GitOrigin-RevId: 771968f9ac
tags/v1.3.0
@@ -11,3 +11,4 @@ imperative/python/test/integration/data/*.mge filter=lfs diff=lfs merge=lfs -tex | |||
ci/resource/models/float/mobilenet_v2.pkl filter=lfs diff=lfs merge=lfs -text | |||
ci/resource/models/float/shufflenet_v2.pkl filter=lfs diff=lfs merge=lfs -text | |||
ci/resource/dump/roi_align_backward_8.8.0.mdl filter=lfs diff=lfs merge=lfs -text | |||
ci/resource/dump/relayout_format_8.10.0.mdl filter=lfs diff=lfs merge=lfs -text |
@@ -1233,6 +1233,7 @@ protected: | |||
void check_exec(const TensorLayout& src, const TensorLayout& dst, | |||
size_t workspace_in_bytes); | |||
void deduce_exec_layout(const TensorLayout& src, const TensorLayout& dst, | |||
TensorLayout& exec_workspace, | |||
TensorLayout& exec_src, TensorLayout& exec_dst); | |||
}; | |||
} // namespace megdnn | |||
@@ -935,8 +935,9 @@ Relayout mode. | |||
Note: the axis column means the corresponding ``align_axis`` for image format | |||
when the ``I`` suffix is present. | |||
Note: NCHW_NCHW4_WEIGHT will auto pad oc and ic, you should remove oc in later opr by seting group and oc param with NCHW4_NCHW | |||
""" | |||
(pdef('RelayoutFormat', 'Change the tensor layout format'). | |||
(pdef('RelayoutFormat', 'Change the tensor layout format', version=0, is_legacy=True). | |||
add_enum( | |||
Doc('Mode', RELAYOUT_FORMAT_MODE_DOC), | |||
'NHWC_NHWCD4', | |||
@@ -964,9 +965,16 @@ when the ``I`` suffix is present. | |||
'NCHW_NCHW4_IC_SMALL', | |||
'NCHW_NCHW4_IC_SMALL_CONV_DENSE_WEIGHT', | |||
'NCHW_NCHW4', | |||
'NCHW4_NCHW', | |||
'NCHW_NCHW4_WEIGHT', | |||
) | |||
) | |||
(pdef('RelayoutFormat', 'Change the tensor layout format', version=1). | |||
add_enum_alias('Mode', 'RelayoutFormatV0'). | |||
add_fields('uint32', 'oc', '0'). | |||
add_fields('uint32', 'group', '1') | |||
) | |||
(pdef('SeparableFilter', version=0, is_legacy=True). | |||
add_enum_alias('Format', 'ConvolutionV0'). | |||
@@ -208,14 +208,48 @@ void RelayoutFormat::deduce_layout_fwd(const TensorLayout& src, | |||
dst[3] = src[2]; | |||
dst[4] = src[4]; | |||
break; | |||
case Param::Mode::NCHW_NCHW4: | |||
case Param::Mode::NCHW_NCHW4: { | |||
megdnn_assert(src.ndim == 4); | |||
const size_t group = param().group; | |||
megdnn_assert(src[1] % group == 0); | |||
const size_t icpg = src[1] / group; | |||
dst.ndim = 5; | |||
dst[0] = src[0]; | |||
dst[1] = div_ceil<size_t>(src[1], 4); | |||
dst[1] = group * div_ceil<size_t>(icpg, 4); | |||
dst[2] = src[2]; | |||
dst[3] = src[3]; | |||
dst[4] = 4; | |||
}; break; | |||
case Param::Mode::NCHW_NCHW4_WEIGHT:; | |||
{ | |||
if (src.ndim == 4) { | |||
//! dense case | |||
dst.ndim = 5; | |||
dst[0] = div_ceil<size_t>(src[0], 4) * 4; | |||
dst[1] = div_ceil<size_t>(src[1], 4); | |||
dst[2] = src[2]; | |||
dst[3] = src[3]; | |||
dst[4] = 4; | |||
} else if (src.ndim == 5) { | |||
//! group case | |||
dst.ndim = 6; | |||
dst[0] = src[0]; | |||
dst[1] = div_ceil<size_t>(src[1], 4) * 4; | |||
dst[2] = div_ceil<size_t>(src[2], 4); | |||
dst[3] = src[3]; | |||
dst[4] = src[4]; | |||
dst[5] = 4; | |||
} | |||
}; | |||
break; | |||
case Param::Mode::NCHW4_NCHW: | |||
megdnn_assert(src.ndim == 5); | |||
dst.ndim = 4; | |||
dst[0] = src[0]; | |||
dst[1] = param().oc == 0 ? src[1] * 4 : param().oc; | |||
dst[2] = src[2]; | |||
dst[3] = src[3]; | |||
megdnn_assert(dst[1] % param().group == 0); | |||
break; | |||
default: | |||
megdnn_assert(0, "Invalid RelayoutFormat Mode"); | |||
@@ -258,16 +292,13 @@ void RelayoutFormat::deduce_format(TensorFormat src, TensorFormat& dst) { | |||
CHECK_SRC(DefaultTensorFormat::make()); | |||
dst = src; | |||
break; | |||
case Param::Mode::NCHW_NCHW4: | |||
CHECK_SRC(DefaultTensorFormat::make()); | |||
dst = src; | |||
break; | |||
case Param::Mode::NCHW_NHWCD4I: | |||
CHECK_SRC(DefaultTensorFormat::make()); | |||
dst = Image2DPack4TensorFormat::make_raw(2, align, vendor_type); | |||
break; | |||
case Param::Mode::NHWCD4I_NCHW: | |||
CHECK_SRC(Image2DPack4TensorFormat::make_raw(2, align, vendor_type)); | |||
CHECK_SRC( | |||
Image2DPack4TensorFormat::make_raw(2, align, vendor_type)); | |||
dst = DefaultTensorFormat::make(); | |||
break; | |||
case Param::Mode::NHWCD4_NCHW: | |||
@@ -308,6 +339,9 @@ void RelayoutFormat::deduce_format(TensorFormat src, TensorFormat& dst) { | |||
CHECK_SRC(DefaultTensorFormat::make()); | |||
dst = src; | |||
break; | |||
case Param::Mode::NCHW4_NCHW: | |||
case Param::Mode::NCHW_NCHW4: | |||
case Param::Mode::NCHW_NCHW4_WEIGHT: | |||
case Param::Mode::NCHW_NCHW88: | |||
case Param::Mode::NCHW88_NCHW: | |||
case Param::Mode::NCHW_NCHW88_CONV_DENSE_WEIGHT: | |||
@@ -354,6 +388,7 @@ void RelayoutFormat::check_exec(const TensorLayout& src, | |||
void RelayoutFormat::deduce_exec_layout(const TensorLayout& src, | |||
const TensorLayout& dst, | |||
TensorLayout& exec_workspace, | |||
TensorLayout& exec_src, | |||
TensorLayout& exec_dst) { | |||
check_layout_fwd(src, dst); | |||
@@ -362,10 +397,10 @@ void RelayoutFormat::deduce_exec_layout(const TensorLayout& src, | |||
case Param::Mode::NCHW_NCHW88: | |||
// nchw to nchw8c | |||
{ | |||
TensorLayout work_space_layout( | |||
exec_workspace = TensorLayout( | |||
{src[0], round_up(src[1], 8_z), src[2], src[3]}, | |||
src.dtype, src.format); | |||
exec_src = work_space_layout | |||
exec_src = exec_workspace | |||
.reshape({src[0], div_ceil(src[1], 8_z), 8, | |||
src[2], src[3]}) | |||
.dimshuffle({0, 1, 3, 4, 2}); | |||
@@ -375,13 +410,56 @@ void RelayoutFormat::deduce_exec_layout(const TensorLayout& src, | |||
case Param::Mode::NCHW_NCHW4: | |||
// nchw to nchw4 | |||
{ | |||
TensorLayout work_space_layout( | |||
{src[0], round_up(src[1], 4_z), src[2], src[3]}, | |||
const size_t group = param().group; | |||
const size_t icpg = src[1] / group; | |||
exec_workspace = TensorLayout( | |||
{src[0], group * round_up(icpg, 4_z), src[2], src[3]}, | |||
src.dtype, src.format); | |||
exec_src = work_space_layout | |||
.reshape({src[0], div_ceil(src[1], 4_z), 4, | |||
src[2], src[3]}) | |||
.dimshuffle({0, 1, 3, 4, 2}); | |||
exec_src = | |||
exec_workspace | |||
.reshape({src[0], group * div_ceil(icpg, 4_z), | |||
4, src[2], src[3]}) | |||
.dimshuffle({0, 1, 3, 4, 2}); | |||
exec_dst = dst; | |||
} | |||
break; | |||
case Param::Mode::NCHW_NCHW4_WEIGHT: | |||
// nchw to nchw4_weight | |||
{ | |||
if (src.ndim == 4) { | |||
exec_workspace = TensorLayout( | |||
{round_up(src[0], 4_z), round_up(src[1], 4_z), | |||
src[2], src[3]}, | |||
src.dtype, src.format); | |||
exec_src = exec_workspace | |||
.reshape({round_up(src[0], 4_z), | |||
div_ceil(src[1], 4_z), 4, | |||
src[2], src[3]}) | |||
.dimshuffle({0, 1, 3, 4, 2}); | |||
exec_dst = dst; | |||
} else if (src.ndim == 5) { | |||
exec_workspace = TensorLayout( | |||
{src[0], round_up(src[1], 4_z), | |||
round_up(src[2], 4_z), src[3], src[4]}, | |||
src.dtype, src.format); | |||
exec_src = exec_workspace | |||
.reshape({src[0], round_up(src[1], 4_z), | |||
div_ceil(src[2], 4_z), 4, | |||
src[3], src[4]}) | |||
.dimshuffle({0, 1, 2, 4, 5, 3}); | |||
exec_dst = dst; | |||
} | |||
} | |||
break; | |||
case Param::Mode::NCHW4_NCHW: | |||
// nchw to nchw4 | |||
{ | |||
exec_workspace = | |||
TensorLayout({src[0], src[1] * 4, src[2], src[3]}, | |||
src.dtype, src.format) | |||
.reshape({src[0], src[1], 4, src[2], src[3]}) | |||
.dimshuffle({0, 1, 3, 4, 2}); | |||
exec_src = src; | |||
exec_dst = dst; | |||
} | |||
break; | |||
@@ -396,11 +474,11 @@ void RelayoutFormat::deduce_exec_layout(const TensorLayout& src, | |||
{ | |||
megdnn_assert(src.ndim == 4); | |||
megdnn_assert(src[0] % 8 == 0); | |||
TensorLayout work_space_layout( | |||
exec_workspace = TensorLayout( | |||
{src[0], round_up(src[1], 8_z), src[2], src[3]}, | |||
src.dtype, src.format); | |||
exec_src = | |||
work_space_layout | |||
exec_workspace | |||
.reshape({src[0] / 8, 8, div_ceil(src[1], 8_z), | |||
8, src[2], src[3]}) | |||
.dimshuffle({0, 2, 4, 5, 3, 1}); | |||
@@ -411,10 +489,10 @@ void RelayoutFormat::deduce_exec_layout(const TensorLayout& src, | |||
// goihw to goihw8g | |||
{ | |||
megdnn_assert(src.ndim == 5); | |||
TensorLayout work_space_layout( | |||
exec_workspace = TensorLayout( | |||
{round_up(src[0], 8_z), src[1], src[2], src[3], src[4]}, | |||
src.dtype, src.format); | |||
exec_src = work_space_layout | |||
exec_src = exec_workspace | |||
.reshape({div_ceil(src[0], 8_z), 8, src[1], | |||
src[2], src[3], src[4]}) | |||
.dimshuffle({0, 2, 3, 4, 5, 1}); | |||
@@ -426,10 +504,10 @@ void RelayoutFormat::deduce_exec_layout(const TensorLayout& src, | |||
{ | |||
megdnn_assert(src.ndim == 5); | |||
megdnn_assert(src[1] % 8 == 0); | |||
TensorLayout work_space_layout( | |||
exec_workspace = TensorLayout( | |||
{src[0], src[1], round_up(src[2], 8_z), src[3], src[4]}, | |||
src.dtype, src.format); | |||
exec_src = work_space_layout | |||
exec_src = exec_workspace | |||
.reshape({src[0], src[1] / 8, 8, | |||
div_ceil(src[2], 8_z), 8, src[3], | |||
src[4]}) | |||
@@ -442,10 +520,10 @@ void RelayoutFormat::deduce_exec_layout(const TensorLayout& src, | |||
case Param::Mode::NCHW_NCHW4_IC_SMALL_CONV_DENSE_WEIGHT: | |||
// nchw to nchw4c or oihw to oihw4i | |||
{ | |||
TensorLayout work_space_layout( | |||
exec_workspace = TensorLayout( | |||
{src[0], round_up(src[1], 4_z), src[2], src[3]}, | |||
src.dtype, src.format); | |||
exec_src = work_space_layout | |||
exec_src = exec_workspace | |||
.reshape({src[0], div_ceil(src[1], 4_z), 4, | |||
src[2], src[3]}) | |||
.dimshuffle({0, 1, 3, 4, 2}); | |||
@@ -91,6 +91,7 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||
all_algos.push_back(&algo); | |||
} | |||
all_algos.push_back(&int8_chwn4_dotprod); | |||
all_algos.push_back(&fallback_nchw_qs8); | |||
for (size_t i = all_algo_size; i < all_algos.size(); ++i) { | |||
non_cudnn_algos.push_back(all_algos[i]); | |||
} | |||
@@ -15,14 +15,14 @@ | |||
#include "megdnn/oprs.h" | |||
#include "src/common/algo_base.h" | |||
#include "src/common/utils.h" | |||
#include "src/common/metahelper.h" | |||
#include "src/common/utils.h" | |||
#include "src/cuda/conv_bias/conv_bias_int8.cuh" | |||
#include "src/cuda/conv_bias/helper.h" | |||
#include "src/cuda/conv_bias/opr_impl.h" | |||
#include "src/cuda/convolution_helper/parameter.cuh" | |||
#include "src/cuda/handle.h" | |||
#include "src/cuda/cudnn_wrapper.h" | |||
#include "src/cuda/handle.h" | |||
#include <cuda.h> | |||
#include <memory> | |||
@@ -547,6 +547,28 @@ private: | |||
std::string m_name; | |||
}; | |||
class ConvBiasForwardImpl::AlgoFallbackNCHWQS8 final : public AlgoBase { | |||
public: | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { | |||
return "FALLBACK_CONV_NCHW_QS8"; | |||
} | |||
AlgoAttribute attribute() const override { | |||
return AlgoAttribute::REPRODUCIBLE; | |||
} | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_GEMM_NCHW4_DOTPROD_INT8) | |||
private: | |||
void make_inner_layout(const SizeArgs& args, TensorLayout& inner_src_layout, | |||
TensorLayout& inner_weight_layout, | |||
TensorLayout& inner_dst_layout, | |||
TensorLayout& inner_bias_layout, | |||
TensorLayout& inner_z_layout) const; | |||
WorkspaceBundle get_workspace_bundle(void* ptr, const SizeArgs& args) const; | |||
}; | |||
#if CUDA_VERSION >= 10000 | |||
class ConvBiasForwardImpl::AlgoInt8CHWN4IMMAImplicitGemm final | |||
: public AlgoBase { | |||
@@ -763,6 +785,7 @@ public: | |||
non_cudnn_algos, bfloat16_algos; | |||
std::vector<AlgoCUDNNConvBiasActivation> cudnn_conv_bias_activations; | |||
std::vector<AlgoCUDNNConv> cudnn_convs; | |||
AlgoFallbackNCHWQS8 fallback_nchw_qs8; | |||
AlgoChanwise chanwise; | |||
AlgoChanwiseSmall chanwise_small; | |||
AlgoChanwise8x8x32 chanwise8x8x32; | |||
@@ -0,0 +1,162 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/conv_nchwqs8.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/common/conv_bias.h" | |||
#include "src/cuda/conv_bias/algo.h" | |||
#include "src/cuda/cudnn_wrapper.h" | |||
#include "src/cuda/relayout_format/opr_impl.h" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
using namespace conv_bias; | |||
namespace { | |||
inline void deduce_reformat_layout(std::unique_ptr<RelayoutFormat>& relayout, | |||
const TensorLayout& src_layout, | |||
TensorLayout& dst_layout, | |||
RelayoutFormat::Param::Mode mode, | |||
const int oc = 0, const int group = 1) { | |||
if (src_layout.ndim > 0) { | |||
RelayoutFormat::Param trans_param; | |||
trans_param.mode = mode; | |||
trans_param.oc = oc; | |||
trans_param.group = group; | |||
relayout->param() = trans_param; | |||
relayout->deduce_layout(src_layout, dst_layout); | |||
} else { | |||
dst_layout = src_layout; | |||
} | |||
} | |||
} // namespace | |||
void ConvBiasForwardImpl::AlgoFallbackNCHWQS8::make_inner_layout( | |||
const SizeArgs& args, TensorLayout& inner_src_layout, | |||
TensorLayout& inner_weight_layout, TensorLayout& inner_dst_layout, | |||
TensorLayout& inner_bias_layout, TensorLayout& inner_z_layout) const { | |||
auto relayout_src = args.handle->create_operator<RelayoutFormat>(); | |||
deduce_reformat_layout(relayout_src, *args.src_layout, inner_src_layout, | |||
RelayoutFormat::Param::Mode::NCHW_NCHW4, 0, | |||
args.filter_meta.group); | |||
deduce_reformat_layout(relayout_src, *args.filter_layout, | |||
inner_weight_layout, | |||
RelayoutFormat::Param::Mode::NCHW_NCHW4_WEIGHT); | |||
deduce_reformat_layout(relayout_src, *args.dst_layout, inner_dst_layout, | |||
RelayoutFormat::Param::Mode::NCHW_NCHW4, 0, | |||
args.filter_meta.group); | |||
deduce_reformat_layout(relayout_src, *args.bias_layout, inner_bias_layout, | |||
RelayoutFormat::Param::Mode::NCHW_NCHW4, 0, | |||
args.filter_meta.group); | |||
deduce_reformat_layout(relayout_src, *args.z_layout, inner_z_layout, | |||
RelayoutFormat::Param::Mode::NCHW_NCHW4, 0, | |||
args.filter_meta.group); | |||
}; | |||
bool ConvBiasForwardImpl::AlgoFallbackNCHWQS8::is_available( | |||
const SizeArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
bool is_format_ok = param.format == param::ConvBias::Format::NCHW; | |||
bool is_version_ok = CUDNN_VERSION >= 7500; | |||
bool is_dtype_ok = | |||
args.src_layout->dtype.enumv() == DTypeEnum::QuantizedS8; | |||
bool is_bias_ok = | |||
args.bias_layout->ndim == 0 || | |||
(args.bias_layout->ndim == 4 && args.bias_layout->shape[0] == 1 && | |||
args.bias_layout->shape[2] == 1 && | |||
args.bias_layout->shape[3] == 1); | |||
bool is_ok = is_format_ok && is_version_ok && is_dtype_ok && is_bias_ok; | |||
return is_ok; | |||
} | |||
WorkspaceBundle ConvBiasForwardImpl::AlgoFallbackNCHWQS8::get_workspace_bundle( | |||
void* ptr, const SizeArgs& args) const { | |||
TensorLayout inner_src_layout; | |||
TensorLayout inner_weight_layout; | |||
TensorLayout inner_dst_layout; | |||
TensorLayout inner_bias_layout; | |||
TensorLayout inner_z_layout; | |||
make_inner_layout(args, inner_src_layout, inner_weight_layout, | |||
inner_dst_layout, inner_bias_layout, inner_z_layout); | |||
auto opr = args.handle->create_operator<ConvBiasForward>(); | |||
Param inner_conv_param = args.opr->param(); | |||
inner_conv_param.format = Param::Format::NCHW4; | |||
opr->param() = inner_conv_param; | |||
return WorkspaceBundle(ptr, {inner_src_layout.span().dist_byte(), | |||
inner_weight_layout.span().dist_byte(), | |||
inner_dst_layout.span().dist_byte(), | |||
inner_bias_layout.span().dist_byte(), | |||
inner_z_layout.span().dist_byte(), | |||
opr->get_workspace_in_bytes( | |||
inner_src_layout, inner_weight_layout, | |||
inner_bias_layout, inner_z_layout, | |||
inner_dst_layout, nullptr)}); | |||
} | |||
size_t ConvBiasForwardImpl::AlgoFallbackNCHWQS8::get_workspace_in_bytes( | |||
const SizeArgs& args) const { | |||
auto trans_bundle = get_workspace_bundle(nullptr, args); | |||
return trans_bundle.total_size_in_bytes(); | |||
} | |||
void ConvBiasForwardImpl::AlgoFallbackNCHWQS8::exec( | |||
const ExecArgs& args) const { | |||
auto relayout_nchw_nchw4 = args.handle->create_operator<RelayoutFormat>(); | |||
RelayoutFormat::Param in_trans; | |||
in_trans.mode = RelayoutFormat::Param::Mode::NCHW_NCHW4; | |||
in_trans.group = args.filter_meta.group; | |||
relayout_nchw_nchw4->param() = in_trans; | |||
auto relayout_weight = args.handle->create_operator<RelayoutFormat>(); | |||
RelayoutFormat::Param weight_trans; | |||
weight_trans.mode = RelayoutFormat::Param::Mode::NCHW_NCHW4_WEIGHT; | |||
relayout_weight->param() = weight_trans; | |||
auto relayout_nchw4_nchw = args.handle->create_operator<RelayoutFormat>(); | |||
RelayoutFormat::Param nchw4_nchw_trans; | |||
nchw4_nchw_trans.mode = RelayoutFormat::Param::Mode::NCHW4_NCHW; | |||
nchw4_nchw_trans.oc = args.dst_layout->shape[1]; | |||
nchw4_nchw_trans.group = args.filter_meta.group; | |||
relayout_nchw4_nchw->param() = nchw4_nchw_trans; | |||
auto bundle = get_workspace_bundle(args.workspace.raw_ptr, args); | |||
TensorLayout inner_src_layout; | |||
TensorLayout inner_weight_layout; | |||
TensorLayout inner_dst_layout; | |||
TensorLayout inner_bias_layout; | |||
TensorLayout inner_z_layout; | |||
make_inner_layout(args, inner_src_layout, inner_weight_layout, | |||
inner_dst_layout, inner_bias_layout, inner_z_layout); | |||
TensorND inner_src(bundle.get(0), inner_src_layout); | |||
TensorND inner_weight(bundle.get(1), inner_weight_layout); | |||
TensorND inner_dst(bundle.get(2), inner_dst_layout); | |||
TensorND inner_bias(bundle.get(3), inner_bias_layout); | |||
TensorND inner_z(bundle.get(4), inner_z_layout); | |||
Param inner_conv_param = args.opr->param(); | |||
inner_conv_param.format = Param::Format::NCHW4; | |||
auto inner_opr = args.handle->create_operator<ConvBiasForward>(); | |||
inner_opr->param() = inner_conv_param; | |||
relayout_nchw_nchw4->exec(*args.src_tensor, inner_src, {}); | |||
relayout_weight->exec(*args.filter_tensor, inner_weight, {}); | |||
if (inner_bias_layout.ndim > 0) { | |||
relayout_nchw_nchw4->exec(*args.bias_tensor, inner_bias, {}); | |||
} | |||
if (inner_z_layout.ndim > 0) { | |||
relayout_nchw_nchw4->exec(*args.z_tensor, inner_z, {}); | |||
} | |||
inner_opr->exec(inner_src, inner_weight, inner_bias, inner_z, inner_dst, | |||
nullptr, Workspace((dt_byte*)bundle.get(5), bundle.get_size(5))); | |||
relayout_nchw4_nchw->exec(inner_dst, *args.dst_tensor, {}); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -201,6 +201,11 @@ ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_heuristic( | |||
return algo; | |||
} | |||
if (sm_algo_pack.fallback_nchw_qs8.is_available_reproducible( | |||
args, reproducible, workspace_limit_in_bytes)) { | |||
return &sm_algo_pack.fallback_nchw_qs8; | |||
} | |||
if (args.src_layout->dtype.enumv() != DTypeTrait<dtype::BFloat16>::enumv) { | |||
if (reproducible) { | |||
return megdnn::get_reproducible_algo<ConvBiasForwardImpl>( | |||
@@ -49,6 +49,7 @@ public: | |||
class AlgoChanwiseSmall; | |||
class AlgoChanwise8x8x32; | |||
class AlgoCUDNNConv; | |||
class AlgoFallbackNCHWQS8; | |||
class AlgoInplaceMatmul; | |||
class AlgoMatmul; | |||
class AlgoMatmul8x8x32; | |||
@@ -24,6 +24,9 @@ void RelayoutFormatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
megdnn_assert( | |||
param().mode == param::RelayoutFormat::Mode::NCHW4_CHWN4 || | |||
param().mode == param::RelayoutFormat::Mode::NCHW_NCHW4 || | |||
param().mode == | |||
param::RelayoutFormat::Mode::NCHW_NCHW4_WEIGHT || | |||
param().mode == param::RelayoutFormat::Mode::NCHW4_NCHW || | |||
param().mode == param::RelayoutFormat::Mode::CHWN4_NCHW4 || | |||
param().mode == Param::Mode::NCHW_NCHW4_IC_SMALL || | |||
param().mode == | |||
@@ -76,7 +79,9 @@ void RelayoutFormatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
{src.raw_ptr, exec_src_layout}, {dst.raw_ptr, exec_dst_layout}); | |||
} | |||
if (param().mode == Param::Mode::NCHW_NCHW4) { | |||
if (param().mode == Param::Mode::NCHW_NCHW4 || | |||
param().mode == Param::Mode::NCHW4_NCHW || | |||
param().mode == Param::Mode::NCHW_NCHW4_WEIGHT) { | |||
bool is_usable = relayout_format::RelayoutFormatFast::usable( | |||
src.layout, dst.layout); | |||
megdnn_assert(is_usable, | |||
@@ -85,10 +90,12 @@ void RelayoutFormatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
src.layout.to_string().c_str(), src.layout.dtype.name(), | |||
dst.layout.to_string().c_str(), dst.layout.dtype.name()); | |||
relayout_format::RelayoutFormatFast::exec(src, dst, | |||
cuda_stream(this->handle())); | |||
cuda_stream(this->handle()), | |||
param().mode, param().group); | |||
} else { | |||
TensorLayout exec_src, exec_dst; | |||
deduce_exec_layout(src.layout, dst.layout, exec_src, exec_dst); | |||
TensorLayout exec_src, exec_dst, exec_workspace; | |||
deduce_exec_layout(src.layout, dst.layout, exec_workspace, exec_src, | |||
exec_dst); | |||
TensorND exec_src_nd{src.raw_ptr, exec_src}; | |||
TensorND exec_dst_nd{dst.raw_ptr, exec_dst}; | |||
handle()->create_operator<RelayoutForward>()->exec(exec_src_nd, | |||
@@ -36,7 +36,9 @@ bool relayout_format::RelayoutFormatFast::usable( | |||
void relayout_format::RelayoutFormatFast::exec(const TensorND& src, | |||
const TensorND& dst, | |||
cudaStream_t stream) { | |||
cudaStream_t stream, | |||
RelayoutFormat::Param::Mode mode, | |||
int group) { | |||
size_t ih = src.layout[2]; | |||
size_t iw = src.layout[3]; | |||
size_t hw = ih * iw; | |||
@@ -49,11 +51,22 @@ void relayout_format::RelayoutFormatFast::exec(const TensorND& src, | |||
if (src.layout.dtype.enumv() == DTypeEnum::Uint8) { | |||
src_zero_point = 128; | |||
} | |||
if (hw % 4 == 0) { | |||
relayout_format_cuda_exec<4>(src, dst, stream, src_scale, dst_scale, | |||
src_zero_point, dst_zero_point); | |||
if (mode == RelayoutFormat::Param::Mode::NCHW_NCHW4) { | |||
if (hw % 4 == 0) { | |||
relayout_format_cuda_nchw_nchw4<4>(src, dst, stream, src_scale, | |||
dst_scale, src_zero_point, | |||
dst_zero_point, group); | |||
} else { | |||
relayout_format_cuda_nchw_nchw4<1>(src, dst, stream, src_scale, | |||
dst_scale, src_zero_point, | |||
dst_zero_point, group); | |||
} | |||
} else if (mode == RelayoutFormat::Param::Mode::NCHW_NCHW4_WEIGHT) { | |||
relayout_format_cuda_nchw_nchw4_weight(src, dst, stream); | |||
} else if (mode == RelayoutFormat::Param::Mode::NCHW4_NCHW) { | |||
relayout_format_cuda_nchw4_nchw(src, dst, stream, group); | |||
} else { | |||
relayout_format_cuda_exec<1>(src, dst, stream, src_scale, dst_scale, | |||
src_zero_point, dst_zero_point); | |||
megdnn_throw("only support nchw_nchw4 nchw4_nchw layout_format"); | |||
} | |||
} |
@@ -80,10 +80,30 @@ struct CudaPostProcess<dtype::QuantizedS8, dtype::QuantizedS8, false> { | |||
template <> | |||
struct CudaPostProcess<dtype::QuantizedS8, dtype::QuantizedS8, true> { | |||
CudaPostProcess(){}; | |||
CudaPostProcess(float, uint8_t, float, uint8_t){}; | |||
inline __device__ int8_t operator()(int8_t val) { return val; } | |||
}; | |||
template <> | |||
struct CudaPostProcess<dtype::QuantizedS32, dtype::QuantizedS32, false> { | |||
CudaDTypeParamImpl<dt_qint32> m_dst_type_cvt; | |||
CudaDTypeParamImpl<dt_qint32> m_src_type_cvt; | |||
CudaPostProcess(float src_scale, int, float dst_scale, int) { | |||
m_dst_type_cvt = CudaDTypeParamImpl<dt_qint32>(dst_scale); | |||
m_src_type_cvt = CudaDTypeParamImpl<dt_qint32>(src_scale); | |||
}; | |||
inline __device__ int operator()(int val) { | |||
float med_var = m_src_type_cvt.dequantize(dt_qint32(val)); | |||
return m_dst_type_cvt.quantize(med_var).as_int32(); | |||
} | |||
}; | |||
template <> | |||
struct CudaPostProcess<dtype::QuantizedS32, dtype::QuantizedS32, true> { | |||
CudaPostProcess(float, int, float, int){}; | |||
inline __device__ int operator()(int val) { return val; } | |||
}; | |||
template <typename SrcType, int pack_w> | |||
struct DTypeRWHelper; | |||
template <> | |||
@@ -98,6 +118,18 @@ struct DTypeRWHelper<char, 4> { | |||
using DstDtype = char4; | |||
}; | |||
template <> | |||
struct DTypeRWHelper<int, 1> { | |||
using InnerDtype = int; | |||
using DstDtype = int4; | |||
}; | |||
template <> | |||
struct DTypeRWHelper<int, 4> { | |||
using InnerDtype = int4; | |||
using DstDtype = int4; | |||
}; | |||
template <int pack_w, int pack_c, typename SrcType, typename DnnSrcType, | |||
typename DnnDstType, bool same_scale> | |||
struct Translayout { | |||
@@ -165,6 +197,11 @@ inline __device__ char4 make_zero_pad<char4>(const char zero_point) { | |||
return {zero_point, zero_point, zero_point, zero_point}; | |||
} | |||
template <> | |||
inline __device__ int4 make_zero_pad<int4>(const char zero_point) { | |||
return {zero_point, zero_point, zero_point, zero_point}; | |||
} | |||
template <typename DstDtype> | |||
inline __device__ void write_helper(DstDtype* ptr, DstDtype val) { | |||
*ptr = val; | |||
@@ -176,14 +213,14 @@ inline __device__ void write_helper<char4>(char4* ptr, char4 val) { | |||
*rel_ptr = *(int32_t*)(&val); | |||
} | |||
template <bool with_pad, int pack_w, int pack_c, bool same_scale, | |||
template <bool with_pad, int pack_w, int pack_c, bool same_scale, bool all_pad, | |||
typename SrcType, typename DstType, typename DnnSrcType, | |||
typename DnnDstType> | |||
struct RelayoutKern { | |||
using InnerDtype = typename DTypeRWHelper<SrcType, pack_w>::InnerDtype; | |||
using DstDtype = typename DTypeRWHelper<SrcType, pack_w>::DstDtype; | |||
static inline __device__ void write(DstType* dst_ptr, | |||
char4 (&dst_width)[pack_w]) { | |||
DstDtype (&dst_width)[pack_w]) { | |||
DstDtype* dst_inner_ptr = (DstDtype*)dst_ptr; | |||
#pragma unroll | |||
for (int iw_idx = 0; iw_idx < pack_w; ++iw_idx) { | |||
@@ -213,6 +250,17 @@ struct RelayoutKern { | |||
} | |||
} | |||
static inline __device__ void fake_read(const SrcType* src_ptr, | |||
InnerDtype (&read_channel)[pack_c], | |||
const int ic_stride, | |||
const int remain_ic, | |||
const InnerDtype zero_point) { | |||
#pragma unroll | |||
for (int ic_idx = 0; ic_idx < pack_c; ++ic_idx) { | |||
read_channel[ic_idx] = zero_point; | |||
} | |||
} | |||
static inline __device__ void core_relayout_kern( | |||
const SrcType* src, DstType* dst, const int src_offset_base, | |||
const int dst_offset_base, const int ic_offset, const int ic_stride, | |||
@@ -220,12 +268,20 @@ struct RelayoutKern { | |||
CudaPostProcess<DnnSrcType, DnnDstType, same_scale>& post_process, | |||
const char zero_point) { | |||
InnerDtype read_channel[pack_c]; | |||
if (with_pad) { | |||
if (all_pad) { | |||
const InnerDtype zero_pad = make_zero_pad<InnerDtype>(zero_point); | |||
read_with_pad(src + ic_offset + src_offset_base, read_channel, | |||
ic_stride, remain_ic, zero_pad); | |||
fake_read(src + ic_offset + src_offset_base, read_channel, | |||
ic_stride, remain_ic, zero_pad); | |||
} else { | |||
read(src + ic_offset + src_offset_base, read_channel, ic_stride); | |||
if (with_pad) { | |||
const InnerDtype zero_pad = | |||
make_zero_pad<InnerDtype>(zero_point); | |||
read_with_pad(src + ic_offset + src_offset_base, read_channel, | |||
ic_stride, remain_ic, zero_pad); | |||
} else { | |||
read(src + ic_offset + src_offset_base, read_channel, | |||
ic_stride); | |||
} | |||
} | |||
DstDtype dst_width[pack_w]; | |||
Translayout<pack_w, pack_c, SrcType, DnnSrcType, DnnDstType, | |||
@@ -238,45 +294,195 @@ struct RelayoutKern { | |||
template <int pack_w, bool same_scale, typename SrcType, typename DstType, | |||
typename DnnSrcType, typename DnnDstType> | |||
__global__ void kern_nchw_nchw4( | |||
const SrcType* src, DstType* dst, int ic, int ihw, int n_stride_src, | |||
int ic_stride, int n_stride_dst, | |||
const SrcType* src, DstType* dst, int in_n, int ic, int ihw, | |||
int n_stride_src, int ic_stride, int n_stride_dst, | |||
CudaPostProcess<DnnSrcType, DnnDstType, same_scale> post_process, | |||
const char zero_point) { | |||
const char zero_point, const int group, const int ocpg) { | |||
constexpr int pack_c = 4; | |||
const int n_idx = blockIdx.y; | |||
const int ihw_block_idx = blockIdx.x * blockDim.x + threadIdx.x; | |||
const int ihw_offset = ihw_block_idx * pack_w; | |||
if (ihw_offset < ihw) { | |||
const int ic_block = ic / pack_c; | |||
const int remain_ic = ic % pack_c; | |||
const int src_offset_base = n_idx * n_stride_src + ihw_offset; | |||
const int dst_offset_base = n_idx * n_stride_dst + ihw_offset * pack_c; | |||
if (n_idx < in_n) { | |||
const int icpg = ic / group; | |||
const int ic_block = icpg / pack_c; | |||
const int remain_ic = icpg % pack_c; | |||
const int src_group_stride = icpg * ic_stride; | |||
const int dst_group_stride = ocpg * ic_stride; | |||
for (int g_idx = 0; g_idx < group; ++g_idx) { | |||
const int src_offset = | |||
src_offset_base + g_idx * src_group_stride; | |||
const int dst_offset = | |||
dst_offset_base + g_idx * dst_group_stride; | |||
for (int ic_blk_idx = 0; ic_blk_idx < ic_block; ++ic_blk_idx) { | |||
const int ic_offset = ic_blk_idx * pack_c * ic_stride; | |||
RelayoutKern<false, pack_w, pack_c, same_scale, false, | |||
SrcType, DstType, DnnSrcType, | |||
DnnDstType>::core_relayout_kern(src, dst, | |||
src_offset, | |||
dst_offset, | |||
ic_offset, | |||
ic_stride, | |||
remain_ic, | |||
post_process, | |||
zero_point); | |||
} | |||
if (remain_ic > 0) { | |||
const int ic_offset = ic_block * pack_c * ic_stride; | |||
RelayoutKern<true, pack_w, pack_c, same_scale, false, | |||
SrcType, DstType, DnnSrcType, | |||
DnnDstType>::core_relayout_kern(src, dst, | |||
src_offset, | |||
dst_offset, | |||
ic_offset, | |||
ic_stride, | |||
remain_ic, | |||
post_process, | |||
zero_point); | |||
} | |||
} | |||
} else { | |||
//! pad n | |||
const int ic_full_block = group * ocpg / pack_c; | |||
for (int ic_blk_idx = 0; ic_blk_idx < ic_full_block; ++ic_blk_idx) { | |||
RelayoutKern<false, pack_w, pack_c, same_scale, true, SrcType, | |||
DstType, DnnSrcType, | |||
DnnDstType>::core_relayout_kern(src, dst, | |||
src_offset_base, | |||
dst_offset_base, 0, | |||
ic_stride, 0, | |||
post_process, | |||
zero_point); | |||
} | |||
} | |||
} | |||
} | |||
for (int ic_blk_idx = 0; ic_blk_idx < ic_block; ++ic_blk_idx) { | |||
const int ic_offset = ic_blk_idx * pack_c * ic_stride; | |||
RelayoutKern<false, pack_w, pack_c, same_scale, SrcType, DstType, | |||
DnnSrcType, | |||
DnnDstType>::core_relayout_kern(src, dst, | |||
src_offset_base, | |||
dst_offset_base, | |||
ic_offset, ic_stride, | |||
remain_ic, | |||
post_process, | |||
zero_point); | |||
__global__ void kern_nchw4_nchw(const int8_t* src, int8_t* dst, int n, int ic, | |||
int oc, int oh, int ow, int group) { | |||
constexpr int pack_w = 1; | |||
constexpr int pack_ic = 4; | |||
const int n_idx = blockIdx.y; | |||
const int hw_block_idx = blockIdx.x * blockDim.x + threadIdx.x; | |||
const int hw_offset = hw_block_idx * pack_w; | |||
const int hw = oh * ow; | |||
const int n_stride_src = ic * hw; | |||
const int n_stride_dst = oc * hw; | |||
const int c_stride = hw; | |||
if (hw_offset < hw) { | |||
const int icpg = ic / group; | |||
const int ocpg = oc / group; | |||
const int src_group_stride = icpg * c_stride; | |||
const int dst_group_stride = ocpg * c_stride; | |||
for (int g_idx = 0; g_idx < group; ++g_idx) { | |||
const int oc_block = ocpg / pack_ic; | |||
const int remain_oc = ocpg % pack_ic; | |||
const int src_offset_base = n_idx * n_stride_src + | |||
g_idx * src_group_stride + | |||
hw_offset * pack_ic; | |||
const int dst_offset_base = | |||
n_idx * n_stride_dst + g_idx * dst_group_stride + hw_offset; | |||
for (int ic_blk_idx = 0; ic_blk_idx < oc_block; ++ic_blk_idx) { | |||
const int oc_offset = ic_blk_idx * pack_ic * c_stride; | |||
char4 temp = *(char4*)(src + src_offset_base + oc_offset); | |||
dst[dst_offset_base + oc_offset + 0 * c_stride] = temp.x; | |||
dst[dst_offset_base + oc_offset + 1 * c_stride] = temp.y; | |||
dst[dst_offset_base + oc_offset + 2 * c_stride] = temp.z; | |||
dst[dst_offset_base + oc_offset + 3 * c_stride] = temp.w; | |||
} | |||
if (remain_oc > 0) { | |||
const int oc_offset = oc_block * pack_ic * c_stride; | |||
char4 temp = *(char4*)(src + src_offset_base + oc_offset); | |||
dst[dst_offset_base + oc_offset + 0 * c_stride] = temp.x; | |||
if (remain_oc > 1) { | |||
dst[dst_offset_base + oc_offset + 1 * c_stride] = temp.y; | |||
} | |||
if (remain_oc > 2) { | |||
dst[dst_offset_base + oc_offset + 2 * c_stride] = temp.z; | |||
} | |||
} | |||
} | |||
} | |||
} | |||
if (remain_ic > 0) { | |||
const int ic_offset = ic_block * pack_c * ic_stride; | |||
RelayoutKern<true, pack_w, pack_c, same_scale, SrcType, DstType, | |||
DnnSrcType, | |||
DnnDstType>::core_relayout_kern(src, dst, | |||
src_offset_base, | |||
dst_offset_base, | |||
ic_offset, ic_stride, | |||
remain_ic, | |||
post_process, | |||
zero_point); | |||
__global__ void kern_nchw_nchw4_weight( | |||
const char* src, char* dst, int in_oc, int ic, int ihw, | |||
int oc_stride_src, int ic_stride, int oc_stride_dst, | |||
int group_stride_src, int group_stride_dst, const char zero_point, | |||
CudaPostProcess<dtype::QuantizedS8, dtype::QuantizedS8, true> | |||
post_process) { | |||
typedef char SrcType; | |||
typedef char DstType; | |||
typedef dtype::QuantizedS8 DnnSrcType; | |||
typedef dtype::QuantizedS8 DnnDstType; | |||
constexpr int pack_c = 4; | |||
constexpr int pack_w = 1; | |||
constexpr bool same_scale = true; | |||
const int group_idx = blockIdx.z; | |||
const int oc_idx = blockIdx.y; | |||
const int ihw_block_idx = blockIdx.x * blockDim.x + threadIdx.x; | |||
const int ihw_offset = ihw_block_idx * pack_w; | |||
if (ihw_offset < ihw) { | |||
const int ic_block = ic / pack_c; | |||
const int remain_ic = ic % pack_c; | |||
const int src_offset_base = group_idx * group_stride_src + | |||
oc_idx * oc_stride_src + ihw_offset; | |||
const int dst_offset_base = group_idx * group_stride_dst + | |||
oc_idx * oc_stride_dst + | |||
ihw_offset * pack_c; | |||
if (oc_idx < in_oc) { | |||
for (int ic_blk_idx = 0; ic_blk_idx < ic_block; ++ic_blk_idx) { | |||
const int ic_offset = ic_blk_idx * pack_c * ic_stride; | |||
RelayoutKern<false, pack_w, pack_c, same_scale, false, SrcType, | |||
DstType, DnnSrcType, | |||
DnnDstType>::core_relayout_kern(src, dst, | |||
src_offset_base, | |||
dst_offset_base, | |||
ic_offset, | |||
ic_stride, | |||
remain_ic, | |||
post_process, | |||
zero_point); | |||
} | |||
if (remain_ic > 0) { | |||
const int ic_offset = ic_block * pack_c * ic_stride; | |||
RelayoutKern<true, pack_w, pack_c, same_scale, false, SrcType, | |||
DstType, DnnSrcType, | |||
DnnDstType>::core_relayout_kern(src, dst, | |||
src_offset_base, | |||
dst_offset_base, | |||
ic_offset, | |||
ic_stride, | |||
remain_ic, | |||
post_process, | |||
zero_point); | |||
} | |||
} else { | |||
//! pad oc per group | |||
const int ic_full_block = (ic + pack_c - 1) / pack_c; | |||
for (int ic_blk_idx = 0; ic_blk_idx < ic_full_block; ++ic_blk_idx) { | |||
const int ic_offset = ic_blk_idx * pack_c * ic_stride; | |||
RelayoutKern<false, pack_w, pack_c, same_scale, true, SrcType, | |||
DstType, DnnSrcType, | |||
DnnDstType>::core_relayout_kern(src, dst, | |||
src_offset_base, | |||
dst_offset_base, | |||
ic_offset, | |||
ic_stride, | |||
remain_ic, | |||
post_process, | |||
zero_point); | |||
} | |||
} | |||
} | |||
} | |||
@@ -284,20 +490,23 @@ __global__ void kern_nchw_nchw4( | |||
} // namespace | |||
template <int pack_w = 1> | |||
void relayout_format::relayout_format_cuda_exec( | |||
void relayout_format::relayout_format_cuda_nchw_nchw4( | |||
const TensorND& src, const TensorND& dst, const cudaStream_t& stream, | |||
const float src_scale, const float dst_scale, | |||
const uint8_t src_zero_point, const uint8_t dst_zero_point) { | |||
const uint8_t src_zero_point, const uint8_t dst_zero_point, | |||
const int group) { | |||
constexpr int pack_oc = 4; | |||
const int n = src.layout[0]; | |||
const int c = src.layout[1]; | |||
const int in_n = src.layout[0]; | |||
const int out_n = dst.layout[0]; | |||
const int ic = src.layout[1]; | |||
const int h = src.layout[2]; | |||
const int w = src.layout[3]; | |||
const int oc = dst.layout[1] * pack_oc; | |||
const int hw = h * w; | |||
const int oc_block = DIVUP(c, pack_oc); | |||
const int n_stride_src = c * hw; | |||
const int ocpg = oc / group; | |||
const int n_stride_src = ic * hw; | |||
const int ic_stride = hw; | |||
const int n_stride_dst = oc_block * pack_oc * h * w; | |||
const int n_stride_dst = oc * hw; | |||
auto& src_layout = src.layout; | |||
auto& dst_layout = dst.layout; | |||
@@ -307,26 +516,26 @@ void relayout_format::relayout_format_cuda_exec( | |||
int nr_threads = query_blocksize_for_kernel( \ | |||
kern_nchw_nchw4<pack_w, true, SRC_C_TYPE, DST_C_TYPE, \ | |||
SRC_TYPE, DST_TYPE>); \ | |||
const dim3 block_dim(DIVUP(hw, nr_threads* pack_w), n); \ | |||
const dim3 block_dim(DIVUP(hw, nr_threads* pack_w), out_n); \ | |||
const dim3 thread_dim(nr_threads); \ | |||
kern_nchw_nchw4<pack_w, true><<<block_dim, thread_dim, 0, stream>>>( \ | |||
(SRC_C_TYPE*)src.raw_ptr, (DST_C_TYPE*)dst.raw_ptr, c, hw, \ | |||
n_stride_src, ic_stride, n_stride_dst, \ | |||
(SRC_C_TYPE*)src.raw_ptr, (DST_C_TYPE*)dst.raw_ptr, in_n, ic, \ | |||
hw, n_stride_src, ic_stride, n_stride_dst, \ | |||
CudaPostProcess<SRC_TYPE, DST_TYPE, true>( \ | |||
src_scale, src_zero_point, dst_scale, dst_zero_point), \ | |||
src_zero_point); \ | |||
src_zero_point, group, ocpg); \ | |||
} else { \ | |||
int nr_threads = query_blocksize_for_kernel( \ | |||
kern_nchw_nchw4<pack_w, false, SRC_C_TYPE, DST_C_TYPE, \ | |||
SRC_TYPE, DST_TYPE>); \ | |||
const dim3 block_dim(DIVUP(hw, nr_threads* pack_w), n); \ | |||
const dim3 block_dim(DIVUP(hw, nr_threads* pack_w), out_n); \ | |||
const dim3 thread_dim(nr_threads); \ | |||
kern_nchw_nchw4<pack_w, false><<<block_dim, thread_dim, 0, stream>>>( \ | |||
(SRC_C_TYPE*)src.raw_ptr, (DST_C_TYPE*)dst.raw_ptr, c, hw, \ | |||
n_stride_src, ic_stride, n_stride_dst, \ | |||
(SRC_C_TYPE*)src.raw_ptr, (DST_C_TYPE*)dst.raw_ptr, in_n, ic, \ | |||
hw, n_stride_src, ic_stride, n_stride_dst, \ | |||
CudaPostProcess<SRC_TYPE, DST_TYPE, false>( \ | |||
src_scale, src_zero_point, dst_scale, dst_zero_point), \ | |||
src_zero_point); \ | |||
src_zero_point, group, ocpg); \ | |||
} | |||
if (src_layout.dtype.enumv().ev == DTypeEnum::Ev::Uint8 && | |||
@@ -340,6 +549,10 @@ void relayout_format::relayout_format_cuda_exec( | |||
dst_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS8) { | |||
RUN_KERNEL(same_scale, dtype::QuantizedS8, dtype::QuantizedS8, char, | |||
char); | |||
} else if (src_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS32 && | |||
dst_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS32) { | |||
RUN_KERNEL(same_scale, dtype::QuantizedS32, dtype::QuantizedS32, int, | |||
int); | |||
} else { | |||
megdnn_assert(0, "not support dtype %s %s", src_layout.dtype.name(), | |||
dst_layout.dtype.name()); | |||
@@ -356,16 +569,65 @@ bool relayout_format::relayout_format_cuda_usable( | |||
(src_layout.dtype.enumv().ev == DTypeEnum::Ev::Quantized8Asymm && | |||
dst_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS8) || | |||
(src_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS8 && | |||
dst_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS8); | |||
dst_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS8) || | |||
(src_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS32 && | |||
dst_layout.dtype.enumv().ev == DTypeEnum::Ev::QuantizedS32); | |||
return is_all_continue && is_all_int8; | |||
} | |||
template void relayout_format::relayout_format_cuda_exec<1>( | |||
void relayout_format::relayout_format_cuda_nchw4_nchw( | |||
const TensorND& src, const TensorND& dst, const cudaStream_t& stream, | |||
const int group) { | |||
constexpr int pack_w = 1; | |||
const int n = src.layout[0]; | |||
const int ic = src.layout[1] * 4; | |||
const int h = src.layout[2]; | |||
const int w = src.layout[3]; | |||
const int oc = dst.layout[1]; | |||
const int hw = h * w; | |||
int nr_threads = query_blocksize_for_kernel(kern_nchw4_nchw); | |||
const dim3 block_dim(DIVUP(hw, nr_threads * pack_w), n); | |||
const dim3 thread_dim(nr_threads); | |||
kern_nchw4_nchw<<<block_dim, thread_dim, 0, stream>>>( | |||
(int8_t*)src.raw_ptr, (int8_t*)dst.raw_ptr, n, ic, oc, h, w, group); | |||
} | |||
void relayout_format::relayout_format_cuda_nchw_nchw4_weight( | |||
const TensorND& src, const TensorND& dst, const cudaStream_t& stream) { | |||
constexpr int pack_c = 4; | |||
const bool is_group = src.layout.ndim == 5; | |||
const int group = is_group ? src.layout[0] : 1; | |||
const int oc = is_group ? src.layout[1] : src.layout[0]; | |||
const int ic = is_group ? src.layout[2] : src.layout[1]; | |||
const int kh = is_group ? src.layout[3] : src.layout[2]; | |||
const int kw = is_group ? src.layout[4] : src.layout[3]; | |||
const int hw = kh * kw; | |||
const int oc_round = ROUNDUP(oc, pack_c); | |||
const int ic_round = ROUNDUP(ic, pack_c); | |||
const int ic_stride = hw; | |||
const int oc_stride_src = ic * ic_stride; | |||
const int oc_stride_dst = ic_round * ic_stride; | |||
const int group_stride_src = oc * oc_stride_src; | |||
const int group_stride_dst = oc_round * oc_stride_dst; | |||
int nr_threads = 32; | |||
const dim3 block_dim(DIVUP(hw, nr_threads), oc_round, group); | |||
const dim3 thread_dim(nr_threads); | |||
kern_nchw_nchw4_weight<<<block_dim, thread_dim, 0, stream>>>( | |||
(char*)src.raw_ptr, (char*)dst.raw_ptr, oc, ic, hw, oc_stride_src, | |||
ic_stride, oc_stride_dst, group_stride_src, group_stride_dst, 0, | |||
{}); | |||
} | |||
template void relayout_format::relayout_format_cuda_nchw_nchw4<1>( | |||
const TensorND& src, const TensorND& dst, const cudaStream_t& stream, | |||
const float src_scale, const float dst_scale, | |||
const uint8_t src_zero_point, const uint8_t dst_zero_point); | |||
const uint8_t src_zero_point, const uint8_t dst_zero_point, | |||
const int group); | |||
template void relayout_format::relayout_format_cuda_exec<4>( | |||
template void relayout_format::relayout_format_cuda_nchw_nchw4<4>( | |||
const TensorND& src, const TensorND& dst, const cudaStream_t& stream, | |||
const float src_scale, const float dst_scale, | |||
const uint8_t src_zero_point, const uint8_t dst_zero_point); | |||
const uint8_t src_zero_point, const uint8_t dst_zero_point, | |||
const int group); |
@@ -20,16 +20,25 @@ namespace cuda { | |||
namespace relayout_format { | |||
template <int pack_w = 1> | |||
void relayout_format_cuda_exec(const TensorND& src, const TensorND& dst, | |||
const cudaStream_t& stream, | |||
const float src_scale = 1.f, | |||
const float dst_scale = 1.f, | |||
const uint8_t src_zero_point = 0, | |||
const uint8_t dst_zero_point = 0); | |||
void relayout_format_cuda_nchw_nchw4(const TensorND& src, const TensorND& dst, | |||
const cudaStream_t& stream, | |||
const float src_scale = 1.f, | |||
const float dst_scale = 1.f, | |||
const uint8_t src_zero_point = 0, | |||
const uint8_t dst_zero_point = 0, | |||
const int group = 1); | |||
bool relayout_format_cuda_usable(const TensorLayout& src_layout, | |||
const TensorLayout& dst_layout); | |||
void relayout_format_cuda_nchw4_nchw(const TensorND& src, const TensorND& dst, | |||
const cudaStream_t& stream, | |||
const int group); | |||
void relayout_format_cuda_nchw_nchw4_weight(const TensorND& src, | |||
const TensorND& dst, | |||
const cudaStream_t& stream); | |||
} // namespace relayout_format | |||
} // namespace cuda | |||
} // namespace megdnn | |||
@@ -13,6 +13,7 @@ | |||
#pragma once | |||
#include "megdnn/basic_types.h" | |||
#include "megdnn/oprs.h" | |||
#include "src/cuda/utils.cuh" | |||
namespace megdnn { | |||
@@ -23,7 +24,8 @@ struct RelayoutFormatFast { | |||
static bool usable(const TensorLayout& src_layout, | |||
const TensorLayout& dst_layout); | |||
static void exec(const TensorND& src, const TensorND& dst, | |||
cudaStream_t stream); | |||
cudaStream_t stream, RelayoutFormat::Param::Mode mode, | |||
int group); | |||
}; | |||
} // namespace relayout_format | |||
@@ -86,6 +86,7 @@ | |||
#endif | |||
#define DIVUP(x, y) (((x) + (y)-1) / (y)) | |||
#define ROUNDUP(x, y) (DIVUP(x, y) * (y)) | |||
#define KERN_FOR(i, n) \ | |||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ | |||
@@ -23,6 +23,71 @@ using namespace megdnn; | |||
using namespace naive; | |||
namespace { | |||
template <typename ctype> | |||
void recursive_cp(const TensorND& dst, const TensorND& src, size_t idx = 0, | |||
size_t src_offset = 0, size_t dst_offset = 0) { | |||
if (idx < (src.layout.ndim - 1)) { | |||
for (size_t i = 0; i < src.layout[idx]; ++i) { | |||
recursive_cp<ctype>(dst, src, idx + 1, | |||
src_offset + i * src.layout.stride[idx], | |||
dst_offset + i * dst.layout.stride[idx]); | |||
} | |||
} else { | |||
for (size_t i = 0; i < src.layout[idx]; ++i) { | |||
((ctype*)dst.raw_ptr)[dst_offset + i * dst.layout.stride[idx]] = | |||
((ctype*)src | |||
.raw_ptr)[src_offset + i * src.layout.stride[idx]]; | |||
} | |||
} | |||
} | |||
void padding_to_workspace(_megdnn_tensor_out dst, _megdnn_tensor_in src) { | |||
switch (src.layout.dtype.enumv()) { | |||
#define cb(name, ctype) \ | |||
case (DTypeEnum::name): { \ | |||
recursive_cp<ctype>(dst, src); \ | |||
break; \ | |||
} | |||
cb(Float32, dt_float32); | |||
cb(Int32, dt_int32); | |||
cb(QuantizedS32, dt_int32); | |||
cb(QuantizedS8, dt_qint8); | |||
default: | |||
megdnn_assert(0, "not support dtype %s", src.layout.dtype.name()); | |||
#undef cb | |||
} | |||
} | |||
void extract_from_workspace(_megdnn_tensor_out dst, _megdnn_tensor_in src, | |||
size_t group) { | |||
megdnn_assert(dst.layout.is_contiguous() && src.layout.is_contiguous(), | |||
"dst %s, src %s", dst.layout.to_string().c_str(), | |||
src.layout.to_string().c_str()); | |||
const size_t type_size = dst.layout.dtype.size(); | |||
const size_t n = dst.layout[0]; | |||
const size_t n_stride_dst = dst.layout.stride[0]; | |||
const size_t n_stride_src = src.layout.stride[0]; | |||
const size_t ocpg = dst.layout[1] / group; | |||
const size_t icpg = src.layout[1] / group; | |||
const size_t dst_hw = dst.layout[2] * dst.layout[3]; | |||
const size_t src_hw = src.layout[2] * src.layout[3]; | |||
megdnn_assert(dst_hw == src_hw); | |||
for (size_t nid = 0; nid < n; ++nid) { | |||
const size_t n_offset_dst = nid * n_stride_dst * type_size; | |||
const size_t n_offset_src = nid * n_stride_src * type_size; | |||
for (size_t gid = 0; gid < group; ++gid) { | |||
memcpy((char*)dst.raw_ptr + n_offset_dst + | |||
gid * ocpg * dst_hw * type_size, | |||
(char*)src.raw_ptr + n_offset_src + | |||
gid * icpg * src_hw * type_size, | |||
ocpg * dst_hw * type_size); | |||
} | |||
} | |||
}; | |||
template <typename dtype> | |||
void padding_src_to_workspace(dtype* dptr, const dtype* sptr, size_t N, | |||
size_t IC, size_t IH, size_t IW) { | |||
@@ -86,6 +151,8 @@ void padding_to_workspace(_megdnn_tensor_out dst, _megdnn_tensor_in src, | |||
} | |||
cb(Float32, dt_float32); | |||
cb(Int32, dt_int32); | |||
cb(QuantizedS32, dt_int32); | |||
cb(QuantizedS8, dt_qint8); | |||
case (DTypeEnum::Quantized8Asymm): { | |||
@@ -159,6 +226,19 @@ void do_copy_diff_q8_q8(const TensorND& dst, const TensorND& src) { | |||
++isrc; | |||
} | |||
} | |||
void do_copy_diff_q32_q32(const TensorND& dst, const TensorND& src) { | |||
auto isrc = tensor_iter_valonly<DTypeTrait<dtype::QuantizedS32>::ctype>(src) | |||
.begin(); | |||
auto idst = tensor_iter_valonly<DTypeTrait<dtype::QuantizedS32>::ctype>(dst) | |||
.begin(); | |||
auto src_dt_parm = src.layout.dtype.param<dtype::QuantizedS32>(); | |||
auto dst_dt_parm = dst.layout.dtype.param<dtype::QuantizedS32>(); | |||
for (size_t i = 0, it = dst.layout.total_nr_elems(); i < it; ++i) { | |||
*idst = dst_dt_parm.quantize(src_dt_parm.dequantize(*isrc)); | |||
++idst; | |||
++isrc; | |||
} | |||
} | |||
void do_copy_diff_u8_q8(const TensorND& dst, const TensorND& src) { | |||
auto isrc = | |||
@@ -263,12 +343,34 @@ size_t RelayoutFormatImpl::get_workspace_in_bytes(const TensorLayout& src, | |||
return n * c * h * w * src.dtype.size(); | |||
} | |||
case Param::Mode::NCHW_NCHW4: { | |||
size_t group = param().group; | |||
size_t n = src[0]; | |||
size_t c = round_up(src[1], 4_z); | |||
size_t c = group * round_up(src[1] / group, 4_z); | |||
size_t h = src[2]; | |||
size_t w = src[3]; | |||
return n * c * h * w * src.dtype.size(); | |||
} | |||
case Param::Mode::NCHW4_NCHW: { | |||
return src.total_nr_elems() * src.dtype.size(); | |||
} | |||
case Param::Mode::NCHW_NCHW4_WEIGHT: { | |||
if (src.ndim == 4) { | |||
size_t oc = round_up(src[0], 4_z); | |||
size_t ic = round_up(src[1], 4_z); | |||
size_t h = src[2]; | |||
size_t w = src[3]; | |||
return oc * ic * h * w * src.dtype.size(); | |||
} else if (src.ndim == 5) { | |||
size_t group = src[0]; | |||
size_t oc = round_up(src[1], 4_z); | |||
size_t ic = round_up(src[2], 4_z); | |||
size_t h = src[3]; | |||
size_t w = src[4]; | |||
return group * oc * ic * h * w * src.dtype.size(); | |||
} else { | |||
megdnn_throw("no support nchw_nchw4_weight"); | |||
} | |||
} | |||
case Param::Mode::NCHW_NCHW4_IC_SMALL_CONV_DENSE_WEIGHT: { | |||
megdnn_assert(src.ndim == 4, "src must be oihw, ndim == 5"); | |||
if (src[1] % 4 == 0) | |||
@@ -288,13 +390,15 @@ size_t RelayoutFormatImpl::get_workspace_in_bytes(const TensorLayout& src, | |||
void RelayoutFormatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) { | |||
megdnn_assert(src.layout.dtype.category() == DTypeCategory::FLOAT || | |||
src.layout.dtype.enumv() == DTypeEnum::Int32 || | |||
(src.layout.dtype.enumv() == DTypeEnum::Uint8 && | |||
dst.layout.dtype.enumv() == DTypeEnum::QuantizedS8) || | |||
src.layout.dtype.category() == DTypeCategory::QUANTIZED); | |||
check_exec(src.layout, dst.layout, workspace.size); | |||
HandleImpl* m_handle = static_cast<HandleImpl*>(handle()); | |||
TensorLayout exec_src, exec_dst; | |||
deduce_exec_layout(src.layout, dst.layout, exec_src, exec_dst); | |||
TensorLayout exec_src, exec_dst, exec_workspace; | |||
deduce_exec_layout(src.layout, dst.layout, exec_workspace, exec_src, | |||
exec_dst); | |||
TensorND exec_src_nd{src.raw_ptr, exec_src}; | |||
TensorND exec_dst_nd{dst.raw_ptr, exec_dst}; | |||
// clean dst | |||
@@ -371,6 +475,19 @@ void RelayoutFormatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
} \ | |||
} \ | |||
MIDOUT_END(); | |||
#define cb2(_idx, _pack_size, _mode, _src_layout, _workspace_layout) \ | |||
MIDOUT_BEGIN(megdnn_naive_relayout_format, \ | |||
midout_iv(Param::Mode::_mode)) { \ | |||
size_t val = _src_layout[_idx]; \ | |||
if (val % _pack_size != 0) { \ | |||
memset(workspace.raw_ptr, 0, exec_src.span().dist_byte()); \ | |||
padding_to_workspace({workspace.raw_ptr, _workspace_layout}, \ | |||
{src.raw_ptr, _src_layout}); \ | |||
exec_src_nd.raw_ptr = workspace.raw_ptr; \ | |||
} \ | |||
} \ | |||
MIDOUT_END(); | |||
cb(1, 8, NCHW_NCHW88); | |||
} else if (param().mode == Param::Mode::NCHW_NCHW88_CONV_DENSE_WEIGHT) { | |||
@@ -384,10 +501,62 @@ void RelayoutFormatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
} else if (param().mode == Param::Mode::NCHW_NCHW4_IC_SMALL) { | |||
cb(1, 4, NCHW_NCHW4_IC_SMALL); | |||
} else if (param().mode == Param::Mode::NCHW_NCHW4) { | |||
cb(1, 4, NCHW_NCHW4); | |||
if (param().group == 1) { | |||
cb(1, 4, NCHW_NCHW4); | |||
} else { | |||
TensorLayout group_src_layout{{src.layout[0], param().group, | |||
src.layout[1] / param().group, | |||
src.layout[2], src.layout[3]}, | |||
src.layout.dtype, | |||
src.layout.format}; | |||
TensorLayout workspace_layout{ | |||
{src.layout[0], param().group, | |||
div_ceil(src.layout[1] / param().group, 4_z) * 4_z, | |||
src.layout[2], src.layout[3]}, | |||
src.layout.dtype, | |||
src.layout.format}; | |||
cb2(2, 4, NCHW_NCHW4, group_src_layout, workspace_layout); | |||
} | |||
} else if (param().mode == | |||
Param::Mode::NCHW_NCHW4_IC_SMALL_CONV_DENSE_WEIGHT) { | |||
cb(1, 4, NCHW_NCHW4_IC_SMALL_CONV_DENSE_WEIGHT); | |||
} else if (param().mode == Param::Mode::NCHW_NCHW4_WEIGHT) { | |||
#undef cb | |||
#define cb(_idx0, _idx1, _pack_size, _mode) \ | |||
MIDOUT_BEGIN(megdnn_naive_relayout_format, \ | |||
midout_iv(Param::Mode::_mode)) { \ | |||
size_t val0 = src.layout[_idx0]; \ | |||
size_t val1 = src.layout[_idx1]; \ | |||
if (val0 % _pack_size != 0 || val1 % _pack_size != 0) { \ | |||
memset(workspace.raw_ptr, 0, exec_src.span().dist_byte()); \ | |||
padding_to_workspace({workspace.raw_ptr, exec_workspace}, src); \ | |||
exec_src_nd.raw_ptr = workspace.raw_ptr; \ | |||
} \ | |||
} \ | |||
MIDOUT_END(); | |||
if (src.layout.ndim == 4) { | |||
cb(0, 1, 4, NCHW_NCHW4_WEIGHT); | |||
} else if (src.layout.ndim == 5) { | |||
cb(1, 2, 4, NCHW_NCHW4_WEIGHT); | |||
} | |||
} else if (param().mode == Param::Mode::NCHW4_NCHW) { | |||
if (exec_workspace.total_nr_elems() == dst.layout.total_nr_elems()) { | |||
m_handle->relayout_opr()->exec( | |||
exec_src_nd, {dst.raw_ptr, exec_workspace}, handle()); | |||
return; | |||
} else { | |||
m_handle->relayout_opr()->exec( | |||
exec_src_nd, {workspace.raw_ptr, exec_workspace}, handle()); | |||
TensorLayout workspace_layout{{src.layout[0], src.layout[1] * 4, | |||
src.layout[2], src.layout[3]}, | |||
src.layout.dtype, | |||
src.layout.format}; | |||
extract_from_workspace(exec_dst_nd, | |||
{workspace.raw_ptr, workspace_layout}, | |||
param().group); | |||
return; | |||
} | |||
} | |||
if (src.layout.dtype.enumv() == DTypeEnum::Quantized8Asymm && | |||
@@ -417,6 +586,15 @@ void RelayoutFormatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
}; | |||
MEGDNN_DISPATCH_CPU_KERN_OPR(func(dst0, src0)); | |||
return; | |||
} else if (src.layout.dtype.enumv() == DTypeEnum::QuantizedS32 && | |||
dst.layout.dtype.enumv() == DTypeEnum::QuantizedS32) { | |||
TensorND src0 = exec_src_nd, dst0 = exec_dst_nd; | |||
check_layout_and_canonize(src0.layout, src0.layout); | |||
auto func = [](const TensorND& dst, const TensorND& src) { | |||
do_copy_diff_q32_q32(dst, src); | |||
}; | |||
MEGDNN_DISPATCH_CPU_KERN_OPR(func(dst0, src0)); | |||
return; | |||
} else { | |||
m_handle->relayout_opr()->exec(exec_src_nd, exec_dst_nd, handle()); | |||
} | |||
@@ -215,8 +215,7 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_QS8) { | |||
.execs({src_shape, filter_shape, bias_shape, {}, {}}); | |||
} | |||
} | |||
//! close for cu111 ci, reopen it when bug fixed | |||
#if CUDA_VERSION < 11000 | |||
TEST_F(CUDA, CONV_BIAS_NCHW_QS8) { | |||
//! not support NonlineMode::SIGMOID and NonlineMode::H_SWISH | |||
require_compute_capability(6, 1); | |||
@@ -274,8 +273,97 @@ TEST_F(CUDA, CONV_BIAS_NCHW_QS8) { | |||
} | |||
} | |||
} | |||
for (NonlineMode mode : {NonlineMode::RELU, | |||
NonlineMode::IDENTITY, NonlineMode::H_SWISH}) { | |||
for (size_t g : {13}) { | |||
for (size_t b : {1, 2}) { | |||
for (size_t ic : {13}) { | |||
for (size_t oc : {13}) { | |||
for (size_t fh : {1, 3}) { | |||
for (int ph : {static_cast<int>(fh / 2)}) { | |||
for (int sh : {1, 2}) { | |||
size_t ih = 16, iw = 16; | |||
param.nonlineMode = mode; | |||
param.stride_h = param.stride_w = sh; | |||
param.pad_h = param.pad_w = ph; | |||
param.sparse = | |||
ConvBias::Param::Sparse::GROUP; | |||
checker.set_param(param) | |||
.execs({{b, ic, ih, iw}, | |||
{g, oc/g, ic/g, fh, fh}, | |||
{1, oc, 1, 1}, | |||
{}, | |||
{}}); | |||
} | |||
} | |||
} | |||
} | |||
} | |||
} | |||
} | |||
} | |||
{ | |||
size_t ih = 16, iw = 16, b = 1, oc = 14, ic = 14; | |||
size_t fh = 3, sh = 1, ph = 1; | |||
param.nonlineMode = NonlineMode::IDENTITY; | |||
param.stride_h = param.stride_w = sh; | |||
param.pad_h = param.pad_w = ph; | |||
param.sparse = ConvBias::Param::Sparse::DENSE; | |||
checker.set_param(param).execs( | |||
{{b, ic, ih, iw}, {oc, ic, fh, fh}, {}, {}, {}}); | |||
} | |||
} | |||
#endif | |||
TEST_F(CUDA, CONV_BIAS_NCHW_QS8_FUSE_Z) { | |||
require_compute_capability(6, 1); | |||
Checker<ConvBiasForward> checker(handle_cuda()); | |||
UniformIntRNG int_rng{-128, 127}; | |||
using NonlineMode = ConvBias::Param::NonlineMode; | |||
ConvBias::Param param; | |||
param.format = ConvBias::Param::Format::NCHW; | |||
checker.set_dtype(0, dtype::QuantizedS8(2.5f)) | |||
.set_dtype(1, dtype::QuantizedS8(2.5f)) | |||
.set_dtype(2, dtype::QuantizedS32(6.25f)) | |||
.set_dtype(3, dtype::QuantizedS8(0.25f)) | |||
.set_dtype(4, dtype::QuantizedS8(0.25f)) | |||
.set_rng(0, &int_rng) | |||
.set_rng(1, &int_rng) | |||
.set_rng(2, &int_rng) | |||
.set_rng(3, &int_rng); | |||
for (NonlineMode mode : | |||
{NonlineMode::RELU, NonlineMode::IDENTITY, NonlineMode::H_SWISH}) { | |||
for (size_t b : {2}) { | |||
for (size_t ic : {6, 16}) { | |||
for (size_t oc : {4}) { | |||
for (size_t fh : {1, 3}) { | |||
for (int ph : {static_cast<int>(fh / 2)}) { | |||
for (int sh : {1, 2}) { | |||
size_t ih = 16, iw = 16; | |||
param.nonlineMode = mode; | |||
param.stride_h = param.stride_w = sh; | |||
param.pad_h = param.pad_w = ph; | |||
param.sparse = ConvBias::Param::Sparse::DENSE; | |||
const size_t oh = (ih - fh + 2 * ph) / sh + 1; | |||
const size_t ow = (iw - fh + 2 * ph) / sh + 1; | |||
checker.set_param(param).execs( | |||
{{b, ic, ih, iw}, | |||
{oc, ic, fh, fh}, | |||
{1, oc, 1, 1}, | |||
{b, oc, oh, ow}, | |||
{}}); | |||
} | |||
} | |||
} | |||
} | |||
} | |||
} | |||
} | |||
} | |||
#if MEGDNN_WITH_BENCHMARK | |||
TEST_F(CUDA, BENCHMARK_CONV_BIAS_NCHW4_INT8) { | |||
require_compute_capability(6, 1); | |||
@@ -34,9 +34,43 @@ TEST_F(CUDA, RELAYOUT_FORMAT) { | |||
checker.execs({{22, 23, 24, 25, 4}, {}}); | |||
} | |||
TEST_F(CUDA, RELAYOUT_FORMAT_NCHW4_NCHW) { | |||
Checker<RelayoutFormat> checker(handle_cuda()); | |||
UniformIntRNG rng{-50, 50}; | |||
param::RelayoutFormat param; | |||
param.mode = param::RelayoutFormat::Mode::NCHW4_NCHW; | |||
checker.set_dtype(0, dtype::QuantizedS8{0.1f}) | |||
.set_dtype(1, dtype::QuantizedS8{0.1f}) | |||
.set_rng(0, &rng) | |||
.set_param(param) | |||
.execs({{1, 1, 2, 2, 4}, {}}); | |||
checker.set_dtype(0, dtype::QuantizedS8{0.1f}) | |||
.set_dtype(1, dtype::QuantizedS8{0.1f}) | |||
.set_rng(0, &rng) | |||
.set_param(param) | |||
.execs({{22, 23, 24, 25, 4}, {}}); | |||
param.oc = 90; | |||
checker.set_dtype(0, dtype::QuantizedS8{0.1f}) | |||
.set_dtype(1, dtype::QuantizedS8{0.1f}) | |||
.set_rng(0, &rng) | |||
.set_param(param) | |||
.execs({{22, 23, 24, 25, 4}, {}}); | |||
param.oc = 16; | |||
param.group = 8; | |||
checker.set_dtype(0, dtype::QuantizedS8{0.1f}) | |||
.set_dtype(1, dtype::QuantizedS8{0.1f}) | |||
.set_rng(0, &rng) | |||
.set_param(param) | |||
.execs({{11, 16, 22, 33, 4}, {}}); | |||
} | |||
TEST_F(CUDA, RELAYOUT_FORMAT_NCHW_NCHW4) { | |||
Checker<RelayoutFormat> checker(handle_cuda()); | |||
UniformIntRNG rng{0, 50}; | |||
UniformIntRNG rng{-50, 50}; | |||
param::RelayoutFormat param; | |||
param.mode = param::RelayoutFormat::Mode::NCHW_NCHW4; | |||
@@ -55,6 +89,12 @@ TEST_F(CUDA, RELAYOUT_FORMAT_NCHW_NCHW4) { | |||
.set_rng(0, &rng) | |||
.set_param(param) | |||
.execs({{n, c, h, w}, {}}); | |||
checker.set_dtype(0, dtype::QuantizedS32{1.f}) | |||
.set_dtype(1, dtype::QuantizedS32{1.f}) | |||
.set_rng(0, &rng) | |||
.set_param(param) | |||
.execs({{n, c, h, w}, {}}); | |||
} | |||
} | |||
} | |||
@@ -77,6 +117,59 @@ TEST_F(CUDA, RELAYOUT_FORMAT_NCHW_NCHW4) { | |||
.set_rng(0, &rng) | |||
.set_param(param) | |||
.execs({{1, 6, 768, 1280}, {}}); | |||
param.group = 2; | |||
checker.set_dtype(0, dtype::QuantizedS8{1.f}) | |||
.set_dtype(1, dtype::QuantizedS8{1.f}) | |||
.set_rng(0, &rng) | |||
.set_param(param) | |||
.execs({{8, 6, 300, 300}, {}}); | |||
param.group = 3; | |||
checker.set_dtype(0, dtype::QuantizedS8{1.f}) | |||
.set_dtype(1, dtype::QuantizedS8{1.f}) | |||
.set_rng(0, &rng) | |||
.set_param(param) | |||
.execs({{8, 6, 300, 300}, {}}); | |||
} | |||
TEST_F(CUDA, RELAYOUT_FORMAT_NCHW_NCHW4_WEIGHT) { | |||
Checker<RelayoutFormat> checker(handle_cuda()); | |||
UniformIntRNG rng{-50, 50}; | |||
param::RelayoutFormat param; | |||
param.mode = param::RelayoutFormat::Mode::NCHW_NCHW4_WEIGHT; | |||
for (size_t oc : {1, 3, 4, 16, 33}) { | |||
for (size_t ic : {1, 2, 3, 4, 8, 9, 11, 16, 33}) { | |||
for (size_t h : {3, 5, 7}) { | |||
for (size_t w : {3, 5, 7}) { | |||
checker.set_dtype(0, dtype::QuantizedS8{1.f}) | |||
.set_dtype(1, dtype::QuantizedS8{1.f}) | |||
.set_rng(0, &rng) | |||
.set_param(param) | |||
.execs({{oc, ic, h, w}, {}}); | |||
} | |||
} | |||
} | |||
} | |||
checker.set_dtype(0, dtype::QuantizedS8{1.f}) | |||
.set_dtype(1, dtype::QuantizedS8{1.f}) | |||
.set_rng(0, &rng) | |||
.set_param(param) | |||
.execs({{13, 13, 5, 5}, {}}); | |||
checker.set_dtype(0, dtype::QuantizedS8{1.f}) | |||
.set_dtype(1, dtype::QuantizedS8{1.f}) | |||
.set_rng(0, &rng) | |||
.set_param(param) | |||
.execs({{4, 16, 16, 3, 3}, {}}); | |||
checker.set_dtype(0, dtype::QuantizedS8{1.f}) | |||
.set_dtype(1, dtype::QuantizedS8{1.f}) | |||
.set_rng(0, &rng) | |||
.set_param(param) | |||
.execs({{4, 13, 11, 3, 3}, {}}); | |||
} | |||
TEST_F(CUDA, RELAYOUT_FORMAT_NCHW_NCHW4_DEFAULT) { | |||
@@ -6,7 +6,8 @@ | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "test/naive/fixture.h" | |||
@@ -17,6 +18,136 @@ | |||
using namespace megdnn; | |||
using namespace test; | |||
TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW4_NCHW) { | |||
Checker<RelayoutFormat> checker(handle(), /* check_dispatch */ false); | |||
{ | |||
auto tensor_nchw4 = TensorValue( | |||
{1, 2, 1, 2, 4}, dtype::Float32(), | |||
{1, 3, 5, 7, 2, 4, 6, 8, 9, 11, 13, 15, 10, 12, 14, 16}); | |||
auto tensor_nchw = TensorValue( | |||
{1, 8, 1, 2}, dtype::Float32(), | |||
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); | |||
RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW4_NCHW}; | |||
checker.set_param(param).exect(Testcase{tensor_nchw4, {}}, | |||
Testcase{{}, tensor_nchw}); | |||
} | |||
{ | |||
auto tensor_nchw4 = TensorValue( | |||
{1, 2, 1, 2, 4}, dtype::Float32(), | |||
{1, 3, 5, 7, 2, 4, 6, 8, 9, 11, 13, 15, 10, 12, 14, 16}); | |||
auto tensor_nchw = | |||
TensorValue({1, 7, 1, 2}, dtype::Float32(), | |||
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}); | |||
RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW4_NCHW}; | |||
param.oc = 7; | |||
checker.set_param(param).exect(Testcase{tensor_nchw4, {}}, | |||
Testcase{{}, tensor_nchw}); | |||
} | |||
{ | |||
auto tensor_nchw4 = TensorValue( | |||
{1, 2, 1, 2, 4}, dtype::Float32(), | |||
{1, 3, 5, 7, 2, 4, 6, 8, 9, 11, 13, 15, 10, 12, 14, 16}); | |||
auto tensor_nchw = | |||
TensorValue({1, 6, 1, 2}, dtype::Float32(), | |||
{1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14}); | |||
RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW4_NCHW}; | |||
param.oc = 6; | |||
param.group = 2; | |||
checker.set_param(param).exect(Testcase{tensor_nchw4, {}}, | |||
Testcase{{}, tensor_nchw}); | |||
} | |||
} | |||
TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW_NCHW4_WEIGHT) { | |||
Checker<RelayoutFormat> checker(handle(), /* check_dispatch */ false); | |||
{ | |||
auto tensor_nchw = TensorValue({2, 2, 2, 2}, dtype::Float32(), | |||
{1, 2, 3, 4, 5, 6, 7, 8, | |||
9, 10, 11, 12, 13, 14, 15, 16}); | |||
auto tensor_nchw4 = TensorValue( | |||
{4, 1, 2, 2, 4}, dtype::Float32(), | |||
{1, 5, 0, 0, 2, 6, 0, 0, 3, 7, 0, 0, 4, 8, 0, 0, | |||
9, 13, 0, 0, 10, 14, 0, 0, 11, 15, 0, 0, 12, 16, 0, 0, | |||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}); | |||
RelayoutFormat::Param param{ | |||
RelayoutFormat::Param::Mode::NCHW_NCHW4_WEIGHT}; | |||
checker.set_param(param).exect(Testcase{tensor_nchw, {}}, | |||
Testcase{{}, tensor_nchw4}); | |||
} | |||
{ | |||
auto tensor_nchw = TensorValue({2, 2, 1, 2, 2}, dtype::Float32(), | |||
{1, 2, 3, 4, 5, 6, 7, 8, | |||
9, 10, 11, 12, 13, 14, 15, 16}); | |||
auto tensor_nchw4 = TensorValue( | |||
{2, 4, 1, 2, 2, 4}, dtype::Float32(), | |||
{1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, | |||
0, 6, 0, 0, 0, 7, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 10, 0, 0, 0, 11, 0, 0, 0, | |||
12, 0, 0, 0, 13, 0, 0, 0, 14, 0, 0, 0, 15, 0, 0, 0, 16, 0, 0, | |||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}); | |||
RelayoutFormat::Param param{ | |||
RelayoutFormat::Param::Mode::NCHW_NCHW4_WEIGHT}; | |||
checker.set_param(param).exect(Testcase{tensor_nchw, {}}, | |||
Testcase{{}, tensor_nchw4}); | |||
} | |||
} | |||
TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW_NCHW4) { | |||
Checker<RelayoutFormat> checker(handle(), /* check_dispatch */ false); | |||
{ | |||
auto tensor_nchw = TensorValue( | |||
{1, 8, 1, 2}, dtype::Float32(), | |||
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); | |||
auto tensor_nchw4 = TensorValue( | |||
{1, 2, 1, 2, 4}, dtype::Float32(), | |||
{1, 3, 5, 7, 2, 4, 6, 8, 9, 11, 13, 15, 10, 12, 14, 16}); | |||
RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW_NCHW4}; | |||
checker.set_param(param).exect(Testcase{tensor_nchw, {}}, | |||
Testcase{{}, tensor_nchw4}); | |||
} | |||
{ | |||
auto tensor_nchw = TensorValue( | |||
{1, 8, 1, 2}, dtype::Float32(), | |||
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); | |||
auto tensor_nchw4 = TensorValue( | |||
{1, 4, 1, 2, 4}, dtype::Float32(), | |||
{1, 3, 0, 0, 2, 4, 0, 0, 5, 7, 0, 0, 6, 8, 0, 0, | |||
9, 11, 0, 0, 10, 12, 0, 0, 13, 15, 0, 0, 14, 16, 0, 0}); | |||
RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW_NCHW4}; | |||
param.group = 4; | |||
checker.set_param(param).exect(Testcase{tensor_nchw, {}}, | |||
Testcase{{}, tensor_nchw4}); | |||
} | |||
{ | |||
auto tensor_nchw = TensorValue({1, 6, 1, 2}, dtype::Float32(), | |||
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); | |||
auto tensor_nchw4 = TensorValue( | |||
{1, 2, 1, 2, 4}, dtype::Float32(), | |||
{1, 3, 5, 0, 2, 4, 6, 0, 7, 9, 11, 0, 8, 10, 12, 0}); | |||
RelayoutFormat::Param param{RelayoutFormat::Param::Mode::NCHW_NCHW4}; | |||
param.group = 2; | |||
checker.set_param(param).exect(Testcase{tensor_nchw, {}}, | |||
Testcase{{}, tensor_nchw4}); | |||
} | |||
} | |||
TEST_F(NAIVE, RELAYOUT_FORMAT_NCHW88) { | |||
Checker<RelayoutFormat> checker(handle(), /* check_dispatch */ false); | |||
@@ -1914,8 +1914,17 @@ TEST(TestEnableTensorCore, Nchw4Nchw) { | |||
unpack_vector(gopt::optimize_for_inference({y}, options), y_no_tc); | |||
} | |||
auto nr_dimshuffle = find_opr_num<mgb::opr::Dimshuffle>(y_opt); | |||
if (format == opr::ConvBias::Param::Format::NCHW4) { | |||
#if CUDA_VERSION >= 10020 | |||
//! try_conv_reformat_nchw322nchw4 used when cuda_version >= 10020 | |||
ASSERT_EQ(1u, nr_dimshuffle); | |||
#else | |||
ASSERT_EQ(2u, nr_dimshuffle); | |||
#endif | |||
} else { | |||
ASSERT_EQ(2u, nr_dimshuffle); | |||
} | |||
std::string json_name; | |||
ASSERT_EQ(2u, nr_dimshuffle); | |||
if (format == opr::ConvBias::Param::Format::NCHW4) { | |||
json_name = "TestGoptInference.Nchw4Nchw.NCHW4.json"; | |||
} else { | |||
@@ -2856,8 +2865,6 @@ TEST(TestGoptInference, EnableCHWN4ShuffleRemove) { | |||
} | |||
#endif | |||
//! close for cu111 ci, reopen it when bug fixed | |||
#if CUDA_VERSION < 11000 | |||
TEST(TestGoptInference, ConvertFormatNCHW4GPU) { | |||
REQUIRE_GPU(1); | |||
auto cn = CompNode::load("gpu0"); | |||
@@ -2936,7 +2943,6 @@ TEST(TestGoptInference, ConvertFormatNCHW4GPU) { | |||
func->execute(); | |||
MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt); | |||
} | |||
#endif | |||
#endif | |||
@@ -3076,8 +3082,6 @@ TEST(TestGoptInference, ConvertFormatNCHW4) { | |||
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3); | |||
} | |||
//! close for cu111 ci, reopen it when bug fixed | |||
#if CUDA_VERSION < 11000 | |||
TEST(TestGoptInference, ConvertFormatNCHW4Ic3) { | |||
REQUIRE_GPU(1); | |||
auto cn = CompNode::load("gpu0"); | |||
@@ -3139,7 +3143,6 @@ TEST(TestGoptInference, ConvertFormatNCHW4Ic3) { | |||
func->execute(); | |||
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3); | |||
} | |||
#endif | |||
TEST(TestGoptInference, ConvertFormatNCHW88) { | |||
HostTensorGenerator<> gen; | |||
@@ -183,7 +183,9 @@ namespace opr { | |||
} | |||
MGB_REG_OPR_SHALLOW_COPY(ParamPackConcat, opr_shallow_copy_param_pack_concat); | |||
MGB_SEREG_OPR(RelayoutFormat, 1); | |||
using RelayoutFormatV1 = opr::RelayoutFormat; | |||
MGB_SEREG_OPR(RelayoutFormatV1, 1); | |||
} // namespace opr | |||
} // namespace mgb | |||
@@ -1977,8 +1977,7 @@ TEST(TestTensorRTReplace, FuseConvAdd) { | |||
MGB_ASSERT_TENSOR_NEAR(outputs[0], outputs[2], 1e-3); | |||
MGB_ASSERT_TENSOR_NEAR(outputs[1], outputs[3], 1e-3); | |||
} | |||
//! close for cu111 ci, reopen it when bug fixed | |||
#if CUDA_VERSION < 11000 | |||
TEST(TestTensorRTReplace, FuseConvAddNchw2nchw4) { | |||
REQUIRE_GPU(1); | |||
auto cn = CompNode::load("gpu0"); | |||
@@ -2044,7 +2043,7 @@ TEST(TestTensorRTReplace, FuseConvAddNchw2nchw4) { | |||
MGB_ASSERT_TENSOR_NEAR(outputs[0], outputs[1], 1e-3); | |||
} | |||
#endif | |||
#endif // MGB_ENABLE_TENSOR_RT | |||