|
|
@@ -1,54 +0,0 @@ |
|
|
|
# -*- coding: utf-8 -*- |
|
|
|
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") |
|
|
|
# |
|
|
|
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved. |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, |
|
|
|
# software distributed under the License is distributed on an |
|
|
|
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
import io |
|
|
|
import os |
|
|
|
import platform |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
import pytest |
|
|
|
|
|
|
|
import megengine as mge |
|
|
|
import megengine.utils.comp_graph_tools as cgtools |
|
|
|
from megengine import Tensor |
|
|
|
from megengine.distributed.helper import get_device_count_by_fork |
|
|
|
from megengine.jit import trace |
|
|
|
from megengine.module import Module |
|
|
|
from megengine.module.external import TensorrtRuntimeSubgraph |
|
|
|
|
|
|
|
|
|
|
|
class MyModule(Module): |
|
|
|
def __init__(self, data): |
|
|
|
from megengine.module.external import CambriconSubgraph |
|
|
|
|
|
|
|
super().__init__() |
|
|
|
self.cambricon = CambriconSubgraph(data, "subnet0", True) |
|
|
|
|
|
|
|
def forward(self, inputs): |
|
|
|
out = self.cambricon(inputs) |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skip(reason="cambricon unimplemented") |
|
|
|
def test_cambricon_module(): |
|
|
|
model = "CambriconRuntimeOprTest.MutableBatchSize.mlu" |
|
|
|
model = os.path.join(os.path.dirname(__file__), model) |
|
|
|
with open(model, "rb") as f: |
|
|
|
data = f.read() |
|
|
|
m = MyModule(data) |
|
|
|
inp = Tensor( |
|
|
|
np.random.normal((1, 64, 32, 32)).astype(np.float16), device="cambricon0" |
|
|
|
) |
|
|
|
|
|
|
|
def inference(inps): |
|
|
|
pred = m(inps) |
|
|
|
return pred |
|
|
|
|
|
|
|
pred = inference([inp]) |
|
|
|
|
|
|
|
|