@@ -0,0 +1,4 @@ | |||||
import os | |||||
import sys | |||||
sys.path.append(os.path.join(os.path.dirname(__file__), "helpers")) |
@@ -0,0 +1,66 @@ | |||||
import numpy as np | |||||
from megengine import tensor | |||||
def _default_compare_fn(x, y): | |||||
np.testing.assert_allclose(x.numpy(), y, rtol=1e-6) | |||||
def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs): | |||||
""" | |||||
:param cases: the list which have dict element, the list length should be 2 for dynamic shape test. | |||||
and the dict should have input, | |||||
and should have output if ref_fn is None. | |||||
should use list for multiple inputs and outputs for each case. | |||||
:param func: the function to run opr. | |||||
:param compare_fn: the function to compare the result and expected, use assertTensorClose if None. | |||||
:param ref_fn: the function to generate expected data, should assign output if None. | |||||
Examples: | |||||
.. code-block:: | |||||
dtype = np.float32 | |||||
cases = [{"input": [10, 20]}, {"input": [20, 30]}] | |||||
opr_test(cases, | |||||
F.eye, | |||||
ref_fn=lambda n, m: np.eye(n, m).astype(dtype), | |||||
dtype=dtype) | |||||
""" | |||||
def check_results(results, expected): | |||||
if not isinstance(results, (tuple, list)): | |||||
results = (results,) | |||||
for r, e in zip(results, expected): | |||||
compare_fn(r, e) | |||||
def get_param(cases, idx): | |||||
case = cases[idx] | |||||
inp = case.get("input", None) | |||||
outp = case.get("output", None) | |||||
if inp is None: | |||||
raise ValueError("the test case should have input") | |||||
if not isinstance(inp, (tuple, list)): | |||||
inp = (inp,) | |||||
if ref_fn is not None and callable(ref_fn): | |||||
outp = ref_fn(*inp) | |||||
if outp is None: | |||||
raise ValueError("the test case should have output or reference function") | |||||
if not isinstance(outp, (tuple, list)): | |||||
outp = (outp,) | |||||
return inp, outp | |||||
if len(cases) == 0: | |||||
raise ValueError("should give one case at least") | |||||
if not callable(func): | |||||
raise ValueError("the input func should be callable") | |||||
inp, outp = get_param(cases, 0) | |||||
inp_tensor = [tensor(inpi) for inpi in inp] | |||||
results = func(*inp_tensor, **kwargs) | |||||
check_results(results, outp) |
@@ -13,9 +13,9 @@ else | |||||
fi | fi | ||||
pushd $(dirname "${BASH_SOURCE[0]}")/.. >/dev/null | pushd $(dirname "${BASH_SOURCE[0]}")/.. >/dev/null | ||||
PYTHONPATH="." PY_IGNORE_IMPORTMISMATCH=1 python3 -m pytest $test_dirs -m 'not isolated_distributed' | |||||
PYTHONPATH="." python3 -m pytest $test_dirs -m 'not isolated_distributed' | |||||
if [[ "$TEST_PLAT" == cuda ]]; then | if [[ "$TEST_PLAT" == cuda ]]; then | ||||
echo "test GPU pytest now" | echo "test GPU pytest now" | ||||
PYTHONPATH="." PY_IGNORE_IMPORTMISMATCH=1 python3 -m pytest $test_dirs -m 'isolated_distributed' | |||||
PYTHONPATH="." python3 -m pytest $test_dirs -m 'isolated_distributed' | |||||
fi | fi | ||||
popd >/dev/null | popd >/dev/null |
@@ -1,8 +0,0 @@ | |||||
# -*- coding: utf-8 -*- | |||||
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
# | |||||
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
# | |||||
# Unless required by applicable law or agreed to in writing, | |||||
# software distributed under the License is distributed on an | |||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
@@ -10,6 +10,7 @@ import itertools | |||||
import numpy as np | import numpy as np | ||||
import pytest | import pytest | ||||
from utils import opr_test | |||||
import megengine.core.ops.builtin as builtin | import megengine.core.ops.builtin as builtin | ||||
import megengine.core.tensor.dtype as dtype | import megengine.core.tensor.dtype as dtype | ||||
@@ -21,68 +22,6 @@ from megengine.core.tensor.utils import make_shape_tuple | |||||
from megengine.test import assertTensorClose | from megengine.test import assertTensorClose | ||||
def _default_compare_fn(x, y): | |||||
assertTensorClose(x.numpy(), y) | |||||
def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs): | |||||
""" | |||||
func: the function to run opr. | |||||
compare_fn: the function to compare the result and expected, use assertTensorClose if None. | |||||
ref_fn: the function to generate expected data, should assign output if None. | |||||
cases: the list which have dict element, the list length should be 2 for dynamic shape test. | |||||
and the dict should have input, | |||||
and should have output if ref_fn is None. | |||||
should use list for multiple inputs and outputs for each case. | |||||
kwargs: The additional kwargs for opr func. | |||||
simple examples: | |||||
dtype = np.float32 | |||||
cases = [{"input": [10, 20]}, {"input": [20, 30]}] | |||||
opr_test(cases, | |||||
F.eye, | |||||
ref_fn=lambda n, m: np.eye(n, m).astype(dtype), | |||||
dtype=dtype) | |||||
""" | |||||
def check_results(results, expected): | |||||
if not isinstance(results, (tuple, list)): | |||||
results = (results,) | |||||
for r, e in zip(results, expected): | |||||
compare_fn(r, e) | |||||
def get_param(cases, idx): | |||||
case = cases[idx] | |||||
inp = case.get("input", None) | |||||
outp = case.get("output", None) | |||||
if inp is None: | |||||
raise ValueError("the test case should have input") | |||||
if not isinstance(inp, (tuple, list)): | |||||
inp = (inp,) | |||||
if ref_fn is not None and callable(ref_fn): | |||||
outp = ref_fn(*inp) | |||||
if outp is None: | |||||
raise ValueError("the test case should have output or reference function") | |||||
if not isinstance(outp, (tuple, list)): | |||||
outp = (outp,) | |||||
return inp, outp | |||||
if len(cases) == 0: | |||||
raise ValueError("should give one case at least") | |||||
if not callable(func): | |||||
raise ValueError("the input func should be callable") | |||||
inp, outp = get_param(cases, 0) | |||||
inp_tensor = [tensor(inpi) for inpi in inp] | |||||
results = func(*inp_tensor, **kwargs) | |||||
check_results(results, outp) | |||||
def test_where(): | def test_where(): | ||||
maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_) | maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_) | ||||
xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32) | xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32) | ||||
@@ -9,78 +9,13 @@ | |||||
from functools import partial | from functools import partial | ||||
import numpy as np | import numpy as np | ||||
from utils import opr_test | |||||
import megengine.functional as F | import megengine.functional as F | ||||
from megengine import tensor | from megengine import tensor | ||||
from megengine.test import assertTensorClose | from megengine.test import assertTensorClose | ||||
def _default_compare_fn(x, y): | |||||
assertTensorClose(x.numpy(), y) | |||||
def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs): | |||||
""" | |||||
func: the function to run opr. | |||||
compare_fn: the function to compare the result and expected, use assertTensorClose if None. | |||||
ref_fn: the function to generate expected data, should assign output if None. | |||||
cases: the list which have dict element, the list length should be 2 for dynamic shape test. | |||||
and the dict should have input, | |||||
and should have output if ref_fn is None. | |||||
should use list for multiple inputs and outputs for each case. | |||||
kwargs: The additional kwargs for opr func. | |||||
simple examples: | |||||
dtype = np.float32 | |||||
cases = [{"input": [10, 20]}, {"input": [20, 30]}] | |||||
opr_test(cases, | |||||
F.eye, | |||||
ref_fn=lambda n, m: np.eye(n, m).astype(dtype), | |||||
dtype=dtype) | |||||
""" | |||||
def check_results(results, expected): | |||||
if not isinstance(results, tuple): | |||||
results = (results,) | |||||
for r, e in zip(results, expected): | |||||
compare_fn(r, e) | |||||
def get_param(cases, idx): | |||||
case = cases[idx] | |||||
inp = case.get("input", None) | |||||
outp = case.get("output", None) | |||||
if inp is None: | |||||
raise ValueError("the test case should have input") | |||||
if not isinstance(inp, list): | |||||
inp = (inp,) | |||||
else: | |||||
inp = tuple(inp) | |||||
if ref_fn is not None and callable(ref_fn): | |||||
outp = ref_fn(*inp) | |||||
if outp is None: | |||||
raise ValueError("the test case should have output or reference function") | |||||
if not isinstance(outp, list): | |||||
outp = (outp,) | |||||
else: | |||||
outp = tuple(outp) | |||||
return inp, outp | |||||
if len(cases) == 0: | |||||
raise ValueError("should give one case at least") | |||||
if not callable(func): | |||||
raise ValueError("the input func should be callable") | |||||
inp, outp = get_param(cases, 0) | |||||
inp_tensor = [tensor(inpi) for inpi in inp] | |||||
results = func(*inp_tensor, **kwargs) | |||||
check_results(results, outp) | |||||
def common_test_reduce(opr, ref_opr): | def common_test_reduce(opr, ref_opr): | ||||
data1_shape = (5, 6, 7) | data1_shape = (5, 6, 7) | ||||
data2_shape = (2, 9, 12) | data2_shape = (2, 9, 12) | ||||
@@ -6,10 +6,12 @@ | |||||
# Unless required by applicable law or agreed to in writing, | # Unless required by applicable law or agreed to in writing, | ||||
# software distributed under the License is distributed on an | # software distributed under the License is distributed on an | ||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
import os | |||||
import platform | import platform | ||||
import numpy as np | import numpy as np | ||||
import pytest | import pytest | ||||
from utils import opr_test | |||||
import megengine.functional as F | import megengine.functional as F | ||||
from megengine import tensor | from megengine import tensor | ||||
@@ -19,72 +21,6 @@ from megengine.distributed.helper import get_device_count_by_fork | |||||
from megengine.test import assertTensorClose | from megengine.test import assertTensorClose | ||||
def _default_compare_fn(x, y): | |||||
assertTensorClose(x.numpy(), y) | |||||
def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs): | |||||
""" | |||||
func: the function to run opr. | |||||
compare_fn: the function to compare the result and expected, use assertTensorClose if None. | |||||
ref_fn: the function to generate expected data, should assign output if None. | |||||
cases: the list which have dict element, the list length should be 2 for dynamic shape test. | |||||
and the dict should have input, | |||||
and should have output if ref_fn is None. | |||||
should use list for multiple inputs and outputs for each case. | |||||
kwargs: The additional kwargs for opr func. | |||||
simple examples: | |||||
dtype = np.float32 | |||||
cases = [{"input": [10, 20]}, {"input": [20, 30]}] | |||||
opr_test(cases, | |||||
F.eye, | |||||
ref_fn=lambda n, m: np.eye(n, m).astype(dtype), | |||||
dtype=dtype) | |||||
""" | |||||
def check_results(results, expected): | |||||
if not isinstance(results, tuple): | |||||
results = (results,) | |||||
for r, e in zip(results, expected): | |||||
compare_fn(r, e) | |||||
def get_param(cases, idx): | |||||
case = cases[idx] | |||||
inp = case.get("input", None) | |||||
outp = case.get("output", None) | |||||
if inp is None: | |||||
raise ValueError("the test case should have input") | |||||
if not isinstance(inp, list): | |||||
inp = (inp,) | |||||
else: | |||||
inp = tuple(inp) | |||||
if ref_fn is not None and callable(ref_fn): | |||||
outp = ref_fn(*inp) | |||||
if outp is None: | |||||
raise ValueError("the test case should have output or reference function") | |||||
if not isinstance(outp, list): | |||||
outp = (outp,) | |||||
else: | |||||
outp = tuple(outp) | |||||
return inp, outp | |||||
if len(cases) == 0: | |||||
raise ValueError("should give one case at least") | |||||
if not callable(func): | |||||
raise ValueError("the input func should be callable") | |||||
inp, outp = get_param(cases, 0) | |||||
inp_tensor = [tensor(inpi) for inpi in inp] | |||||
results = func(*inp_tensor, **kwargs) | |||||
check_results(results, outp) | |||||
def test_eye(): | def test_eye(): | ||||
dtype = np.float32 | dtype = np.float32 | ||||
cases = [{"input": [10, 20]}, {"input": [20, 30]}] | cases = [{"input": [10, 20]}, {"input": [20, 30]}] | ||||
@@ -265,37 +201,37 @@ def test_flatten(): | |||||
data1 = np.random.random(data1_shape).astype(np.float32) | data1 = np.random.random(data1_shape).astype(np.float32) | ||||
def compare_fn(x, y): | def compare_fn(x, y): | ||||
assert x.numpy().shape == y[0] | |||||
assert x.shape[0] == y | |||||
output0 = (2 * 3 * 4 * 5,) | output0 = (2 * 3 * 4 * 5,) | ||||
output1 = (4 * 5 * 6 * 7,) | output1 = (4 * 5 * 6 * 7,) | ||||
cases = [ | cases = [ | ||||
{"input": data0, "output": (output0,)}, | |||||
{"input": data1, "output": (output1,)}, | |||||
{"input": data0, "output": output0}, | |||||
{"input": data1, "output": output1}, | |||||
] | ] | ||||
opr_test(cases, F.flatten, compare_fn=compare_fn) | opr_test(cases, F.flatten, compare_fn=compare_fn) | ||||
output0 = (2, 3 * 4 * 5) | output0 = (2, 3 * 4 * 5) | ||||
output1 = (4, 5 * 6 * 7) | output1 = (4, 5 * 6 * 7) | ||||
cases = [ | cases = [ | ||||
{"input": data0, "output": (output0,)}, | |||||
{"input": data1, "output": (output1,)}, | |||||
{"input": data0, "output": output0}, | |||||
{"input": data1, "output": output1}, | |||||
] | ] | ||||
opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1) | opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1) | ||||
output0 = (2, 3, 4 * 5) | output0 = (2, 3, 4 * 5) | ||||
output1 = (4, 5, 6 * 7) | output1 = (4, 5, 6 * 7) | ||||
cases = [ | cases = [ | ||||
{"input": data0, "output": (output0,)}, | |||||
{"input": data1, "output": (output1,)}, | |||||
{"input": data0, "output": output0}, | |||||
{"input": data1, "output": output1}, | |||||
] | ] | ||||
opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2) | opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2) | ||||
output0 = (2, 3 * 4, 5) | output0 = (2, 3 * 4, 5) | ||||
output1 = (4, 5 * 6, 7) | output1 = (4, 5 * 6, 7) | ||||
cases = [ | cases = [ | ||||
{"input": data0, "output": (output0,)}, | |||||
{"input": data1, "output": (output1,)}, | |||||
{"input": data0, "output": output0}, | |||||
{"input": data1, "output": output1}, | |||||
] | ] | ||||
opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, end_axis=2) | opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, end_axis=2) | ||||
@@ -310,7 +246,7 @@ def test_broadcast(): | |||||
data2 = np.random.random(input2_shape).astype(np.float32) | data2 = np.random.random(input2_shape).astype(np.float32) | ||||
def compare_fn(x, y): | def compare_fn(x, y): | ||||
assert x.numpy().shape == y | |||||
assert x.shape[0] == y | |||||
cases = [ | cases = [ | ||||
{"input": [data1, output1_shape], "output": output1_shape}, | {"input": [data1, output1_shape], "output": output1_shape}, | ||||