Browse Source

ci(mge): remove blank line for windows doctest

GitOrigin-RevId: 09cf6518e8
release-1.1
Megvii Engine Team 4 years ago
parent
commit
c89209450d
2 changed files with 19 additions and 55 deletions
  1. +12
    -29
      imperative/python/megengine/functional/tensor.py
  2. +7
    -26
      imperative/python/megengine/module/embedding.py

+ 12
- 29
imperative/python/megengine/functional/tensor.py View File

@@ -208,25 +208,16 @@ def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor:
from megengine import tensor
import megengine.functional as F

data = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3))
out = F.broadcast_to(data, (4, 2, 3))
data = tensor(np.arange(0, 3, dtype=np.float32).reshape(3))
out = F.broadcast_to(data, (2, 3))
print(out.numpy())

Outputs:

.. testoutput::

[[[0. 1. 2.]
[3. 4. 5.]]

[[0. 1. 2.]
[3. 4. 5.]]

[[0. 1. 2.]
[3. 4. 5.]]

[[0. 1. 2.]
[3. 4. 5.]]]
[[0. 1. 2.]
[0. 1. 2.]]

"""
return _broadcast(inp, shape)
@@ -298,8 +289,8 @@ def stack(inps, axis=0, device=None):
from megengine import tensor
import megengine.functional as F

x1 = tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3)))
x2 = tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3)))
x1 = tensor(np.arange(0, 3, dtype=np.float32).reshape((3)))
x2 = tensor(np.arange(6, 9, dtype=np.float32).reshape((3)))
out = F.stack([x1, x2], axis=0)
print(out.numpy())

@@ -307,11 +298,8 @@ def stack(inps, axis=0, device=None):

.. testoutput::

[[[ 0. 1. 2.]
[ 3. 4. 5.]]

[[ 6. 7. 8.]
[ 9. 10. 11.]]]
[[0. 1. 2.]
[6. 7. 8.]]

"""
if len(inps) > 0 and not isinstance(inps[0].shape, inps[0].__class__):
@@ -751,21 +739,16 @@ def reshape(inp: Tensor, target_shape: Iterable[int]) -> Tensor:
from megengine import tensor
import megengine.functional as F
x = tensor(np.arange(12, dtype=np.int32))
out = F.reshape(x, (3, 2, 2))
out = F.reshape(x, (3, 4))
print(out.numpy())

Outputs:

.. testoutput::

[[[ 0 1]
[ 2 3]]

[[ 4 5]
[ 6 7]]

[[ 8 9]
[10 11]]]
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]

"""
return inp.reshape(target_shape)


+ 7
- 26
imperative/python/megengine/module/embedding.py View File

@@ -38,10 +38,10 @@ class Embedding(Module):
import numpy as np
import megengine as mge
import megengine.module as M
weight = mge.tensor(np.array([(1.2,2.3,3.4,4.5,5.6),(0.1,1.1,2.1,3.1,4.1)], dtype=np.float32))
data = mge.tensor(np.array([(0,1,1),(1,0,1),(0,0,1)], dtype=np.int32))
weight = mge.tensor(np.array([(1.2,2.3,3.4,4.5,5.6)], dtype=np.float32))
data = mge.tensor(np.array([(0,0)], dtype=np.int32))

embedding = M.Embedding(2, 5, initial_weight=weight)
embedding = M.Embedding(1, 5, initial_weight=weight)
output = embedding(data)
with np.printoptions(precision=6):
print(output.numpy())
@@ -51,16 +51,7 @@ class Embedding(Module):
.. testoutput::

[[[1.2 2.3 3.4 4.5 5.6]
[0.1 1.1 2.1 3.1 4.1]
[0.1 1.1 2.1 3.1 4.1]]

[[0.1 1.1 2.1 3.1 4.1]
[1.2 2.3 3.4 4.5 5.6]
[0.1 1.1 2.1 3.1 4.1]]

[[1.2 2.3 3.4 4.5 5.6]
[1.2 2.3 3.4 4.5 5.6]
[0.1 1.1 2.1 3.1 4.1]]]
[1.2 2.3 3.4 4.5 5.6]]]

"""

@@ -134,8 +125,8 @@ class Embedding(Module):
import numpy as np
import megengine as mge
import megengine.module as M
weight = mge.tensor(np.array([(1.2,2.3,3.4,4.5,5.6),(0.1,1.1,2.1,3.1,4.1)], dtype=np.float32))
data = mge.tensor(np.array([(0,1,1),(1,0,1),(0,0,1)], dtype=np.int32))
weight = mge.tensor(np.array([(1.2,2.3,3.4,4.5,5.6)], dtype=np.float32))
data = mge.tensor(np.array([(0,0)], dtype=np.int32))

embedding = M.Embedding.from_pretrained(weight, freeze=False)
output = embedding(data)
@@ -146,17 +137,7 @@ class Embedding(Module):
.. testoutput::

[[[1.2 2.3 3.4 4.5 5.6]
[0.1 1.1 2.1 3.1 4.1]
[0.1 1.1 2.1 3.1 4.1]]

[[0.1 1.1 2.1 3.1 4.1]
[1.2 2.3 3.4 4.5 5.6]
[0.1 1.1 2.1 3.1 4.1]]

[[1.2 2.3 3.4 4.5 5.6]
[1.2 2.3 3.4 4.5 5.6]
[0.1 1.1 2.1 3.1 4.1]]]

[1.2 2.3 3.4 4.5 5.6]]]

"""
embeddings_shape = embeddings.shape


Loading…
Cancel
Save