@@ -0,0 +1,4 @@ | |||
import os | |||
import sys | |||
sys.path.append(os.path.join(os.path.dirname(__file__), "helpers")) |
@@ -0,0 +1,66 @@ | |||
import numpy as np | |||
from megengine import tensor | |||
def _default_compare_fn(x, y): | |||
np.testing.assert_allclose(x.numpy(), y, rtol=1e-6) | |||
def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs): | |||
""" | |||
:param cases: the list which have dict element, the list length should be 2 for dynamic shape test. | |||
and the dict should have input, | |||
and should have output if ref_fn is None. | |||
should use list for multiple inputs and outputs for each case. | |||
:param func: the function to run opr. | |||
:param compare_fn: the function to compare the result and expected, use assertTensorClose if None. | |||
:param ref_fn: the function to generate expected data, should assign output if None. | |||
Examples: | |||
.. code-block:: | |||
dtype = np.float32 | |||
cases = [{"input": [10, 20]}, {"input": [20, 30]}] | |||
opr_test(cases, | |||
F.eye, | |||
ref_fn=lambda n, m: np.eye(n, m).astype(dtype), | |||
dtype=dtype) | |||
""" | |||
def check_results(results, expected): | |||
if not isinstance(results, (tuple, list)): | |||
results = (results,) | |||
for r, e in zip(results, expected): | |||
compare_fn(r, e) | |||
def get_param(cases, idx): | |||
case = cases[idx] | |||
inp = case.get("input", None) | |||
outp = case.get("output", None) | |||
if inp is None: | |||
raise ValueError("the test case should have input") | |||
if not isinstance(inp, (tuple, list)): | |||
inp = (inp,) | |||
if ref_fn is not None and callable(ref_fn): | |||
outp = ref_fn(*inp) | |||
if outp is None: | |||
raise ValueError("the test case should have output or reference function") | |||
if not isinstance(outp, (tuple, list)): | |||
outp = (outp,) | |||
return inp, outp | |||
if len(cases) == 0: | |||
raise ValueError("should give one case at least") | |||
if not callable(func): | |||
raise ValueError("the input func should be callable") | |||
inp, outp = get_param(cases, 0) | |||
inp_tensor = [tensor(inpi) for inpi in inp] | |||
results = func(*inp_tensor, **kwargs) | |||
check_results(results, outp) |
@@ -13,9 +13,9 @@ else | |||
fi | |||
pushd $(dirname "${BASH_SOURCE[0]}")/.. >/dev/null | |||
PYTHONPATH="." PY_IGNORE_IMPORTMISMATCH=1 python3 -m pytest $test_dirs -m 'not isolated_distributed' | |||
PYTHONPATH="." python3 -m pytest $test_dirs -m 'not isolated_distributed' | |||
if [[ "$TEST_PLAT" == cuda ]]; then | |||
echo "test GPU pytest now" | |||
PYTHONPATH="." PY_IGNORE_IMPORTMISMATCH=1 python3 -m pytest $test_dirs -m 'isolated_distributed' | |||
PYTHONPATH="." python3 -m pytest $test_dirs -m 'isolated_distributed' | |||
fi | |||
popd >/dev/null |
@@ -1,8 +0,0 @@ | |||
# -*- coding: utf-8 -*- | |||
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
# | |||
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
# | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
@@ -10,6 +10,7 @@ import itertools | |||
import numpy as np | |||
import pytest | |||
from utils import opr_test | |||
import megengine.core.ops.builtin as builtin | |||
import megengine.core.tensor.dtype as dtype | |||
@@ -21,68 +22,6 @@ from megengine.core.tensor.utils import make_shape_tuple | |||
from megengine.test import assertTensorClose | |||
def _default_compare_fn(x, y): | |||
assertTensorClose(x.numpy(), y) | |||
def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs): | |||
""" | |||
func: the function to run opr. | |||
compare_fn: the function to compare the result and expected, use assertTensorClose if None. | |||
ref_fn: the function to generate expected data, should assign output if None. | |||
cases: the list which have dict element, the list length should be 2 for dynamic shape test. | |||
and the dict should have input, | |||
and should have output if ref_fn is None. | |||
should use list for multiple inputs and outputs for each case. | |||
kwargs: The additional kwargs for opr func. | |||
simple examples: | |||
dtype = np.float32 | |||
cases = [{"input": [10, 20]}, {"input": [20, 30]}] | |||
opr_test(cases, | |||
F.eye, | |||
ref_fn=lambda n, m: np.eye(n, m).astype(dtype), | |||
dtype=dtype) | |||
""" | |||
def check_results(results, expected): | |||
if not isinstance(results, (tuple, list)): | |||
results = (results,) | |||
for r, e in zip(results, expected): | |||
compare_fn(r, e) | |||
def get_param(cases, idx): | |||
case = cases[idx] | |||
inp = case.get("input", None) | |||
outp = case.get("output", None) | |||
if inp is None: | |||
raise ValueError("the test case should have input") | |||
if not isinstance(inp, (tuple, list)): | |||
inp = (inp,) | |||
if ref_fn is not None and callable(ref_fn): | |||
outp = ref_fn(*inp) | |||
if outp is None: | |||
raise ValueError("the test case should have output or reference function") | |||
if not isinstance(outp, (tuple, list)): | |||
outp = (outp,) | |||
return inp, outp | |||
if len(cases) == 0: | |||
raise ValueError("should give one case at least") | |||
if not callable(func): | |||
raise ValueError("the input func should be callable") | |||
inp, outp = get_param(cases, 0) | |||
inp_tensor = [tensor(inpi) for inpi in inp] | |||
results = func(*inp_tensor, **kwargs) | |||
check_results(results, outp) | |||
def test_where(): | |||
maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_) | |||
xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32) | |||
@@ -9,78 +9,13 @@ | |||
from functools import partial | |||
import numpy as np | |||
from utils import opr_test | |||
import megengine.functional as F | |||
from megengine import tensor | |||
from megengine.test import assertTensorClose | |||
def _default_compare_fn(x, y): | |||
assertTensorClose(x.numpy(), y) | |||
def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs): | |||
""" | |||
func: the function to run opr. | |||
compare_fn: the function to compare the result and expected, use assertTensorClose if None. | |||
ref_fn: the function to generate expected data, should assign output if None. | |||
cases: the list which have dict element, the list length should be 2 for dynamic shape test. | |||
and the dict should have input, | |||
and should have output if ref_fn is None. | |||
should use list for multiple inputs and outputs for each case. | |||
kwargs: The additional kwargs for opr func. | |||
simple examples: | |||
dtype = np.float32 | |||
cases = [{"input": [10, 20]}, {"input": [20, 30]}] | |||
opr_test(cases, | |||
F.eye, | |||
ref_fn=lambda n, m: np.eye(n, m).astype(dtype), | |||
dtype=dtype) | |||
""" | |||
def check_results(results, expected): | |||
if not isinstance(results, tuple): | |||
results = (results,) | |||
for r, e in zip(results, expected): | |||
compare_fn(r, e) | |||
def get_param(cases, idx): | |||
case = cases[idx] | |||
inp = case.get("input", None) | |||
outp = case.get("output", None) | |||
if inp is None: | |||
raise ValueError("the test case should have input") | |||
if not isinstance(inp, list): | |||
inp = (inp,) | |||
else: | |||
inp = tuple(inp) | |||
if ref_fn is not None and callable(ref_fn): | |||
outp = ref_fn(*inp) | |||
if outp is None: | |||
raise ValueError("the test case should have output or reference function") | |||
if not isinstance(outp, list): | |||
outp = (outp,) | |||
else: | |||
outp = tuple(outp) | |||
return inp, outp | |||
if len(cases) == 0: | |||
raise ValueError("should give one case at least") | |||
if not callable(func): | |||
raise ValueError("the input func should be callable") | |||
inp, outp = get_param(cases, 0) | |||
inp_tensor = [tensor(inpi) for inpi in inp] | |||
results = func(*inp_tensor, **kwargs) | |||
check_results(results, outp) | |||
def common_test_reduce(opr, ref_opr): | |||
data1_shape = (5, 6, 7) | |||
data2_shape = (2, 9, 12) | |||
@@ -6,10 +6,12 @@ | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import os | |||
import platform | |||
import numpy as np | |||
import pytest | |||
from utils import opr_test | |||
import megengine.functional as F | |||
from megengine import tensor | |||
@@ -19,72 +21,6 @@ from megengine.distributed.helper import get_device_count_by_fork | |||
from megengine.test import assertTensorClose | |||
def _default_compare_fn(x, y): | |||
assertTensorClose(x.numpy(), y) | |||
def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs): | |||
""" | |||
func: the function to run opr. | |||
compare_fn: the function to compare the result and expected, use assertTensorClose if None. | |||
ref_fn: the function to generate expected data, should assign output if None. | |||
cases: the list which have dict element, the list length should be 2 for dynamic shape test. | |||
and the dict should have input, | |||
and should have output if ref_fn is None. | |||
should use list for multiple inputs and outputs for each case. | |||
kwargs: The additional kwargs for opr func. | |||
simple examples: | |||
dtype = np.float32 | |||
cases = [{"input": [10, 20]}, {"input": [20, 30]}] | |||
opr_test(cases, | |||
F.eye, | |||
ref_fn=lambda n, m: np.eye(n, m).astype(dtype), | |||
dtype=dtype) | |||
""" | |||
def check_results(results, expected): | |||
if not isinstance(results, tuple): | |||
results = (results,) | |||
for r, e in zip(results, expected): | |||
compare_fn(r, e) | |||
def get_param(cases, idx): | |||
case = cases[idx] | |||
inp = case.get("input", None) | |||
outp = case.get("output", None) | |||
if inp is None: | |||
raise ValueError("the test case should have input") | |||
if not isinstance(inp, list): | |||
inp = (inp,) | |||
else: | |||
inp = tuple(inp) | |||
if ref_fn is not None and callable(ref_fn): | |||
outp = ref_fn(*inp) | |||
if outp is None: | |||
raise ValueError("the test case should have output or reference function") | |||
if not isinstance(outp, list): | |||
outp = (outp,) | |||
else: | |||
outp = tuple(outp) | |||
return inp, outp | |||
if len(cases) == 0: | |||
raise ValueError("should give one case at least") | |||
if not callable(func): | |||
raise ValueError("the input func should be callable") | |||
inp, outp = get_param(cases, 0) | |||
inp_tensor = [tensor(inpi) for inpi in inp] | |||
results = func(*inp_tensor, **kwargs) | |||
check_results(results, outp) | |||
def test_eye(): | |||
dtype = np.float32 | |||
cases = [{"input": [10, 20]}, {"input": [20, 30]}] | |||
@@ -265,37 +201,37 @@ def test_flatten(): | |||
data1 = np.random.random(data1_shape).astype(np.float32) | |||
def compare_fn(x, y): | |||
assert x.numpy().shape == y[0] | |||
assert x.shape[0] == y | |||
output0 = (2 * 3 * 4 * 5,) | |||
output1 = (4 * 5 * 6 * 7,) | |||
cases = [ | |||
{"input": data0, "output": (output0,)}, | |||
{"input": data1, "output": (output1,)}, | |||
{"input": data0, "output": output0}, | |||
{"input": data1, "output": output1}, | |||
] | |||
opr_test(cases, F.flatten, compare_fn=compare_fn) | |||
output0 = (2, 3 * 4 * 5) | |||
output1 = (4, 5 * 6 * 7) | |||
cases = [ | |||
{"input": data0, "output": (output0,)}, | |||
{"input": data1, "output": (output1,)}, | |||
{"input": data0, "output": output0}, | |||
{"input": data1, "output": output1}, | |||
] | |||
opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1) | |||
output0 = (2, 3, 4 * 5) | |||
output1 = (4, 5, 6 * 7) | |||
cases = [ | |||
{"input": data0, "output": (output0,)}, | |||
{"input": data1, "output": (output1,)}, | |||
{"input": data0, "output": output0}, | |||
{"input": data1, "output": output1}, | |||
] | |||
opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2) | |||
output0 = (2, 3 * 4, 5) | |||
output1 = (4, 5 * 6, 7) | |||
cases = [ | |||
{"input": data0, "output": (output0,)}, | |||
{"input": data1, "output": (output1,)}, | |||
{"input": data0, "output": output0}, | |||
{"input": data1, "output": output1}, | |||
] | |||
opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, end_axis=2) | |||
@@ -310,7 +246,7 @@ def test_broadcast(): | |||
data2 = np.random.random(input2_shape).astype(np.float32) | |||
def compare_fn(x, y): | |||
assert x.numpy().shape == y | |||
assert x.shape[0] == y | |||
cases = [ | |||
{"input": [data1, output1_shape], "output": output1_shape}, | |||