iw1, c, IH, IW, C)] * alphaw * | |||
(1.0f - alphah) + | |||
sptr[get_tensor_addr(ih1, iw0, c, IH, IW, C)] * | |||
(1.0f - alphaw) * alphah + | |||
sptr[get_tensor_addr(ih1, iw1, c, IH, IW, C)] * alphaw * | |||
alphah); | |||
sptr[get_tensor_addr(ih0, iw0, c, IH, IW, C)] * ah0 * | |||
aw0 + | |||
sptr[get_tensor_addr(ih0, iw1, c, IH, IW, C)] * ah0 * | |||
aw1 + | |||
sptr[get_tensor_addr(ih1, iw0, c, IH, IW, C)] * ah1 * | |||
aw0 + | |||
sptr[get_tensor_addr(ih1, iw1, c, IH, IW, C)] * ah1 * | |||
aw1); | |||
} | |||
} | |||
sptr += IH * IW * C; | |||
@@ -327,8 +344,8 @@ void ResizeImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in dst, | |||
#define cb(dt, ct, _midout_iv) \ | |||
case DTypeTrait<dt>::enumv: { \ | |||
MIDOUT_BEGIN(megdnn_naive_resize_nchw, midout_iv(_midout_iv)) { \ | |||
auto kparam = KernParam<ct>::from_tensors(param().format, src, \ | |||
dst, workspace); \ | |||
auto kparam = KernParam<ct>::from_tensors( \ | |||
param().format, param().imode, src, dst, workspace); \ | |||
MEGDNN_DISPATCH_CPU_KERN_OPR(kern_nchw(kparam, param().imode)); \ | |||
} \ | |||
MIDOUT_END(); \ | |||
@@ -356,15 +373,15 @@ void ResizeImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in dst, | |||
if (((src.layout[3] != 1 && src.layout[3] != 3) || | |||
!is_nhwc_contig_wc(src.layout)) || | |||
(param().imode == param::Resize::InterpolationMode::LINEAR)) { | |||
#define cb(dt, ct, _midout_iv) \ | |||
case DTypeTrait<dt>::enumv: { \ | |||
MIDOUT_BEGIN(megdnn_naive_resize_layout, midout_iv(_midout_iv)) { \ | |||
auto kparam = KernParam<ct>::from_tensors(param().format, src, \ | |||
dst, workspace); \ | |||
MEGDNN_DISPATCH_CPU_KERN_OPR(kern_naive(kparam)); \ | |||
} \ | |||
MIDOUT_END(); \ | |||
return; \ | |||
#define cb(dt, ct, _midout_iv) \ | |||
case DTypeTrait<dt>::enumv: { \ | |||
MIDOUT_BEGIN(megdnn_naive_resize_layout, midout_iv(_midout_iv)) { \ | |||
auto kparam = KernParam<ct>::from_tensors( \ | |||
param().format, param().imode, src, dst, workspace); \ | |||
MEGDNN_DISPATCH_CPU_KERN_OPR(kern_naive(kparam)); \ | |||
} \ | |||
MIDOUT_END(); \ | |||
return; \ | |||
} | |||
switch (src.layout.dtype.enumv()) { | |||
@@ -409,27 +426,24 @@ void ResizeBackwardImpl::exec(_megdnn_tensor_in diff, _megdnn_tensor_out grad, | |||
rep(oh, OH) rep(ow, OW) { | |||
switch (param().imode) { | |||
case InterpolationMode::INTER_LINEAR: { | |||
auto coord_h = get_origin_coord(scale_h, IH, oh); | |||
auto coord_w = get_origin_coord(scale_w, IW, ow); | |||
float alphah = coord_h.first; | |||
float alphaw = coord_w.first; | |||
int ih0, ih1, iw0, iw1; | |||
float ah0, ah1, aw0, aw1; | |||
int ih0 = coord_h.second; | |||
int ih1 = ih0 + 1; | |||
int iw0 = coord_w.second; | |||
int iw1 = iw0 + 1; | |||
std::tie(ah0, ih0, ah1, ih1) = get_nearest_linear_coord( | |||
param().imode, scale_h, IH, oh); | |||
std::tie(aw0, iw0, aw1, iw1) = get_nearest_linear_coord( | |||
param().imode, scale_w, IW, ow); | |||
rep(c, C) { | |||
float hidden = hptr[c * OH * OW + oh * OW + ow]; | |||
sptr[c * IH * IW + ih0 * IW + iw0] += | |||
(1.0f - alphaw) * (1.0f - alphah) * hidden; | |||
ah0 * aw0 * hidden; | |||
sptr[c * IH * IW + ih1 * IW + iw0] += | |||
(1.0f - alphaw) * alphah * hidden; | |||
ah1 * aw0 * hidden; | |||
sptr[c * IH * IW + ih0 * IW + iw1] += | |||
alphaw * (1.0f - alphah) * hidden; | |||
ah0 * aw1 * hidden; | |||
sptr[c * IH * IW + ih1 * IW + iw1] += | |||
alphaw * alphah * hidden; | |||
ah1 * aw1 * hidden; | |||
} | |||
break; | |||
} | |||
@@ -443,8 +457,8 @@ void ResizeBackwardImpl::exec(_megdnn_tensor_in diff, _megdnn_tensor_out grad, | |||
break; | |||
} | |||
case InterpolationMode::INTER_CUBIC: { | |||
auto coord_h = get_origin_coord(scale_h, IH, oh, true); | |||
auto coord_w = get_origin_coord(scale_w, IW, ow, true); | |||
auto coord_h = get_cubic_coord(scale_h, oh); | |||
auto coord_w = get_cubic_coord(scale_w, ow); | |||
float alphah = coord_h.first; | |||
float alphaw = coord_w.first; | |||
@@ -460,7 +474,8 @@ void ResizeBackwardImpl::exec(_megdnn_tensor_in diff, _megdnn_tensor_out grad, | |||
rep(kh, ksize) { | |||
int h = saturate<int, int>(ih0 + kh, 0, IH - 1); | |||
rep(kw, ksize) { | |||
int w = saturate<int, int>(iw0 + kw, 0, IW - 1); | |||
int w = saturate<int, int>(iw0 + kw, 0, | |||
IW - 1); | |||
sptr[c * IH * IW + h * IW + w] += | |||
hptr[c * OH * OW + oh * OW + ow] * | |||
h_coeff[kh] * w_coeff[kw]; | |||
@@ -6,7 +6,8 @@ | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
@@ -19,15 +20,18 @@ namespace naive { | |||
class ResizeImpl : public Resize { | |||
public: | |||
using Format = Param::Format; | |||
using InterpolationMode = Param::InterpolationMode; | |||
template <typename ctype> | |||
struct KernParam { | |||
Format format; | |||
InterpolationMode imode; | |||
size_t n, c, ih, iw, oh, ow; | |||
ptrdiff_t s_in, s_ic, s_ih, s_iw; | |||
ctype *sptr, *dptr; | |||
Workspace workspace; | |||
static KernParam from_tensors(Format format, _megdnn_tensor_in src, | |||
static KernParam from_tensors(Format format, InterpolationMode imode, | |||
_megdnn_tensor_in src, | |||
_megdnn_tensor_out dst, | |||
_megdnn_workspace workspace); | |||
}; | |||
@@ -41,6 +45,7 @@ public: | |||
const TensorLayout&) override { | |||
return 0; | |||
} | |||
private: | |||
// ctype: C type of input data type. | |||
template <typename ctype> | |||
@@ -55,8 +60,8 @@ private: | |||
template <typename ctype> | |||
void kern_naive_nhwcd4(const KernParam<ctype>& kern_param); | |||
template <typename ctype> | |||
void kern_naive_nchw4(const KernParam<ctype>& kern_param); | |||
template <typename ctype, size_t pack_size> | |||
void kern_naive_nchwx(const KernParam<ctype>& kern_param); | |||
}; // class ResizeImpl | |||
@@ -65,15 +70,15 @@ private: | |||
ctype* __restrict sptr = p.sptr; \ | |||
ctype* __restrict dptr = p.dptr; | |||
#define UNPACK_RESIZE_FWD_KERN_PARAM_WITH_STRIDE(p) \ | |||
UNPACK_RESIZE_FWD_KERN_PARAM(p) \ | |||
#define UNPACK_RESIZE_FWD_KERN_PARAM_WITH_STRIDE(p) \ | |||
UNPACK_RESIZE_FWD_KERN_PARAM(p) \ | |||
auto S_IN = p.s_in, S_IC = p.s_ic, S_IH = p.s_ih, S_IW = p.s_iw; | |||
class ResizeBackwardImpl: public ResizeBackward { | |||
class ResizeBackwardImpl : public ResizeBackward { | |||
public: | |||
using ResizeBackward::ResizeBackward; | |||
void exec(_megdnn_tensor_in diff, | |||
_megdnn_tensor_out grad, _megdnn_workspace workspace) override; | |||
void exec(_megdnn_tensor_in diff, _megdnn_tensor_out grad, | |||
_megdnn_workspace workspace) override; | |||
size_t get_workspace_in_bytes(const TensorLayout&, | |||
const TensorLayout&) override { | |||
return 0; | |||
@@ -6,40 +6,66 @@ | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "test/arm_common/fixture.h" | |||
#include "test/common/resize.h" | |||
#include "test/arm_common/fixture.h" | |||
#include "test/common/checker.h" | |||
namespace megdnn { | |||
namespace test { | |||
TEST_F(ARM_COMMON, RESIZE_CV) | |||
{ | |||
TEST_F(ARM_COMMON, RESIZE_CV) { | |||
using namespace resize; | |||
std::vector<TestArg> args = get_cv_args(); | |||
Checker<Resize> checker(handle()); | |||
for (auto &&arg: args) { | |||
for (auto&& arg : args) { | |||
checker.set_param(arg.param) | |||
.set_epsilon(1 + 1e-3) | |||
.set_dtype(0, dtype::Uint8()) | |||
.set_dtype(1, dtype::Uint8()) | |||
.execs({arg.src, arg.dst}); | |||
.set_epsilon(1 + 1e-3) | |||
.set_dtype(0, dtype::Uint8()) | |||
.set_dtype(1, dtype::Uint8()) | |||
.execs({arg.src, arg.dst}); | |||
} | |||
for (auto &&arg: args) { | |||
for (auto&& arg : args) { | |||
checker.set_param(arg.param) | |||
.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.execs({arg.src, arg.dst}); | |||
.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.execs({arg.src, arg.dst}); | |||
} | |||
} | |||
TEST_F(ARM_COMMON, RESIZE_NCHW44) { | |||
using namespace resize; | |||
std::vector<TestArg> args = get_nchw44_args(); | |||
Checker<Resize> checker(handle()); | |||
for (auto&& arg : args) { | |||
checker.set_param(arg.param) | |||
.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.execs({arg.src, arg.dst}); | |||
} | |||
} | |||
TEST_F(ARM_COMMON, RESIZE_NCHW88) { | |||
using namespace resize; | |||
std::vector<TestArg> args = get_nchw88_args(); | |||
Checker<Resize> checker(handle()); | |||
for (auto&& arg : args) { | |||
checker.set_param(arg.param) | |||
.set_epsilon(0.01) | |||
.set_dtype(0, dtype::Float16()) | |||
.set_dtype(1, dtype::Float16()) | |||
.execs({arg.src, arg.dst}); | |||
} | |||
} | |||
} // namespace test | |||
} // namespace megdnn | |||
} // namespace test | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen | |||
@@ -6,12 +6,13 @@ | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include "megdnn/opr_param_defs.h" | |||
#include "megdnn/basic_types.h" | |||
#include <iostream> | |||
#include "megdnn/basic_types.h" | |||
#include "megdnn/opr_param_defs.h" | |||
#include "./rng.h" | |||
namespace megdnn { | |||
@@ -68,13 +69,15 @@ static inline std::vector<TestArg> get_args(IMode imode = IMode::INTER_LINEAR) { | |||
std::vector<TestArg> args; | |||
set_nchw_args(args); | |||
if(imode == IMode::INTER_LINEAR) { | |||
//! test NHWC with ch != 1 or ch != 3 | |||
if (imode == IMode::INTER_LINEAR) { | |||
//! test NHWC with ch != 1 or ch != 3 | |||
param::Resize param; | |||
param.format = param::Resize::Format::NHWC; | |||
param.imode = imode; | |||
args.emplace_back(param, TensorShape{2, 2, 3, 4}, TensorShape{2, 4, 6, 4}); | |||
args.emplace_back(param, TensorShape{2, 4, 6, 4}, TensorShape{2, 2, 3, 4}); | |||
args.emplace_back(param, TensorShape{2, 2, 3, 4}, | |||
TensorShape{2, 4, 6, 4}); | |||
args.emplace_back(param, TensorShape{2, 4, 6, 4}, | |||
TensorShape{2, 2, 3, 4}); | |||
} | |||
return args; | |||
} | |||
@@ -108,6 +111,48 @@ static inline std::vector<TestArg> get_nchw4_args() { | |||
return args; | |||
} | |||
static inline std::vector<TestArg> get_nchw44_args() { | |||
std::vector<TestArg> args; | |||
param::Resize param; | |||
param.format = param::Resize::Format::NCHW44; | |||
param.imode = param::Resize::InterpolationMode::LINEAR; | |||
rep(n, 4ul) rep(c, 4ul) rep(ih, 4ul) rep(iw, 4ul) rep(oh, 4ul) rep(ow, 4ul) | |||
args.emplace_back( | |||
param, | |||
TensorShape{n + 1ul, c + 1ul, ih + 1ul, iw + 1ul, 4ul}, | |||
TensorShape{n + 1ul, c + 1ul, oh + 1ul, ow + 1ul, 4ul}); | |||
param.imode = param::Resize::InterpolationMode::NEAREST; | |||
rep(n, 4ul) rep(c, 4ul) rep(ih, 4ul) rep(iw, 4ul) rep(oh, 4ul) rep(ow, 4ul) | |||
args.emplace_back( | |||
param, | |||
TensorShape{n + 1ul, c + 1ul, ih + 1ul, iw + 1ul, 4ul}, | |||
TensorShape{n + 1ul, c + 1ul, oh + 1ul, ow + 1ul, 4ul}); | |||
return args; | |||
} | |||
static inline std::vector<TestArg> get_nchw88_args() { | |||
std::vector<TestArg> args; | |||
param::Resize param; | |||
param.format = param::Resize::Format::NCHW88; | |||
param.imode = param::Resize::InterpolationMode::LINEAR; | |||
rep(n, 4ul) rep(c, 4ul) rep(ih, 4ul) rep(iw, 4ul) rep(oh, 4ul) rep(ow, 4ul) | |||
args.emplace_back( | |||
param, | |||
TensorShape{n + 1ul, c + 1ul, ih + 1ul, iw + 1ul, 8ul}, | |||
TensorShape{n + 1ul, c + 1ul, oh + 1ul, ow + 1ul, 8ul}); | |||
param.imode = param::Resize::InterpolationMode::NEAREST; | |||
rep(n, 4ul) rep(c, 4ul) rep(ih, 4ul) rep(iw, 4ul) rep(oh, 4ul) rep(ow, 4ul) | |||
args.emplace_back( | |||
param, | |||
TensorShape{n + 1ul, c + 1ul, ih + 1ul, iw + 1ul, 8ul}, | |||
TensorShape{n + 1ul, c + 1ul, oh + 1ul, ow + 1ul, 8ul}); | |||
return args; | |||
} | |||
static inline std::vector<TestArg> get_cv_args() { | |||
std::vector<TestArg> args; | |||
@@ -68,87 +68,90 @@ using namespace gopt; | |||
* oprs should not get involved in any actual computing. | |||
*/ | |||
MGB_DEFINE_OPR_CLASS(TensorReformatPass::RelayoutPlaceholder, | |||
cg::SingleCNOperatorNodeBase) // { | |||
cg::SingleCNOperatorNodeBase) // { | |||
public: | |||
//! relayout type of this opr | |||
enum class LayoutType { | |||
NCHW4_TO_NCHW32, //!< from nchw4 layout to nchw32 layout | |||
NCHW32_TO_NCHW4, //!< from nchw32 layout to nchw4 layout | |||
NCHW4_TO_CHWN4, //!< from nchw4 layout to chwn4 layout | |||
CHWN4_TO_NCHW4, //!< from chwn4 layout to nchw4 layout | |||
NCHW_TO_NCHW4, //!< from nchw layout to nchw4 layout | |||
NCHW_TO_NCHW4_IC_SMALL_CONV, ///< from nchw layout to nchw4 whose | |||
///< channel size less than 4 | |||
NCHW4_TO_NCHW, //!< from nchw4 layout to nchw layout | |||
NCHW_TO_NCHW88, //!< from nchw layout to nchw88 layout | |||
NCHW88_TO_NCHW, //!< from nchw88 layout to nchw layout | |||
WEIGHT_NCHW_TO_NCHW4_DENSE, //!< weight from nchw layout to nchw4 | |||
//!< layout | |||
WEIGHT_NCHW_TO_NCHW4_GROUP, //!< group weight from nchw layout to | |||
//!< nchw4 layout | |||
WEIGHT_NCHW_TO_NCHW4_DENSE_IC_SMALL_CONV, //!< weight from nchw layout | |||
//!< to nchw4 layout whose | |||
//! channel size less than 4 | |||
WEIGHT_NCHW_TO_NCHW88_DENSE, //!< weight from nchw layout to nchw88 | |||
//!< layout | |||
WEIGHT_NCHW_TO_NCHW88_GROUP, //!< group weight from nchw layout to | |||
//!< nchw88 layout | |||
WEIGHT_NCHW_TO_NCHW88_CHAN, //!< channel wise weight from nchw layout | |||
//!< to nchw88 layout | |||
//!< the weight layout of input is nchw output is nchw88, special for | |||
//!< shape weight in nchw like {64, 2, 3, 3} to {8, 3, 3, 2, 8} | |||
WEIGHT_HYBIRD_NCHW_NCHW88, | |||
WEIGHT_NCHW_TO_NCHW44_DENSE, //!< weight from nchw layout to nchw44 | |||
//!< layout | |||
WEIGHT_NCHW_TO_NCHW44_GROUP, //!< group weight from nchw layout to | |||
//!< nchw44 layout | |||
WEIGHT_NCHW_TO_NCHW44_CHAN, //!< channel wise weight from nchw layout | |||
//!< to nchw44 layout | |||
//!< the weight layout of input is nchw output is nchw44, special for | |||
//!< shape weight in nchw like {64, 2, 3, 3} to {16, 3, 3, 2, 4} | |||
WEIGHT_HYBIRD_NCHW_NCHW44, | |||
WEIGHT_NCHW_TO_NCHW44_DOT_DENSE, //!< weight from NCHW44 layout to | |||
//!< NCHW44_DOT layout dense | |||
WEIGHT_NCHW_TO_NCHW44_DOT_GROUP, //!< weight from NCHW44 layout to | |||
//!< NCHW44_DOT layout group | |||
NCHW32_TO_NCHW, //! <from nchw32 layout to nchw layout | |||
NCHW32_TO_NCHW64, //! <from nchw32 layout to nchw64 layout | |||
NCHW64_TO_NCHW, //! <from nchw64 layout to nchw layout | |||
NCHW64_TO_NCHW4, //! <from nchw64 layout to nchw4 layout | |||
NCHW64_TO_NCHW32, //! <from nchw64 layout to nchw32 layout | |||
NCHW_TO_NCHW64, //! <from nchw layout to nchw64 layout | |||
NCHW_TO_NCHW32, //! <from nchw layout to nchw64 layout | |||
NCHW4_TO_NCHW64, //! <from nchw4 layout to nchw64 layout | |||
NCHW_TO_NHWC, //! <NHWC related layout transformation | |||
NCHW4_TO_NHWC, | |||
NCHW32_TO_NHWC, | |||
NCHW64_TO_NHWC, | |||
NHWC_TO_NCHW, | |||
NHWC_TO_NCHW4, | |||
NHWC_TO_NCHW32, | |||
NHWC_TO_NCHW64, | |||
}; | |||
//! relayout type of this opr | |||
enum class LayoutType { | |||
NCHW4_TO_NCHW32, //!< from nchw4 layout to nchw32 layout | |||
NCHW32_TO_NCHW4, //!< from nchw32 layout to nchw4 layout | |||
NCHW4_TO_CHWN4, //!< from nchw4 layout to chwn4 layout | |||
CHWN4_TO_NCHW4, //!< from chwn4 layout to nchw4 layout | |||
NCHW_TO_NCHW4, //!< from nchw layout to nchw4 layout | |||
NCHW_TO_NCHW4_IC_SMALL_CONV, ///< from nchw layout to nchw4 whose | |||
///< channel size less than 4 | |||
NCHW4_TO_NCHW, //!< from nchw4 layout to nchw layout | |||
NCHW_TO_NCHW88, //!< from nchw layout to nchw88 layout | |||
NCHW88_TO_NCHW, //!< from nchw88 layout to nchw layout | |||
WEIGHT_NCHW_TO_NCHW4_DENSE, //!< weight from nchw layout to nchw4 | |||
//!< layout | |||
WEIGHT_NCHW_TO_NCHW4_GROUP, //!< group weight from nchw layout to | |||
//!< nchw4 layout | |||
WEIGHT_NCHW_TO_NCHW4_DENSE_IC_SMALL_CONV, //!< weight from nchw layout | |||
//!< to nchw4 layout whose | |||
//! channel size less than 4 | |||
WEIGHT_NCHW_TO_NCHW88_DENSE, //!< weight from nchw layout to nchw88 | |||
//!< layout | |||
WEIGHT_NCHW_TO_NCHW88_GROUP, //!< group weight from nchw layout to | |||
//!< nchw88 layout | |||
WEIGHT_NCHW_TO_NCHW88_CHAN, //!< channel wise weight from nchw layout | |||
//!< to nchw88 layout | |||
//!< the weight layout of input is nchw output is nchw88, special for | |||
//!< shape weight in nchw like {64, 2, 3, 3} to {8, 3, 3, 2, 8} | |||
WEIGHT_HYBIRD_NCHW_NCHW88, | |||
WEIGHT_NCHW_TO_NCHW44_DENSE, //!< weight from nchw layout to nchw44 | |||
//!< layout | |||
WEIGHT_NCHW_TO_NCHW44_GROUP, //!< group weight from nchw layout to | |||
//!< nchw44 layout | |||
WEIGHT_NCHW_TO_NCHW44_CHAN, //!< channel wise weight from nchw layout | |||
//!< to nchw44 layout | |||
//!< the weight layout of input is nchw output is nchw44, special for | |||
//!< shape weight in nchw like {64, 2, 3, 3} to {16, 3, 3, 2, 4} | |||
WEIGHT_HYBIRD_NCHW_NCHW44, | |||
WEIGHT_NCHW_TO_NCHW44_DOT_DENSE, //!< weight from NCHW44 layout to | |||
//!< NCHW44_DOT layout dense | |||
WEIGHT_NCHW_TO_NCHW44_DOT_GROUP, //!< weight from NCHW44 layout to | |||
//!< NCHW44_DOT layout group | |||
NCHW32_TO_NCHW, //! <from nchw32 layout to nchw layout | |||
NCHW32_TO_NCHW64, //! <from nchw32 layout to nchw64 layout | |||
NCHW64_TO_NCHW, //! <from nchw64 layout to nchw layout | |||
NCHW64_TO_NCHW4, //! <from nchw64 layout to nchw4 layout | |||
NCHW64_TO_NCHW32, //! <from nchw64 layout to nchw32 layout | |||
NCHW_TO_NCHW64, //! <from nchw layout to nchw64 layout | |||
NCHW_TO_NCHW32, //! <from nchw layout to nchw64 layout | |||
NCHW4_TO_NCHW64, //! <from nchw4 layout to nchw64 layout | |||
NCHW_TO_NHWC, //! <NHWC related layout transformation | |||
NCHW4_TO_NHWC, | |||
NCHW32_TO_NHWC, | |||
NCHW64_TO_NHWC, | |||
NHWC_TO_NCHW, | |||
NHWC_TO_NCHW4, | |||
NHWC_TO_NCHW32, | |||
NHWC_TO_NCHW64, | |||
}; | |||
RelayoutPlaceholder(VarNode* src_var, LayoutType layout_type); | |||
RelayoutPlaceholder(VarNode* src_var, LayoutType layout_type); | |||
/*! | |||
* \param src_var the input var | |||
* \param layout_type tensor layout transform type of this relayout | |||
* placeholder as described in LayoutType | |||
*/ | |||
static SymbolVar make(VarNode* src_var, LayoutType layout_type); | |||
/*! | |||
* \param src_var the input var | |||
* \param layout_type tensor layout transform type of this relayout | |||
* placeholder as described in LayoutType | |||
*/ | |||
static SymbolVar make(VarNode* src_var, LayoutType layout_type); | |||
LayoutType layout_type() const { return m_layout_type; } | |||
LayoutType layout_type() const { | |||
return m_layout_type; | |||
} | |||
private: | |||
void init_output_static_infer_desc() override; | |||
void scn_do_execute() override; | |||
void init_output_comp_node() override; | |||
const LayoutType m_layout_type; | |||
}; | |||
void init_output_static_infer_desc() override; | |||
void scn_do_execute() override; | |||
void init_output_comp_node() override; | |||
const LayoutType m_layout_type; | |||
} | |||
; | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(TensorReformatPass::RelayoutPlaceholder); | |||
TensorReformatPass::RelayoutPlaceholder::RelayoutPlaceholder( | |||
@@ -1023,8 +1026,7 @@ void TensorReformatPass::translate_pass(OptState& opt) const { | |||
auto sub = [&xshp, &cv](int idx) { | |||
return opr::IndexAt::make(xshp, {{0, cv(idx)}}); | |||
}; | |||
auto tshp0 = | |||
opr::Concat::make({sub(0), sub(2), sub(3), sub(1) * 4}, 0); | |||
auto tshp0 = opr::Concat::make({sub(0), sub(2), sub(3), sub(1) * 4}, 0); | |||
auto y0 = opr::Dimshuffle::make(x, {0, 2, 3, 1, 4}); | |||
auto y1 = opr::Reshape::make(y0, tshp0); | |||
return y1.node(); | |||
@@ -1036,7 +1038,8 @@ void TensorReformatPass::translate_pass(OptState& opt) const { | |||
auto sub = [&xshp, &cv](int idx) { | |||
return opr::IndexAt::make(xshp, {{0, cv(idx)}}); | |||
}; | |||
auto tshp0 = opr::Concat::make({sub(0), sub(2), sub(3), sub(1) * 32}, 0); | |||
auto tshp0 = | |||
opr::Concat::make({sub(0), sub(2), sub(3), sub(1) * 32}, 0); | |||
auto y0 = opr::Dimshuffle::make(x, {0, 2, 3, 1, 4}); | |||
auto y1 = opr::Reshape::make(y0, tshp0); | |||
return y1.node(); | |||
@@ -1048,7 +1051,8 @@ void TensorReformatPass::translate_pass(OptState& opt) const { | |||
auto sub = [&xshp, &cv](int idx) { | |||
return opr::IndexAt::make(xshp, {{0, cv(idx)}}); | |||
}; | |||
auto tshp0 = opr::Concat::make({sub(0), sub(2), sub(3), sub(1) * 64}, 0); | |||
auto tshp0 = | |||
opr::Concat::make({sub(0), sub(2), sub(3), sub(1) * 64}, 0); | |||
auto y0 = opr::Dimshuffle::make(x, {0, 2, 3, 1, 4}); | |||
auto y1 = opr::Reshape::make(y0, tshp0); | |||
return y1.node(); | |||
@@ -1865,8 +1869,8 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() { | |||
}; | |||
auto replace_deconv_opr = [trans_nchw4, conv_format]( | |||
OperatorNodeBase* opr, | |||
const VarNodeArray& new_inp) { | |||
OperatorNodeBase* opr, | |||
const VarNodeArray& new_inp) { | |||
if (new_inp[1]->dtype().enumv() == DTypeEnum::Float32) { | |||
return serialization::copy_opr_shallow(*opr, new_inp, | |||
opr->config()); | |||
@@ -1881,7 +1885,8 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() { | |||
opr->config()); | |||
} | |||
VarNode *deconv_src = new_inp[1], *deconv_filter = new_inp[0]; | |||
auto deconv_mode = trans_nchw4(deconv_opr.param().sparse, deconv_filter); | |||
auto deconv_mode = | |||
trans_nchw4(deconv_opr.param().sparse, deconv_filter); | |||
// src: NCHW --> NCWH4 | |||
if (deconv_src->shape().ndim != 5) { | |||
mgb_assert(deconv_src->shape().ndim == 4); | |||
@@ -2028,10 +2033,10 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() { | |||
conv_bias_src, conv_bias_filter, new_param, | |||
conv_bias_opr.execution_policy(), conv_bias_opr.config()); | |||
OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr(); | |||
mgb_assert( | |||
new_conv_bias_opr.node()->dtype().enumv() == DTypeEnum::Float32 || | |||
new_conv_bias_opr.shape().ndim == 5, | |||
"The conv_bias dst dim is not trans to nchw4"); | |||
mgb_assert(new_conv_bias_opr.node()->dtype().enumv() == | |||
DTypeEnum::Float32 || | |||
new_conv_bias_opr.shape().ndim == 5, | |||
"The conv_bias dst dim is not trans to nchw4"); | |||
return new_opr; | |||
} | |||
// bias: NCHW --> NCHW4 when bias_dtype is not Float32 | |||
@@ -2047,10 +2052,10 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() { | |||
conv_bias_src, conv_bias_filter, conv_bias_bias, new_param, | |||
conv_bias_opr.execution_policy(), conv_bias_opr.config()); | |||
OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr(); | |||
mgb_assert( | |||
new_conv_bias_opr.node()->dtype().enumv() == DTypeEnum::Float32 || | |||
new_conv_bias_opr.shape().ndim == 5, | |||
"The conv_bias dst dim is not trans to nchw4"); | |||
mgb_assert(new_conv_bias_opr.node()->dtype().enumv() == | |||
DTypeEnum::Float32 || | |||
new_conv_bias_opr.shape().ndim == 5, | |||
"The conv_bias dst dim is not trans to nchw4"); | |||
return new_opr; | |||
} | |||
// z_inp: NCHW --> NCHW4 when bias_dtype is not Float32 | |||
@@ -2066,10 +2071,10 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() { | |||
new_param, conv_bias_opr.execution_policy(), | |||
conv_bias_opr.config()); | |||
OperatorNodeBase* new_opr = new_conv_bias_opr.node()->owner_opr(); | |||
mgb_assert( | |||
new_conv_bias_opr.node()->dtype().enumv() == DTypeEnum::Float32 || | |||
new_conv_bias_opr.shape().ndim == 5, | |||
"The conv_bias dst dim is not trans to nchw4"); | |||
mgb_assert(new_conv_bias_opr.node()->dtype().enumv() == | |||
DTypeEnum::Float32 || | |||
new_conv_bias_opr.shape().ndim == 5, | |||
"The conv_bias dst dim is not trans to nchw4"); | |||
return new_opr; | |||
}; | |||
auto replace_elemwise_opr = [=](OperatorNodeBase* opr, | |||
@@ -2210,8 +2215,7 @@ std::unique_ptr<EnableNCHW4Pass> EnableNCHW4Pass::make_nchw4_converter() { | |||
auto&& replace_func = ret->m_opr_replace_func; | |||
//! supportted nchw4 | |||
replace_func[opr::Convolution::typeinfo()] = replace_conv_opr; | |||
replace_func[opr::ConvolutionBackwardData::typeinfo()] = | |||
replace_deconv_opr; | |||
replace_func[opr::ConvolutionBackwardData::typeinfo()] = replace_deconv_opr; | |||
replace_func[opr::ConvBias::typeinfo()] = replace_conv_bias_opr; | |||
replace_func[opr::BatchConvBias::typeinfo()] = replace_batch_conv_bias_opr; | |||
replace_func[opr::PoolingForward::typeinfo()] = replace_pooling_opr; | |||
@@ -2348,6 +2352,8 @@ void EnableNchwxxPass::fill_opr_convert_fun(size_t pack_c_size) { | |||
megdnn::param::Convolution::Format::NCHW88; | |||
megdnn::param::Pooling::Format pooling_format = | |||
megdnn::param::Pooling::Format::NCHW88; | |||
megdnn::param::Resize::Format resize_format = | |||
megdnn::param::Resize::Format::NCHW88; | |||
std::string convter_pass_name = "conv_format_nchw88"; | |||
if (pack_c_size == 4) { | |||
@@ -2360,6 +2366,7 @@ void EnableNchwxxPass::fill_opr_convert_fun(size_t pack_c_size) { | |||
conv_bias_format = megdnn::param::ConvBias::Format::NCHW44; | |||
conv_format = megdnn::param::Convolution::Format::NCHW44; | |||
pooling_format = megdnn::param::Pooling::Format::NCHW44; | |||
resize_format = megdnn::param::Resize::Format::NCHW44; | |||
convter_pass_name = "conv_format_nchw44"; | |||
} | |||
auto test_trans_nchwxx = | |||
@@ -2634,6 +2641,43 @@ void EnableNchwxxPass::fill_opr_convert_fun(size_t pack_c_size) { | |||
return new_opr; | |||
} | |||
}; | |||
auto replace_resize_opr = [=](OperatorNodeBase* opr, | |||
const VarNodeArray& new_inp) { | |||
mgb_assert(opr->input().size() == new_inp.size()); | |||
auto& resize_opr = opr->cast_final_safe<opr::ResizeForward>(); | |||
mgb_throw_if( | |||
resize_opr.param().format != | |||
megdnn::param::Resize::Format::NCHW && | |||
resize_opr.param().format != | |||
megdnn::param::Resize::Format::NHWC, | |||
MegBrainError, | |||
"ConvertFormat Pass only support converting NCHW to NCHWxx"); | |||
VarNode* inp = new_inp[0]; | |||
if (resize_opr.param().format == megdnn::param::Resize::Format::NHWC) { | |||
auto temp_inp = new_inp; | |||
if (inp->shape().ndim == 5) { | |||
auto new_var = RelayoutPlaceholder::make(inp, src_to_nchw_mode); | |||
temp_inp[0] = new_var.node(); | |||
} | |||
return serialization::copy_opr_shallow(*opr, temp_inp, | |||
opr->config()); | |||
} else { | |||
auto temp_inp = new_inp; | |||
if (inp->shape().ndim == 5) { | |||
auto new_param = resize_opr.param(); | |||
new_param.format = resize_format; | |||
auto new_resize_opr = opr::ResizeForward::make( | |||
new_inp[0], new_inp[1], new_param, opr->config()); | |||
return new_resize_opr.node()->owner_opr(); | |||
} else { | |||
return serialization::copy_opr_shallow(*opr, new_inp, | |||
opr->config()); | |||
} | |||
} | |||
}; | |||
//! When input change and all input can convert to nchwxx, this opr will run | |||
//! in nchwxx mode, else it will run in nchw mode, for example concat and | |||
//! elemwise opr | |||
@@ -2704,6 +2748,7 @@ void EnableNchwxxPass::fill_opr_convert_fun(size_t pack_c_size) { | |||
replace_func[opr::Convolution::typeinfo()] = replace_conv_opr; | |||
replace_func[opr::ConvBias::typeinfo()] = replace_conv_bias_opr; | |||
replace_func[opr::PoolingForward::typeinfo()] = replace_pooling_opr; | |||
replace_func[opr::ResizeForward::typeinfo()] = replace_resize_opr; | |||
replace_func[opr::Concat::typeinfo()] = replace_multi_inp_opr; | |||
replace_func[opr::Elemwise::typeinfo()] = replace_multi_inp_opr; | |||
replace_func[opr::TypeCvt::typeinfo()] = replace_multi_inp_opr; | |||
@@ -2718,7 +2763,6 @@ void EnableNchwxxPass::fill_opr_convert_fun(size_t pack_c_size) { | |||
replace_func[opr::Reduce::typeinfo()] = relayout_inp_to_nchw; | |||
replace_func[opr::AssertEqual::typeinfo()] = relayout_inp_to_nchw; | |||
replace_func[opr::IncrSubtensor::typeinfo()] = relayout_inp_to_nchw; | |||
replace_func[opr::ResizeForward::typeinfo()] = relayout_inp_to_nchw; | |||
replace_func[opr::WarpPerspectiveForward::typeinfo()] = | |||
relayout_inp_to_nchw; | |||
replace_func[opr::WarpAffineForward::typeinfo()] = relayout_inp_to_nchw; | |||
@@ -3236,26 +3280,27 @@ public: | |||
MGB_DEFINE_OPR_CLASS(ShuffleShuffleRemovePass::Impl::AbstractShuffleOpr, | |||
cg::SingleCNOperatorNodeBase) // { | |||
public: | |||
AbstractShuffleOpr(VarNode* inpvar, TensorFormat inp_format, | |||
TensorFormat out_format); | |||
AbstractShuffleOpr(VarNode* inpvar, TensorFormat inp_format, | |||
TensorFormat out_format); | |||
static SymbolVar make(VarNode* inpvar, TensorFormat inp_format, | |||
TensorFormat out_format); | |||
static SymbolVar make(VarNode* inpvar, TensorFormat inp_format, | |||
TensorFormat out_format); | |||
TensorFormat inp_format() const { | |||
return m_inp_format; | |||
} | |||
TensorFormat inp_format() const { | |||
return m_inp_format; | |||
} | |||
TensorFormat out_format() const { | |||
return m_out_format; | |||
} | |||
TensorFormat out_format() const { | |||
return m_out_format; | |||
} | |||
private: | |||
void init_output_static_infer_desc() override; | |||
void scn_do_execute() override; | |||
const TensorFormat m_inp_format; | |||
const TensorFormat m_out_format; | |||
}; | |||
void init_output_static_infer_desc() override; | |||
void scn_do_execute() override; | |||
const TensorFormat m_inp_format; | |||
const TensorFormat m_out_format; | |||
} | |||
; | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(ShuffleShuffleRemovePass::Impl::AbstractShuffleOpr); | |||
@@ -3910,8 +3955,8 @@ void FoldingConvBiasDimshufflePass::apply(OptState& opt) const { | |||
opr_set.insert(opr); | |||
// check dimshuffle | |||
auto shuffle = try_cast_as_op<opr::Dimshuffle>( | |||
reshape->input(0)->owner_opr()); | |||
auto shuffle = | |||
try_cast_as_op<opr::Dimshuffle>(reshape->input(0)->owner_opr()); | |||
if (shuffle == nullptr) | |||
return false; | |||
auto&& param = shuffle->param(); | |||
@@ -3981,10 +4026,9 @@ void FoldingConvBiasDimshufflePass::apply(OptState& opt) const { | |||
auto conv_bias_shuffle = opr::ConvBias::make( | |||
src, filter, new_bias, new_param, conv_bias->execution_policy(), | |||
OperatorNodeConfig{out_dtype}); | |||
rewriter.replace_var( | |||
opr->output(0), conv_bias_shuffle.node(), | |||
mgb_cstr_log("replace conv_bias + " | |||
"reformat to conv_bias(NCHW4_NHWC)")); | |||
rewriter.replace_var(opr->output(0), conv_bias_shuffle.node(), | |||
mgb_cstr_log("replace conv_bias + " | |||
"reformat to conv_bias(NCHW4_NHWC)")); | |||
return true; | |||
}; | |||
@@ -4036,8 +4080,8 @@ void FoldingConvBiasDimshufflePass::apply(OptState& opt) const { | |||
return false; | |||
auto inp_dtype = conv_bias->input(0)->dtype(); | |||
bool is_s8nchw32 = inp_dtype.enumv() == DTypeEnum::QuantizedS8 && | |||
conv_bias->param().format == | |||
megdnn::param::ConvBias::Format::NCHW32; | |||
conv_bias->param().format == | |||
megdnn::param::ConvBias::Format::NCHW32; | |||
if (!is_s8nchw32) | |||
return false; | |||
if (conv_bias->input().size() != 3) | |||
@@ -4078,9 +4122,8 @@ void FoldingConvBiasDimshufflePass::apply(OptState& opt) const { | |||
&rewriter](OperatorNodeBase* opr) { | |||
if (!try_conv_dimshuffle_reshape_typecvt(opr) && | |||
!try_conv_reformat_nchw42nchw32(opr) && | |||
!try_conv_reformat_nchw42nhwc(opr) | |||
&& !try_conv_reformat_nchw322nchw4(opr) | |||
) { | |||
!try_conv_reformat_nchw42nhwc(opr) && | |||
!try_conv_reformat_nchw322nchw4(opr)) { | |||
rewriter.auto_replace_outputs(opr); | |||
} | |||
}; | |||
@@ -4497,7 +4540,7 @@ void PaddingChannelPass::apply(OptState& opt) const { | |||
/* ================ EnableNCHW64Pass =============== */ | |||
VarNode* EnableNCHW64Pass::on_graph_endpoint_var(VarNode* new_var, | |||
VarNode* orig_var) const { | |||
VarNode* orig_var) const { | |||
if (!orig_var->shape().eq_shape(new_var->shape())) { | |||
auto iter = m_opr_format_map.find(new_var->owner_opr()); | |||
mgb_assert(iter != m_opr_format_map.end(), | |||
@@ -4532,8 +4575,7 @@ VarNode* EnableNCHW64Pass::on_graph_endpoint_var(VarNode* new_var, | |||
return new_var; | |||
} | |||
std::unique_ptr<EnableNCHW64Pass> | |||
EnableNCHW64Pass::make_nchw64_converter() { | |||
std::unique_ptr<EnableNCHW64Pass> EnableNCHW64Pass::make_nchw64_converter() { | |||
MIDOUT_B("EnableNCHW64Pass::make") | |||
auto ret = std::make_unique<EnableNCHW64Pass>(); | |||
ret->set_var_replace_check_flag(VarReplaceCheckFlag::CHECK_ALL ^ | |||
@@ -4618,15 +4660,15 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
[make_new_conv, &format_map]( | |||
OperatorNodeBase* opr, | |||
const VarNodeArray& new_inp) -> VarNode* { | |||
mgb_assert(opr->input().size()==new_inp.size()); | |||
mgb_assert(opr->input().size() == new_inp.size()); | |||
bool check_dtype = | |||
new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS8 && | |||
new_inp[1]->dtype().enumv() == DTypeEnum::QuantizedS8; | |||
mgb_assert(opr->output().size() > 0); | |||
bool dst_float = opr->output(0)->dtype().enumv() == DTypeEnum::Float32; | |||
if (opr->input().size() >= 3) { | |||
auto dtype_expect = dst_float ? DTypeEnum::Float32 | |||
: DTypeEnum::QuantizedS32; | |||
auto dtype_expect = | |||
dst_float ? DTypeEnum::Float32 : DTypeEnum::QuantizedS32; | |||
check_dtype &= new_inp[2]->dtype().enumv() == dtype_expect; | |||
} | |||
if (opr->input().size() >= 4) { | |||
@@ -4677,12 +4719,13 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
for (size_t i = 0; i < inps.size(); ++i) { | |||
// do not format bias and z when dst_float is true | |||
bool skip = dst_float && i >= 2; | |||
if (!skip) inps[i] = process(i); | |||
if (!skip) | |||
inps[i] = process(i); | |||
} | |||
auto& conv_bias = opr->cast_final_safe<opr::ConvBiasForward>(); | |||
auto ret = make_new_conv( | |||
inps, &conv_bias, | |||
dst_float ? Format::NCHW4_NCHW : Format::NCHW4); | |||
auto ret = | |||
make_new_conv(inps, &conv_bias, | |||
dst_float ? Format::NCHW4_NCHW : Format::NCHW4); | |||
if (!dst_float) | |||
format_map.insert(std::make_pair(ret->owner_opr(), Format::NCHW4)); | |||
return ret; | |||
@@ -4692,7 +4735,7 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
[make_new_conv, &format_map]( | |||
OperatorNodeBase* opr, | |||
const VarNodeArray& new_inp) -> VarNode* { | |||
mgb_assert(opr->input().size()==new_inp.size()); | |||
mgb_assert(opr->input().size() == new_inp.size()); | |||
bool check_dtype = | |||
new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS8 && | |||
new_inp[1]->dtype().enumv() == DTypeEnum::QuantizedS8; | |||
@@ -4754,18 +4797,17 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
OperatorNodeBase* opr, | |||
const VarNodeArray& new_inp) -> VarNode* { | |||
// fint4XWint4 and fuint4XWint4 | |||
mgb_assert(opr->input().size()==new_inp.size()); | |||
mgb_assert(opr->input().size() == new_inp.size()); | |||
bool check_dtype = | |||
(new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS4 || | |||
new_inp[0]->dtype().enumv() == | |||
DTypeEnum::Quantized4Asymm) && | |||
new_inp[0]->dtype().enumv() == DTypeEnum::Quantized4Asymm) && | |||
new_inp[1]->dtype().enumv() == DTypeEnum::QuantizedS4; | |||
if (opr->input().size() >= 3) | |||
check_dtype &= | |||
new_inp[2]->dtype().enumv() == DTypeEnum::QuantizedS32; | |||
if (opr->input().size() >= 4) | |||
check_dtype &= new_inp[3]->dtype().enumv() == | |||
new_inp[0]->dtype().enumv(); | |||
check_dtype &= | |||
new_inp[3]->dtype().enumv() == new_inp[0]->dtype().enumv(); | |||
if (!check_dtype) | |||
return nullptr; | |||
size_t out_channels = opr->input(1)->shape()[0]; | |||
@@ -4818,18 +4860,17 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
OperatorNodeBase* opr, | |||
const VarNodeArray& new_inp) -> VarNode* { | |||
// fint4XWint4 and fuint4XWint4 | |||
mgb_assert(opr->input().size()==new_inp.size()); | |||
mgb_assert(opr->input().size() == new_inp.size()); | |||
bool check_dtype = | |||
(new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS4 || | |||
new_inp[0]->dtype().enumv() == | |||
DTypeEnum::Quantized4Asymm) && | |||
new_inp[0]->dtype().enumv() == DTypeEnum::Quantized4Asymm) && | |||
new_inp[1]->dtype().enumv() == DTypeEnum::QuantizedS4; | |||
if (opr->input().size() >= 3) | |||
check_dtype &= | |||
new_inp[2]->dtype().enumv() == DTypeEnum::QuantizedS32; | |||
if (opr->input().size() >= 4) | |||
check_dtype &= new_inp[3]->dtype().enumv() == | |||
new_inp[0]->dtype().enumv(); | |||
check_dtype &= | |||
new_inp[3]->dtype().enumv() == new_inp[0]->dtype().enumv(); | |||
if (!check_dtype) | |||
return nullptr; | |||
size_t out_channels = opr->input(1)->shape()[0]; | |||
@@ -4842,8 +4883,7 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
auto iter = format_map.find(new_inp[i]->owner_opr()); | |||
if (iter == format_map.end()) { | |||
auto ovar = RelayoutPlaceholder::make( | |||
inps[i], | |||
RelayoutPlaceholder::LayoutType::NCHW_TO_NHWC); | |||
inps[i], RelayoutPlaceholder::LayoutType::NCHW_TO_NHWC); | |||
return ovar.node(); | |||
} else { | |||
const auto& fmt = iter->second; | |||
@@ -4973,7 +5013,7 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
default: | |||
mgb_assert(cur == Format::NCHW4); | |||
} | |||
auto param = deconv.param(); | |||
param.format = Format::NCHW4; | |||
auto new_deconv = opr::ConvolutionBackwardData::make( | |||
@@ -4990,7 +5030,7 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
break; | |||
} | |||
} | |||
mgb_assert(!shape_changed, | |||
mgb_assert(!shape_changed, | |||
"EnableNCHW64Pass won't change format of output tensor " | |||
"of non quantized deconv operator(name:%s)", | |||
opr->cname()); | |||
@@ -5000,8 +5040,9 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
}; | |||
// replace rule for elemwise like opr | |||
auto replace_elemwise_like_opr = [&format_map](OperatorNodeBase* opr, | |||
const VarNodeArray& new_inp) { | |||
auto replace_elemwise_like_opr = [&format_map]( | |||
OperatorNodeBase* opr, | |||
const VarNodeArray& new_inp) { | |||
mgb_assert(opr->input().size() == new_inp.size()); | |||
ThinHashMap<Format, size_t> format_size; | |||
bool same_format = true; | |||
@@ -5073,7 +5114,7 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
cur = Format::NCHW; | |||
} | |||
if (cur != max_format) { | |||
inps[i] = map.at(std::make_pair(cur, max_format))(inps[i]); | |||
inps[i] = map.at(std::make_pair(cur, max_format))(inps[i]); | |||
} | |||
} | |||
auto ret = serialization::copy_opr_shallow(*opr, inps, opr->config()); | |||
@@ -5131,8 +5172,7 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
SymbolVar new_warp; | |||
if (inps.size() == 3) { | |||
new_warp = opr::WarpPerspectiveForward::make( | |||
inps[0], inps[1], inps[2], param, | |||
warp.config()); | |||
inps[0], inps[1], inps[2], param, warp.config()); | |||
} else { | |||
mgb_assert(inps.size() == 4); | |||
new_warp = opr::WarpPerspectiveForward::make( | |||
@@ -5179,14 +5219,13 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
default: | |||
mgb_assert(cur == Format::NCHW4); | |||
} | |||
auto param = warp.param(); | |||
param.format = Format::NCHW4; | |||
SymbolVar new_warp; | |||
if (inps.size() == 3) { | |||
new_warp = opr::WarpPerspectiveForward::make( | |||
inps[0], inps[1], inps[2], param, | |||
warp.config()); | |||
inps[0], inps[1], inps[2], param, warp.config()); | |||
} else { | |||
mgb_assert(inps.size() == 4); | |||
new_warp = opr::WarpPerspectiveForward::make( | |||
@@ -5204,7 +5243,7 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
break; | |||
} | |||
} | |||
mgb_assert(!shape_changed, | |||
mgb_assert(!shape_changed, | |||
"EnableNCHW64Pass won't change format of output tensor " | |||
"of non quantized warp perspective operator(name:%s)", | |||
opr->cname()); | |||
@@ -5212,9 +5251,8 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
opr->config()); | |||
} | |||
}; | |||
auto replace_pooling_opr = [&format_map]( | |||
OperatorNodeBase* opr, | |||
const VarNodeArray& new_inp) { | |||
auto replace_pooling_opr = [&format_map](OperatorNodeBase* opr, | |||
const VarNodeArray& new_inp) { | |||
mgb_assert(opr->input().size() == new_inp.size()); | |||
auto& pooling = opr->cast_final_safe<opr::PoolingForward>(); | |||
if (new_inp[0]->dtype().enumv() == DTypeEnum::QuantizedS4 || | |||
@@ -5300,7 +5338,7 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
mgb_assert(cur == Format::NCHW4); | |||
} | |||
Format out_format = use_nchw32 ? Format::NCHW32 : Format::NCHW4; | |||
auto param = pooling.param(); | |||
param.format = out_format; | |||
auto new_pool = | |||
@@ -5336,7 +5374,7 @@ EnableNCHW64Pass::make_nchw64_converter() { | |||
auto inps = new_inp; | |||
for (size_t i = 0; i < opr->input().size(); ++i) { | |||
auto iter = format_map.find(new_inp[i]->owner_opr()); | |||
auto fmt = iter != format_map.end()?iter->second:Format::NCHW; | |||
auto fmt = iter != format_map.end() ? iter->second : Format::NCHW; | |||
if (iter != format_map.end()) { | |||
switch (fmt) { | |||
case Format::NHWC: | |||
@@ -10,9 +10,9 @@ | |||
* implied. | |||
*/ | |||
#include "megbrain/opr/imgproc.h" | |||
#include "./internal/megdnn_opr_wrapper.inl" | |||
#include "megbrain/graph/grad_impl.h" | |||
#include "megbrain/opr/imgproc.h" | |||
#include "megbrain/opr/io.h" | |||
#include "megbrain/opr/utility.h" | |||
@@ -340,7 +340,9 @@ void ResizeForward::outshape_by_symvar_do_get_output_shape( | |||
//! The index of height, e.g.,[b, h, w, c], the height_idx = 1 | |||
size_t height_idx = 0; | |||
if (param().format == Param::Format::NCHW || | |||
param().format == Param::Format::NCHW4) { | |||
param().format == Param::Format::NCHW4 || | |||
param().format == Param::Format::NCHW44 || | |||
param().format == Param::Format::NCHW88) { | |||
height_idx = 2; | |||
} else { | |||
height_idx = 1; | |||