GitOrigin-RevId: 02ef559c3f
release-1.2
@@ -25,6 +25,8 @@ using namespace megdnn; | |||||
using namespace cuda; | using namespace cuda; | ||||
using namespace cutlass_wrapper; | using namespace cutlass_wrapper; | ||||
/* ================= cutlass kernel wrapper for nchw32 layout ================ | |||||
*/ | |||||
#if MEGDNN_TEGRA_X1 | #if MEGDNN_TEGRA_X1 | ||||
template <bool NeedLoadFromConstMem> | template <bool NeedLoadFromConstMem> | ||||
void megdnn::cuda::cutlass_wrapper:: | void megdnn::cuda::cutlass_wrapper:: | ||||
@@ -148,6 +150,131 @@ INST(true); | |||||
INST(false); | INST(false); | ||||
#undef INST | #undef INST | ||||
/* ==== cutlass kernel wrapper for nchw32 layout and nchw4 output ===== */ | |||||
#if MEGDNN_TEGRA_X1 | |||||
template <bool NeedLoadFromConstMem> | |||||
void megdnn::cuda::cutlass_wrapper:: | |||||
do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32_ncdiv4hw4( | |||||
const int8_t* /* d_src */, const int8_t* /* d_filter */, | |||||
const int32_t* /* d_bias */, const int8_t* /* d_z */, | |||||
int8_t* /* d_dst */, int* /* workspace */, | |||||
const convolution::ConvParam& /* param */, | |||||
uint32_t /* nonlinear_mode */, float /* alpha */, | |||||
float /* beta */, float /* gamma */, float /* scale */, | |||||
const GemmCoord& /* threadblock_shape */, | |||||
const GemmCoord& /* warp_shape */, cudaStream_t /* stream */) {} | |||||
#else | |||||
template <bool NeedLoadFromConstMem> | |||||
void megdnn::cuda::cutlass_wrapper:: | |||||
do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32_ncdiv4hw4( | |||||
const int8_t* d_src, const int8_t* d_filter, | |||||
const int32_t* d_bias, const int8_t* d_z, int8_t* d_dst, | |||||
int* workspace, const convolution::ConvParam& param, | |||||
uint32_t nonlinear_mode, float alpha, float beta, float gamma, | |||||
float scale, const GemmCoord& threadblock_shape, | |||||
const GemmCoord& warp_shape, cudaStream_t stream) { | |||||
#define DISPATCH_KERNEL_WITH_TILE_SHAPE(threadblock_m_, threadblock_n_, \ | |||||
threadblock_k_, warp_m_, warp_n_, \ | |||||
warp_k_) \ | |||||
if (threadblock_shape.m() == threadblock_m_ && \ | |||||
threadblock_shape.n() == threadblock_n_ && \ | |||||
threadblock_shape.k() == threadblock_k_ && \ | |||||
warp_shape.m() == warp_m_ && warp_shape.n() == warp_n_ && \ | |||||
warp_shape.k() == warp_k_) { \ | |||||
using ThreadBlockShape = \ | |||||
cutlass::gemm::GemmShape<threadblock_m_, threadblock_n_, \ | |||||
threadblock_k_>; \ | |||||
using WarpShape = cutlass::gemm::GemmShape<warp_m_, warp_n_, warp_k_>; \ | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; \ | |||||
using Convolution = cutlass::convolution::device::Convolution< \ | |||||
int8_t, cutlass::layout::TensorNCxHWx<32>, int8_t, \ | |||||
cutlass::layout::TensorCxRSKx<32>, ElementOutput, \ | |||||
cutlass::layout::TensorNCxHWx<4>, int32_t, \ | |||||
cutlass::layout::TensorNCxHWx<4>, int32_t, \ | |||||
cutlass::convolution::ConvType::kConvolution, \ | |||||
cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, \ | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, \ | |||||
cutlass::convolution::threadblock:: \ | |||||
ConvolutionNCxHWxThreadblockSwizzle< \ | |||||
cutlass::convolution::ConvType::kConvolution>, \ | |||||
2, 16, 16, NeedLoadFromConstMem>; \ | |||||
typename Convolution::ConvolutionParameter conv_param{ \ | |||||
param.n, param.ci, param.co, param.hi, param.wi, \ | |||||
param.fh, param.fw, param.ho, param.wo, param.sh, \ | |||||
param.sw, param.ph, param.pw, 1, 1}; \ | |||||
return cutlass_convolution_wrapper<Convolution>( \ | |||||
d_src, d_filter, d_bias, d_z, d_dst, workspace, conv_param, \ | |||||
epilogue, stream); \ | |||||
} | |||||
#define DISPATCH_KERNEL \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(256, 128, 64, 64, 64, 64); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 256, 64, 64, 64, 64); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 128, 64, 64, 64, 64); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 128, 64, 32, 64, 64); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 64, 64, 64, 32, 64); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 64, 64, 32, 32, 64); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(32, 64, 64, 16, 32, 64); \ | |||||
megdnn_assert(false, \ | |||||
"unsupported threadblock shape (%dx%dx%d) and warp shape " \ | |||||
"(%dx%dx%d)", \ | |||||
threadblock_shape.m(), threadblock_shape.n(), \ | |||||
threadblock_shape.k(), warp_shape.m(), warp_shape.n(), \ | |||||
warp_shape.k()); | |||||
using ElementOutput = int8_t; | |||||
using ElementAccumulator = int32_t; | |||||
using ElementBias = int32_t; | |||||
using ElementCompute = float; | |||||
using NonlineMode = megdnn::param_enumv::ConvBias::NonlineMode; | |||||
switch (nonlinear_mode) { | |||||
case NonlineMode::IDENTITY: { | |||||
using EpilogueOp = | |||||
cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
ElementOutput, 4, ElementAccumulator, ElementBias, | |||||
ElementCompute>; | |||||
typename EpilogueOp::Params epilogue{alpha, beta, gamma}; | |||||
DISPATCH_KERNEL; | |||||
} | |||||
case NonlineMode::RELU: { | |||||
using EpilogueOp = cutlass::epilogue::thread:: | |||||
BiasAddLinearCombinationReluClamp< | |||||
ElementOutput, 4, ElementAccumulator, ElementBias, | |||||
ElementCompute>; | |||||
typename EpilogueOp::Params epilogue{alpha, beta, gamma, 0}; | |||||
DISPATCH_KERNEL; | |||||
} | |||||
case NonlineMode::H_SWISH: { | |||||
using EpilogueOp = cutlass::epilogue::thread:: | |||||
BiasAddLinearCombinationHSwishClamp< | |||||
ElementOutput, 4, ElementAccumulator, ElementBias, | |||||
ElementCompute>; | |||||
typename EpilogueOp::Params epilogue{alpha, beta, gamma, scale}; | |||||
DISPATCH_KERNEL; | |||||
} | |||||
default: | |||||
megdnn_assert(false, | |||||
"unsupported nonlinear mode for conv bias operator"); | |||||
} | |||||
#undef DISPATCH_KERNEL_WITH_TILE_SHAPE | |||||
#undef DISPATCH_KERNEL | |||||
} | |||||
#endif | |||||
#define INST(need_load_from_const_mem) \ | |||||
template void megdnn::cuda::cutlass_wrapper:: \ | |||||
do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32_ncdiv4hw4< \ | |||||
need_load_from_const_mem>( \ | |||||
const int8_t* d_src, const int8_t* d_filter, \ | |||||
const int32_t* d_bias, const int8_t* d_z, int8_t* d_dst, \ | |||||
int* workspace, const convolution::ConvParam& param, \ | |||||
uint32_t nonlinear_mode, float alpha, float beta, \ | |||||
float gamma, float scale, \ | |||||
const GemmCoord& threadblock_shape, \ | |||||
const GemmCoord& warp_shape, cudaStream_t stream); | |||||
INST(true); | |||||
INST(false); | |||||
#undef INST | |||||
/* ================ cutlass kernel wrapper for nchw4 layout ================= */ | |||||
#if MEGDNN_TEGRA_X1 | #if MEGDNN_TEGRA_X1 | ||||
template <bool NeedLoadFromConstMem> | template <bool NeedLoadFromConstMem> | ||||
void megdnn::cuda::cutlass_wrapper:: | void megdnn::cuda::cutlass_wrapper:: | ||||
@@ -275,6 +402,7 @@ INST(true); | |||||
INST(false); | INST(false); | ||||
#undef INST | #undef INST | ||||
/* ===== cutlass kernel wrapper for nchw4 layout and nchw output ===== */ | |||||
#if MEGDNN_TEGRA_X1 | #if MEGDNN_TEGRA_X1 | ||||
template <bool NeedLoadFromConstMem> | template <bool NeedLoadFromConstMem> | ||||
void megdnn::cuda::cutlass_wrapper:: | void megdnn::cuda::cutlass_wrapper:: | ||||
@@ -401,4 +529,131 @@ void megdnn::cuda::cutlass_wrapper:: | |||||
INST(true); | INST(true); | ||||
INST(false); | INST(false); | ||||
#undef INST | #undef INST | ||||
/* ====== cutlass kernel wrapper for nchw4 layout and nchw32 output ====== */ | |||||
#if MEGDNN_TEGRA_X1 | |||||
template <bool NeedLoadFromConstMem> | |||||
void megdnn::cuda::cutlass_wrapper:: | |||||
do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4_ncdiv32hw32( | |||||
const int8_t* /* d_src */, const int8_t* /* d_filter */, | |||||
const int32_t* /* d_bias */, const int8_t* /* d_z */, | |||||
int8_t* /* d_dst */, int* /* workspace */, | |||||
const convolution::ConvParam& /* param */, | |||||
uint32_t /* nonlinear_mode */, float /* alpha */, | |||||
float /* beta */, float /* gamma */, float /* scale */, | |||||
const GemmCoord& /* threadblock_shape */, | |||||
const GemmCoord& /* warp_shape */, cudaStream_t /* stream */) {} | |||||
#else | |||||
template <bool NeedLoadFromConstMem> | |||||
void megdnn::cuda::cutlass_wrapper:: | |||||
do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4_ncdiv32hw32( | |||||
const int8_t* d_src, const int8_t* d_filter, | |||||
const int32_t* d_bias, const int8_t* d_z, int8_t* d_dst, | |||||
int* workspace, const convolution::ConvParam& param, | |||||
uint32_t nonlinear_mode, float alpha, float beta, float gamma, | |||||
float scale, const GemmCoord& threadblock_shape, | |||||
const GemmCoord& warp_shape, cudaStream_t stream) { | |||||
#define DISPATCH_KERNEL_WITH_TILE_SHAPE(threadblock_m_, threadblock_n_, \ | |||||
threadblock_k_, warp_m_, warp_n_, \ | |||||
warp_k_, aligned_) \ | |||||
if (threadblock_shape.m() == threadblock_m_ && \ | |||||
threadblock_shape.n() == threadblock_n_ && \ | |||||
threadblock_shape.k() == threadblock_k_ && \ | |||||
warp_shape.m() == warp_m_ && warp_shape.n() == warp_n_ && \ | |||||
warp_shape.k() == warp_k_) { \ | |||||
using ThreadBlockShape = \ | |||||
cutlass::gemm::GemmShape<threadblock_m_, threadblock_n_, \ | |||||
threadblock_k_>; \ | |||||
using WarpShape = cutlass::gemm::GemmShape<warp_m_, warp_n_, warp_k_>; \ | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; \ | |||||
using Convolution = cutlass::convolution::device::Convolution< \ | |||||
int8_t, cutlass::layout::TensorNCxHWx<4>, int8_t, \ | |||||
cutlass::layout::TensorCxRSKx<4>, ElementOutput, \ | |||||
cutlass::layout::TensorNCxHWx<32>, int32_t, \ | |||||
cutlass::layout::TensorNCxHWx<32>, int32_t, \ | |||||
cutlass::convolution::ConvType::kConvolution, \ | |||||
cutlass::arch::OpClassSimt, cutlass::arch::Sm61, \ | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, \ | |||||
cutlass::convolution::threadblock:: \ | |||||
ConvolutionNCxHWxThreadblockSwizzle< \ | |||||
cutlass::convolution::ConvType::kConvolution>, \ | |||||
2, 4, aligned_, NeedLoadFromConstMem>; \ | |||||
typename Convolution::ConvolutionParameter conv_param{ \ | |||||
param.n, param.ci, param.co, param.hi, param.wi, \ | |||||
param.fh, param.fw, param.ho, param.wo, param.sh, \ | |||||
param.sw, param.ph, param.pw, 1, 1}; \ | |||||
return cutlass_convolution_wrapper<Convolution>( \ | |||||
d_src, d_filter, d_bias, d_z, d_dst, workspace, conv_param, \ | |||||
epilogue, stream); \ | |||||
} | |||||
#define DISPATCH_KERNEL \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 128, 32, 64, 32, 32, 16); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 64, 32, 64, 32, 32, 16); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 128, 32, 64, 32, 32, 16); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 32, 32, 64, 32, 32, 16); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(32, 128, 32, 32, 64, 32, 16); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 64, 32, 64, 32, 32, 16); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(32, 64, 32, 32, 64, 32, 16); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 32, 32, 64, 32, 32, 16); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(32, 32, 32, 32, 32, 32, 16); \ | |||||
megdnn_assert(false, \ | |||||
"unsupported threadblock shape (%dx%dx%d) and warp shape " \ | |||||
"(%dx%dx%d)", \ | |||||
threadblock_shape.m(), threadblock_shape.n(), \ | |||||
threadblock_shape.k(), warp_shape.m(), warp_shape.n(), \ | |||||
warp_shape.k()); | |||||
using ElementOutput = int8_t; | |||||
using ElementAccumulator = int32_t; | |||||
using ElementBias = int32_t; | |||||
using ElementCompute = float; | |||||
using NonlineMode = megdnn::param_enumv::ConvBias::NonlineMode; | |||||
switch (nonlinear_mode) { | |||||
case NonlineMode::IDENTITY: { | |||||
using EpilogueOp = | |||||
cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
ElementOutput, 4, ElementAccumulator, ElementBias, | |||||
ElementCompute>; | |||||
typename EpilogueOp::Params epilogue{alpha, beta, gamma}; | |||||
DISPATCH_KERNEL; | |||||
} | |||||
case NonlineMode::RELU: { | |||||
using EpilogueOp = cutlass::epilogue::thread:: | |||||
BiasAddLinearCombinationReluClamp< | |||||
ElementOutput, 4, ElementAccumulator, ElementBias, | |||||
ElementCompute>; | |||||
typename EpilogueOp::Params epilogue{alpha, beta, gamma, 0}; | |||||
DISPATCH_KERNEL; | |||||
} | |||||
case NonlineMode::H_SWISH: { | |||||
using EpilogueOp = cutlass::epilogue::thread:: | |||||
BiasAddLinearCombinationHSwishClamp< | |||||
ElementOutput, 4, ElementAccumulator, ElementBias, | |||||
ElementCompute>; | |||||
typename EpilogueOp::Params epilogue{alpha, beta, gamma, scale}; | |||||
DISPATCH_KERNEL; | |||||
} | |||||
default: | |||||
megdnn_assert(false, | |||||
"unsupported nonlinear mode for conv bias operator"); | |||||
} | |||||
#undef DISPATCH_KERNEL_WITH_TILE_SHAPE | |||||
#undef DISPATCH_KERNEL | |||||
} | |||||
#endif | |||||
#define INST(need_load_from_const_mem) \ | |||||
template void megdnn::cuda::cutlass_wrapper:: \ | |||||
do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4_ncdiv32hw32< \ | |||||
need_load_from_const_mem>( \ | |||||
const int8_t* d_src, const int8_t* d_filter, \ | |||||
const int32_t* d_bias, const int8_t* d_z, int8_t* d_dst, \ | |||||
int* workspace, const convolution::ConvParam& param, \ | |||||
uint32_t nonlinear_mode, float alpha, float beta, \ | |||||
float gamma, float scale, \ | |||||
const GemmCoord& threadblock_shape, \ | |||||
const GemmCoord& warp_shape, cudaStream_t stream); | |||||
INST(true); | |||||
INST(false); | |||||
#undef INST | |||||
// vim: syntax=cuda.doxygen | // vim: syntax=cuda.doxygen |
@@ -41,6 +41,15 @@ void do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32( | |||||
cudaStream_t stream); | cudaStream_t stream); | ||||
template <bool NeedLoadFromConstMem> | template <bool NeedLoadFromConstMem> | ||||
void do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32_ncdiv4hw4( | |||||
const int8_t* d_src, const int8_t* d_filter, const int32_t* d_bias, | |||||
const int8_t* d_z, int8_t* d_dst, int* workspace, | |||||
const convolution::ConvParam& param, uint32_t nonlinear_mode, | |||||
float alpha, float beta, float gamma, float scale, | |||||
const GemmCoord& threadblock_shape, const GemmCoord& warp_shape, | |||||
cudaStream_t stream); | |||||
template <bool NeedLoadFromConstMem> | |||||
void do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4( | void do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4( | ||||
const int8_t* d_src, const int8_t* d_filter, const int32_t* d_bias, | const int8_t* d_src, const int8_t* d_filter, const int32_t* d_bias, | ||||
const int8_t* d_z, int8_t* d_dst, int* workspace, | const int8_t* d_z, int8_t* d_dst, int* workspace, | ||||
@@ -58,6 +67,15 @@ void do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4_nchw( | |||||
const GemmCoord& threadblock_shape, const GemmCoord& warp_shape, | const GemmCoord& threadblock_shape, const GemmCoord& warp_shape, | ||||
cudaStream_t stream); | cudaStream_t stream); | ||||
template <bool NeedLoadFromConstMem> | |||||
void do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4_ncdiv32hw32( | |||||
const int8_t* d_src, const int8_t* d_filter, const int32_t* d_bias, | |||||
const int8_t* d_z, int8_t* d_dst, int* workspace, | |||||
const convolution::ConvParam& param, uint32_t nonlinear_mode, | |||||
float alpha, float beta, float gamma, float scale, | |||||
const GemmCoord& threadblock_shape, const GemmCoord& warp_shape, | |||||
cudaStream_t stream); | |||||
} // namespace cutlass_wrapper | } // namespace cutlass_wrapper | ||||
} // namespace cuda | } // namespace cuda | ||||
} // namespace megdnn | } // namespace megdnn | ||||
@@ -35,10 +35,23 @@ bool ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::is_available( | |||||
if (!conv_bias::check_bias_share_in_channel(*(args.bias_layout), | if (!conv_bias::check_bias_share_in_channel(*(args.bias_layout), | ||||
param.format)) | param.format)) | ||||
return false; | return false; | ||||
if (param.format != Format::NCHW32) | |||||
if (param.format != Format::NCHW32 && param.format != Format::NCHW32_NCHW4) | |||||
return false; | return false; | ||||
UNPACK_CONV_BIAS_NCHW32_PARAM(*(args.src_layout), fm, *(args.dst_layout), | |||||
param); | |||||
size_t n = args.src_layout->operator[](0), | |||||
ci = args.src_layout->operator[](1) * 32, | |||||
hi = args.src_layout->operator[](2), | |||||
wi = args.src_layout->operator[](3); | |||||
size_t ho = args.dst_layout->operator[](2), | |||||
wo = args.dst_layout->operator[](3); | |||||
size_t co; | |||||
if (param.format == Format::NCHW32) { | |||||
co = args.dst_layout->operator[](1) * 32; | |||||
} else { | |||||
megdnn_assert(param.format == Format::NCHW32_NCHW4); | |||||
co = args.dst_layout->operator[](1) * 4; | |||||
} | |||||
UNPACK_CONV_PARAMETER(fm, param); | |||||
MARK_USED_VAR | |||||
// TODO support group conv | // TODO support group conv | ||||
available &= param.sparse == Sparse::DENSE; | available &= param.sparse == Sparse::DENSE; | ||||
// mode must be cross correlation | // mode must be cross correlation | ||||
@@ -84,8 +97,21 @@ void ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::exec( | |||||
using Format = Param::Format; | using Format = Param::Format; | ||||
auto&& param = args.opr->param(); | auto&& param = args.opr->param(); | ||||
auto&& fm = args.filter_meta; | auto&& fm = args.filter_meta; | ||||
UNPACK_CONV_BIAS_NCHW32_PARAM(*(args.src_layout), fm, *(args.dst_layout), | |||||
param); | |||||
size_t n = args.src_layout->operator[](0), | |||||
ci = args.src_layout->operator[](1) * 32, | |||||
hi = args.src_layout->operator[](2), | |||||
wi = args.src_layout->operator[](3); | |||||
size_t ho = args.dst_layout->operator[](2), | |||||
wo = args.dst_layout->operator[](3); | |||||
size_t co; | |||||
if (param.format == Format::NCHW32) { | |||||
co = args.dst_layout->operator[](1) * 32; | |||||
} else { | |||||
megdnn_assert(param.format == Format::NCHW32_NCHW4); | |||||
co = args.dst_layout->operator[](1) * 4; | |||||
} | |||||
UNPACK_CONV_PARAMETER(fm, param); | |||||
MARK_USED_VAR | |||||
auto&& stream = cuda_stream(args.opr->handle()); | auto&& stream = cuda_stream(args.opr->handle()); | ||||
int8_t* filter_ptr = nullptr; | int8_t* filter_ptr = nullptr; | ||||
@@ -137,33 +163,79 @@ void ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::exec( | |||||
} | } | ||||
uint32_t nonlinear_mode = static_cast<uint32_t>(param.nonlineMode); | uint32_t nonlinear_mode = static_cast<uint32_t>(param.nonlineMode); | ||||
if (fh == 1 && fw == 1) { | if (fh == 1 && fw == 1) { | ||||
cutlass_wrapper::do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32< | |||||
false>(args.src_tensor->compatible_ptr<int8_t>(), filter_ptr, | |||||
args.bias_tensor->compatible_ptr<int32_t>(), z_dev_ptr, | |||||
args.dst_tensor->compatible_ptr<int8_t>(), nullptr, | |||||
kern_param, nonlinear_mode, alpha, beta, gamma, | |||||
dst_scale, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k}, | |||||
stream); | |||||
if (param.format == Format::NCHW32) { | |||||
cutlass_wrapper::do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32< | |||||
false>( | |||||
args.src_tensor->compatible_ptr<int8_t>(), filter_ptr, | |||||
args.bias_tensor->compatible_ptr<int32_t>(), z_dev_ptr, | |||||
args.dst_tensor->compatible_ptr<int8_t>(), nullptr, | |||||
kern_param, nonlinear_mode, alpha, beta, gamma, dst_scale, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k}, | |||||
stream); | |||||
} else { | |||||
megdnn_assert(param.format == Format::NCHW32_NCHW4); | |||||
cutlass_wrapper:: | |||||
do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32_ncdiv4hw4< | |||||
false>( | |||||
args.src_tensor->compatible_ptr<int8_t>(), | |||||
filter_ptr, | |||||
args.bias_tensor->compatible_ptr<int32_t>(), | |||||
z_dev_ptr, | |||||
args.dst_tensor->compatible_ptr<int8_t>(), nullptr, | |||||
kern_param, nonlinear_mode, alpha, beta, gamma, | |||||
dst_scale, | |||||
cutlass_wrapper::GemmCoord{ | |||||
m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k}, | |||||
stream); | |||||
} | |||||
} else { | } else { | ||||
cutlass_wrapper::do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32<true>( | |||||
args.src_tensor->compatible_ptr<int8_t>(), filter_ptr, | |||||
args.bias_tensor->compatible_ptr<int32_t>(), z_dev_ptr, | |||||
args.dst_tensor->compatible_ptr<int8_t>(), nullptr, kern_param, | |||||
nonlinear_mode, alpha, beta, gamma, dst_scale, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k}, | |||||
stream); | |||||
if (param.format == Format::NCHW32) { | |||||
cutlass_wrapper::do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32< | |||||
true>( | |||||
args.src_tensor->compatible_ptr<int8_t>(), filter_ptr, | |||||
args.bias_tensor->compatible_ptr<int32_t>(), z_dev_ptr, | |||||
args.dst_tensor->compatible_ptr<int8_t>(), nullptr, | |||||
kern_param, nonlinear_mode, alpha, beta, gamma, dst_scale, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k}, | |||||
stream); | |||||
} else { | |||||
megdnn_assert(param.format == Format::NCHW32_NCHW4); | |||||
cutlass_wrapper:: | |||||
do_conv_bias_int8_implicit_gemm_imma_ncdiv32hw32_ncdiv4hw4< | |||||
true>( | |||||
args.src_tensor->compatible_ptr<int8_t>(), | |||||
filter_ptr, | |||||
args.bias_tensor->compatible_ptr<int32_t>(), | |||||
z_dev_ptr, | |||||
args.dst_tensor->compatible_ptr<int8_t>(), nullptr, | |||||
kern_param, nonlinear_mode, alpha, beta, gamma, | |||||
dst_scale, | |||||
cutlass_wrapper::GemmCoord{ | |||||
m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k}, | |||||
stream); | |||||
} | |||||
} | } | ||||
after_kernel_launch(); | |||||
} | } | ||||
std::string ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::to_string( | std::string ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::to_string( | ||||
@@ -189,8 +261,21 @@ void ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::exec_preprocess( | |||||
using Format = Param::Format; | using Format = Param::Format; | ||||
auto&& param = args.opr->param(); | auto&& param = args.opr->param(); | ||||
auto&& fm = args.filter_meta; | auto&& fm = args.filter_meta; | ||||
UNPACK_CONV_BIAS_NCHW32_PARAM(*(args.src_layout), fm, *(args.dst_layout), | |||||
param); | |||||
size_t n = args.src_layout->operator[](0), | |||||
ci = args.src_layout->operator[](1) * 32, | |||||
hi = args.src_layout->operator[](2), | |||||
wi = args.src_layout->operator[](3); | |||||
size_t ho = args.dst_layout->operator[](2), | |||||
wo = args.dst_layout->operator[](3); | |||||
size_t co; | |||||
if (param.format == Format::NCHW32) { | |||||
co = args.dst_layout->operator[](1) * 32; | |||||
} else { | |||||
megdnn_assert(param.format == Format::NCHW32_NCHW4); | |||||
co = args.dst_layout->operator[](1) * 4; | |||||
} | |||||
UNPACK_CONV_PARAMETER(fm, param); | |||||
MARK_USED_VAR | |||||
TensorLayout src{{co, ci / 32, fh, fw, 32}, dtype::Int8()}; | TensorLayout src{{co, ci / 32, fh, fw, 32}, dtype::Int8()}; | ||||
src.init_contiguous_stride(); | src.init_contiguous_stride(); | ||||
TensorLayout dst = src; | TensorLayout dst = src; | ||||
@@ -208,6 +208,24 @@ void ConvBiasForwardImpl::AlgoInt8NCHW4DotProdImplicitGemm::exec( | |||||
stream); | stream); | ||||
} else { | } else { | ||||
megdnn_assert(param.format == Format::NCHW4_NCHW32); | megdnn_assert(param.format == Format::NCHW4_NCHW32); | ||||
cutlass_wrapper:: | |||||
do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4_ncdiv32hw32< | |||||
false>( | |||||
args.src_tensor->compatible_ptr<int8_t>(), | |||||
filter_ptr, | |||||
args.bias_tensor->compatible_ptr<int32_t>(), | |||||
args.z_tensor->compatible_ptr<int8_t>(), | |||||
args.dst_tensor->compatible_ptr<int8_t>(), nullptr, | |||||
kern_param, nonlinear_mode, alpha, beta, gamma, | |||||
dst_scale, | |||||
cutlass_wrapper::GemmCoord{ | |||||
m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k}, | |||||
stream); | |||||
} | } | ||||
} else { | } else { | ||||
if (param.format == Format::NCHW4) { | if (param.format == Format::NCHW4) { | ||||
@@ -246,6 +264,24 @@ void ConvBiasForwardImpl::AlgoInt8NCHW4DotProdImplicitGemm::exec( | |||||
} else { | } else { | ||||
megdnn_assert(param.format == Format::NCHW4_NCHW32); | megdnn_assert(param.format == Format::NCHW4_NCHW32); | ||||
cutlass_wrapper:: | |||||
do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4_ncdiv32hw32< | |||||
true>( | |||||
args.src_tensor->compatible_ptr<int8_t>(), | |||||
filter_ptr, | |||||
args.bias_tensor->compatible_ptr<int32_t>(), | |||||
args.z_tensor->compatible_ptr<int8_t>(), | |||||
args.dst_tensor->compatible_ptr<int8_t>(), nullptr, | |||||
kern_param, nonlinear_mode, alpha, beta, gamma, | |||||
dst_scale, | |||||
cutlass_wrapper::GemmCoord{ | |||||
m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k}, | |||||
stream); | |||||
} | } | ||||
} | } | ||||
after_kernel_launch(); | after_kernel_launch(); | ||||
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<32>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 32>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 4, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 256, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 256, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 256, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 256, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 256, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 256, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<16, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<16, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<16, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, false, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<16, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<16, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<16, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 128, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,37 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<32>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<32>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<4>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>; | |||||
using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
int8_t, 4, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::convolution::device::Convolution< | |||||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||||
cutlass::convolution::ConvType::kConvolution>, | |||||
2, 16, 16, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |