@@ -6,7 +6,8 @@ | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
@@ -156,7 +157,6 @@ private: | |||
uint32_t m_tile_size; | |||
}; | |||
class ConvBiasImpl::AlgoF32Direct final : public AlgoBase { | |||
SmallVector<NCBKern> get_kimpls(const NCBKernSizeParam& param) const; | |||
bool m_large_group; | |||
@@ -217,6 +217,24 @@ public: | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
}; | |||
class ConvBiasImpl::AlgoF32DirectStride2NCHWNCHW44 final : public AlgoBase { | |||
SmallVector<NCBKern> get_kimpls(const NCBKernSizeParam& param) const; | |||
public: | |||
AlgoF32DirectStride2NCHWNCHW44() {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { return "F32_CONV_NCHW_NCHW44"; } | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
}; | |||
} // namespace arm_common | |||
} // namespace megdnn | |||
@@ -0,0 +1,317 @@ | |||
/** | |||
* \file | |||
dnn/src/arm_common/conv_bias/fp32/f32_direct_stride2_nchw_nchw44_algo.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express | |||
* or implied. | |||
*/ | |||
#include "megdnn/oprs.h" | |||
#include "src/arm_common/conv_bias/fp32/algos.h" | |||
#include "src/arm_common/conv_bias/fp32/f32_direct_stride2_nchw_nchw44_kern.h" | |||
#include "src/arm_common/conv_bias/fp32/strategy.h" | |||
#include "src/arm_common/elemwise_op.h" | |||
#include "src/common/opr_delegate.h" | |||
#include "midout.h" | |||
using namespace megdnn; | |||
using namespace arm_common; | |||
using conv_fun = std::function<void( | |||
WorkspaceBundle bundle, const ConvBiasImpl::NCBKernParam& kern_param, | |||
const ConvBiasImpl::NCBKernIndex& ncb_index, | |||
const CpuNDRange& workspace_ids, const CpuNDRange& ncb_range)>; | |||
MIDOUT_DECL(megdnn_arm_common_conv_bias_fp32_nchw_nchw44_stride2) | |||
namespace { | |||
static inline int block_helper(const int nthread, const int amount, | |||
const int per_unit_bytes) { | |||
MEGDNN_MARK_USED_VAR(per_unit_bytes); | |||
const int block_per_thread = div_ceil(amount, nthread); | |||
const int best_block = 16; | |||
const int max_block_num = div_ceil(block_per_thread, best_block); | |||
const int min_block_num = std::max(max_block_num - 1, 1); | |||
const int max_block = div_ceil(block_per_thread, max_block_num); | |||
const int min_block = div_ceil(block_per_thread, min_block_num); | |||
const int max_loss = std::abs(max_block_num * max_block - block_per_thread); | |||
const int min_loss = std::abs(min_block_num * min_block - block_per_thread); | |||
int block = max_loss > min_loss ? min_block : max_block; | |||
return block; | |||
} | |||
static inline size_t get_perthread_cache_bytes(const int ic, const int ih2, | |||
const int iw2) { | |||
// border_size is used to avoid read illegal memory | |||
int border_size = 64 * 2; | |||
return ic * ih2 * iw2 * sizeof(float) + border_size; | |||
} | |||
static void get_rectified_size( | |||
const megdnn::fallback::ConvBiasImpl::NCBKernSizeParam& param, int& ih2, | |||
int& iw2, int& oh2, int& ow2) { | |||
int iw = param.isz[1]; | |||
int oh = param.osz[0]; | |||
int ow = param.osz[1]; | |||
oh2 = oh; | |||
ow2 = ow; | |||
constexpr int cacheline = 64 / sizeof(float); | |||
int block_oh = block_helper(param.nr_threads, oh, 0); | |||
auto&& fm = param.filter_meta; | |||
const int stride_h = static_cast<int>(fm.stride[0]); | |||
const int filter_h = static_cast<int>(fm.spatial[0]); | |||
ih2 = block_oh * stride_h + filter_h - stride_h; | |||
iw2 = round_up(iw + 2 * static_cast<int>(fm.padding[1]), cacheline); | |||
} | |||
static WorkspaceBundle get_bundle(const ConvBiasImpl::NCBKernSizeParam& param) { | |||
auto&& fm = param.filter_meta; | |||
int group = fm.group; | |||
int ic = fm.icpg; | |||
int oc = fm.ocpg; | |||
int fh = fm.spatial[0]; | |||
int fw = fm.spatial[1]; | |||
int ih2, iw2, oh2, ow2; | |||
get_rectified_size(param, ih2, iw2, oh2, ow2); | |||
int oh_block = block_helper(param.nr_threads, oh2, 0); | |||
megdnn_assert(oh_block != 0, "oh_block!=0"); | |||
size_t src_size = get_perthread_cache_bytes(ic, ih2, iw2); | |||
size_t weight_size = group * oc * ic * fh * fw * sizeof(float); | |||
return {nullptr, {src_size * param.nr_threads, weight_size}}; | |||
}; | |||
static inline void copy_pad_src(float* sptr_base, const float* sptr_origin, | |||
int ph, int pw, int pad_right, int ih, int iw, | |||
int iw2, int pad_top, int pad_bottom, int ic, | |||
int ic_stride) { | |||
MEGDNN_MARK_USED_VAR(ph); | |||
rep(ic_idx, ic) { | |||
const float* sptr = sptr_origin + ic_idx * ic_stride; | |||
memset(sptr_base, 0, sizeof(float) * iw2 * pad_top); | |||
sptr_base += iw2 * pad_top; | |||
rep(ih_idx, ih) { | |||
memset(sptr_base, 0, sizeof(float) * pw); | |||
sptr_base += pw; | |||
memcpy(sptr_base, sptr, sizeof(float) * iw); | |||
sptr_base += iw; | |||
sptr += iw; | |||
memset(sptr_base, 0, sizeof(float) * pad_right); | |||
sptr_base += pad_right; | |||
} | |||
memset(sptr_base, 0, sizeof(float) * iw2 * pad_bottom); | |||
sptr_base += iw2 * pad_bottom; | |||
} | |||
} | |||
static void pack_weight(WorkspaceBundle bundle, | |||
const ConvBiasImpl::NCBKernParam& kern_param, | |||
const ConvBiasImpl::NCBKernIndex& ncb_index) { | |||
bundle.set(kern_param.workspace_ptr); | |||
const int group_id = ncb_index.ndrange_id[0]; | |||
int fh = kern_param.filter_meta.spatial[0]; | |||
int fw = kern_param.filter_meta.spatial[1]; | |||
int oc = kern_param.filter_meta.ocpg; | |||
int ic = kern_param.filter_meta.icpg; | |||
int oc_block = oc; | |||
int oc_idx = 0; | |||
const float* fptr = | |||
kern_param.filter<dt_float32>(group_id) + oc_idx * fh * fw * ic; | |||
auto packed_weight = reinterpret_cast<float*>(bundle.get(1)) + | |||
group_id * oc * ic * fh * fw + oc_idx * ic * fh * fw; | |||
conv_bias::pack_weight_fp32_nchw_nchw44(fptr, packed_weight, oc_block, fh, | |||
fw, ic); | |||
} | |||
template <size_t filter, BiasMode bias_mode, typename Op> | |||
static void do_conv_kern(WorkspaceBundle bundle, | |||
const ConvBiasImpl::NCBKernParam& kern_param, | |||
const ConvBiasImpl::NCBKernIndex& ncb_index, | |||
const CpuNDRange&, const CpuNDRange&) { | |||
const int oh = kern_param.osz[0]; | |||
const int ow = kern_param.osz[1]; | |||
const int fh = kern_param.filter_meta.spatial[0]; | |||
const int fw = kern_param.filter_meta.spatial[1]; | |||
const int ic = kern_param.filter_meta.icpg; | |||
const int oc = kern_param.filter_meta.ocpg; | |||
const int ih = kern_param.isz[0]; | |||
const int iw = kern_param.isz[1]; | |||
const int stride_h = kern_param.filter_meta.stride[0]; | |||
const int ph = kern_param.filter_meta.padding[0]; | |||
const int pw = kern_param.filter_meta.padding[1]; | |||
int ih2 = 0; | |||
int iw2 = 0; | |||
int oh2 = 0; | |||
int ow2 = 0; | |||
get_rectified_size(kern_param, ih2, iw2, oh2, ow2); | |||
bundle.set(kern_param.workspace_ptr); | |||
constexpr int pack_c = 4; | |||
const int batch_id = ncb_index.ndrange_id[0]; | |||
const int group_id = ncb_index.ndrange_id[1]; | |||
int oc_idx = 0; | |||
int oc_block = oc; | |||
int oh_block = block_helper(kern_param.nr_threads, oh2, 0); | |||
const int oh_idx = ncb_index.ndrange_id[2]; | |||
const int oh_block_real = std::min(oh - oh_idx * oh_block, oh_block); | |||
const int ih_real = oh_block_real * stride_h + fh - stride_h; | |||
const int src_top_pad = std::max(ph - oh_idx * oh_block * stride_h, 0); | |||
const int src_bottom_pad = std::max( | |||
(oh_idx * oh_block + oh_block_real - 1) * stride_h + fh - ih - ph, | |||
0); | |||
const int remain_right_pad = std::max(iw2 - iw - pw, 0); | |||
const int src_offset = std::max(oh_idx * oh_block * stride_h - ph, 0) * iw; | |||
const float* origin_sptr = static_cast<const float*>(kern_param.src<float>( | |||
batch_id, group_id, 0, 1, 1)) + | |||
src_offset; | |||
const size_t src_size = get_perthread_cache_bytes(ic, ih2, iw2); | |||
float* sptr = reinterpret_cast<float*>((int8_t*)bundle.get(0) + | |||
ncb_index.thread_id * src_size); | |||
copy_pad_src(sptr, origin_sptr, ph, pw, remain_right_pad, | |||
ih_real - src_top_pad - src_bottom_pad, iw, iw2, src_top_pad, | |||
src_bottom_pad, ic, ih * iw); | |||
// pack weight | |||
auto packed_weight = reinterpret_cast<float*>(bundle.get(1)) + | |||
group_id * oc * ic * fh * fw + oc_idx * ic * fh * fw; | |||
// get param | |||
float_t* dst = kern_param.dst<float_t>(batch_id, group_id) + | |||
oh_idx * oh_block * ow * pack_c; | |||
const float* bptr = | |||
kern_param.bias<dt_float32>(batch_id, group_id) + oc_idx; | |||
Op op; | |||
#define KERN1_NCHW44_CONV(filter) \ | |||
conv_bias::conv_direct_stride2_##filter##x##filter##_fp32_nchw_nchw44< \ | |||
\ | |||
bias_mode, Op>(sptr, packed_weight, bptr, nullptr, dst, oc_block, \ | |||
ic, ih_real, iw2, oh, oh_block_real, ow, op, ph, \ | |||
pw) | |||
DISPATCH_FILTER(filter, KERN1_NCHW44_CONV); | |||
#undef KERN1_NCHW44_CONV | |||
} | |||
} // namespace | |||
/* ===================== stride2 algo ===================== */ | |||
bool ConvBiasImpl::AlgoF32DirectStride2NCHWNCHW44::usable( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy) const { | |||
auto&& fm = param.filter_meta; | |||
auto fh = fm.spatial[0]; | |||
int oc = fm.ocpg; | |||
bool ok_type = ((param.src_type.enumv() == DTypeEnum::Float32 && | |||
param.filter_type.enumv() == DTypeEnum::Float32 && | |||
(param.dst_type.enumv() == DTypeEnum::Float32))) && | |||
(fm.format == param::Convolution::Format::NCHW44); | |||
bool ok_src_dst = fm.icpg < 4 && (oc % 4 == 0 && oc >= 4) && fm.group == 1; | |||
bool ok_filter = fm.spatial_ndim == 2 && fh == fm.spatial[1] && | |||
(fh == 3 || fh == 5 || fh == 7); | |||
bool ok_slide = fm.dilation[0] == 1 && fm.dilation[1] == 1 && | |||
fm.stride[0] == 2 && fm.stride[1] == 2; | |||
bool ok_conv = !fm.should_flip && param.bias_mode != BiasMode::BIAS; | |||
bool avaible = ok_type && ok_src_dst && ok_filter && ok_slide && ok_conv; | |||
return avaible; | |||
} | |||
size_t ConvBiasImpl::AlgoF32DirectStride2NCHWNCHW44::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
return get_bundle(param).total_size_in_bytes(); | |||
} | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoF32DirectStride2NCHWNCHW44::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
auto fm = param.filter_meta; | |||
const int batch = param.n; | |||
const int group = fm.group; | |||
WorkspaceBundle wbundle = get_bundle(param); | |||
conv_fun do_conv_fun = nullptr; | |||
// NOTE: remain_w is not used to gen hash of midout for compatible with | |||
// shape runtime | |||
#define DO_CONV_KERN_FUN(filter, bias_mode, op) \ | |||
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp32_nchw_nchw44_stride2, \ | |||
midout_iv(#filter #bias_mode #op##_hash)) { \ | |||
do_conv_fun = do_conv_kern<filter, bias_mode, op>; \ | |||
} \ | |||
MIDOUT_END(); | |||
#define GET_OP_PARAM(filter, bias_mode) \ | |||
switch (param.nonlineMode) { \ | |||
case param::ConvBias::NonlineMode::IDENTITY: \ | |||
DO_CONV_KERN_FUN(filter, bias_mode, NoneOp<dt_float32>) \ | |||
break; \ | |||
case param::ConvBias::NonlineMode::RELU: \ | |||
DO_CONV_KERN_FUN(filter, bias_mode, ReluOp<dt_float32>) \ | |||
break; \ | |||
case param::ConvBias::NonlineMode::H_SWISH: \ | |||
DO_CONV_KERN_FUN(filter, bias_mode, HSwishOp<dt_float32>) \ | |||
break; \ | |||
default: \ | |||
megdnn_assert(0); \ | |||
break; \ | |||
} | |||
#define GET_BIAS_MODE_PARAM(filter) \ | |||
switch (param.bias_mode) { \ | |||
case BiasMode::NO_BIAS: \ | |||
GET_OP_PARAM(filter, BiasMode::NO_BIAS) \ | |||
break; \ | |||
case BiasMode::BROADCAST_CHANNEL_BIAS: \ | |||
GET_OP_PARAM(filter, BiasMode::BROADCAST_CHANNEL_BIAS) \ | |||
break; \ | |||
default: \ | |||
megdnn_assert(0); \ | |||
break; \ | |||
} | |||
#define DISPATCH_CONV_KERN() \ | |||
switch (param.filter_meta.spatial[0]) { \ | |||
case 3: \ | |||
GET_BIAS_MODE_PARAM(3) \ | |||
break; \ | |||
case 5: \ | |||
GET_BIAS_MODE_PARAM(5) \ | |||
break; \ | |||
case 7: \ | |||
GET_BIAS_MODE_PARAM(7) \ | |||
break; \ | |||
default: \ | |||
megdnn_assert(0); \ | |||
break; \ | |||
} | |||
DISPATCH_CONV_KERN(); | |||
#undef DO_CONV_KERN_FUN | |||
#undef GET_REMAIN_W_PARAM | |||
#undef GET_OP_PARAM | |||
#undef GET_BIAS_MODE_PARAM | |||
#undef DISPATCH_CONV_KERN | |||
megdnn_assert(do_conv_fun); | |||
SmallVector<ConvBiasImpl::NCBKern> ret_kerns; | |||
WorkspaceBundle bundle = wbundle; | |||
int oh = param.osz[0]; | |||
int oh_block = block_helper(param.nr_threads, oh, 0); | |||
auto do_pack_weight = [bundle](const NCBKernParam& kern_param, | |||
const NCBKernIndex& ncb_index) { | |||
pack_weight(bundle, kern_param, ncb_index); | |||
}; | |||
ret_kerns.push_back({do_pack_weight, {static_cast<size_t>(group)}}); | |||
CpuNDRange ncb_range = {static_cast<size_t>(batch), | |||
static_cast<size_t>(group), | |||
static_cast<size_t>(div_ceil(oh, oh_block))}; | |||
auto do_conv = [bundle, do_conv_fun, ncb_range]( | |||
const NCBKernParam& kern_param, | |||
const NCBKernIndex& ncb_index) { | |||
do_conv_fun(bundle, kern_param, ncb_index, ncb_index.ndrange_id, | |||
ncb_range); | |||
}; | |||
ret_kerns.push_back({do_conv, ncb_range}); | |||
return ret_kerns; | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,430 @@ | |||
/** | |||
* \file | |||
* dnn/src/arm_common/conv_bias/fp32/f32_direct_stride2_nchw_nchw44_kern.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/arm_common/conv_bias/fp32/f32_direct_stride2_nchw_nchw44_kern.h" | |||
#include "src/arm_common/conv_bias/intrinsic_helper.h" | |||
#include "src/arm_common/elemwise_op.h" | |||
#include "src/arm_common/simd_macro/marm_neon.h" | |||
#include "src/common/unroll_macro.h" | |||
#include "src/common/utils.h" | |||
#include "src/fallback/conv_bias/common.h" | |||
using namespace megdnn; | |||
using namespace arm_common; | |||
namespace { | |||
template <int src_idx, int weight_idx, int c_dim, typename Func, typename T, | |||
typename T2, typename T3, typename T4> | |||
struct ShiftCalHelper { | |||
static void impl(T& c, T2& src, T3& weight); | |||
}; | |||
template <int src_idx, int weight_idx, typename Func, typename T, typename T2, | |||
typename T3, typename T4> | |||
struct ShiftCalHelper<src_idx, weight_idx, 2, Func, T, T2, T3, T4> { | |||
static void impl(T& c, T2& src, T3& weight) { | |||
constexpr int stride = 2; | |||
#define cb(step) \ | |||
c[0][step] = Func::template impl<(step * stride + src_idx) % 4>( \ | |||
c[0][step], weight[0][weight_idx], \ | |||
src[(step * stride + src_idx) / 4]); \ | |||
c[1][step] = Func::template impl<(step * stride + src_idx) % 4>( \ | |||
c[1][step], weight[1][weight_idx], \ | |||
src[(step * stride + src_idx) / 4]); | |||
UNROLL_CALL_RAW(8, cb); | |||
#undef cb | |||
} | |||
}; | |||
template <int src_idx, int weight_idx, typename Func, typename T, typename T2, | |||
typename T3, typename T4> | |||
struct ShiftCalHelper<src_idx, weight_idx, 1, Func, T, T2, T3, T4> { | |||
static void impl(T& c, T2& src, T3& weight) { | |||
constexpr int stride = 2; | |||
#define cb(step) \ | |||
c[0][step] = Func::template impl<(step * stride + src_idx) % 4>( \ | |||
c[0][step], weight[0][weight_idx], \ | |||
src[(step * stride + src_idx) / 4]); | |||
UNROLL_CALL_RAW(8, cb); | |||
#undef cb | |||
} | |||
}; | |||
template <int src_idx, int weight_idx, int c_dim, typename FUNC, typename T, | |||
typename T2, typename T3> | |||
inline void cal_helper(T& c, T2& src, T3& weight) { | |||
ShiftCalHelper<src_idx, weight_idx, c_dim, FUNC, T, T2, T3, int>::impl( | |||
c, src, weight); | |||
}; | |||
template <int oc> | |||
struct OCHelper { | |||
public: | |||
static const int val = -1; | |||
}; | |||
template <> | |||
struct OCHelper<4> { | |||
public: | |||
static const int val = 1; | |||
}; | |||
template <> | |||
struct OCHelper<8> { | |||
public: | |||
static const int val = 2; | |||
}; | |||
/** | |||
* oc8_ow8(m = 8, n = 8) and oc4_ow8(m = 4, n = 8) gemm like kernel | |||
* */ | |||
template <BiasMode bias_mode, typename Op, int remain_w, int filter_size, | |||
int oc_block> | |||
struct KerNeonXXs2NchwNchw44FP32 { | |||
static void impl(const float32_t* src_ptr, const float32_t* weight_ptr, | |||
const float32_t* bias_ptr, float32_t* dst_ptr, int ic, | |||
int ih, int iw, int ld_dst_oc, const Op& op); | |||
}; | |||
template <BiasMode bias_mode, typename Op, int remain_w, int oc_block> | |||
struct KerNeonXXs2NchwNchw44FP32<bias_mode, Op, remain_w, 7, oc_block> { | |||
static void impl(const float32_t* src_ptr, const float32_t* weight_ptr, | |||
const float32_t* bias_ptr, float32_t* dst_ptr, int ic, | |||
int ih, int iw, int ld_dst_oc, const Op& op) { | |||
constexpr int loop_ic_step = 1; | |||
constexpr int filter_size = 7; | |||
constexpr int oc_step = 4; | |||
constexpr int simd_len = 4; | |||
constexpr int src_reg_size = 6; | |||
constexpr int ld_weight_fw = oc_step * filter_size; | |||
const int ld_weight_oc = oc_step * filter_size * filter_size * ic; | |||
const int ld_weight_ic = oc_step * filter_size * filter_size; | |||
const int ld_src_ic = ih * iw; | |||
constexpr int c_dim = OCHelper<oc_block>::val; | |||
float32x4_t c[c_dim][8]; | |||
init_ocx_ow8<c_dim, bias_mode>(c, bias_ptr, oc_step); | |||
for (int ic_idx = 0; ic_idx < ic; ic_idx += loop_ic_step) { | |||
float32x4_t src[src_reg_size]; | |||
float32x4_t weight[c_dim][filter_size]; | |||
#define KERNEL_CB(step) \ | |||
load_helper<src_reg_size, 0, simd_len, 0, Vld1q_f32>( \ | |||
src, src_ptr + step * iw, 0); \ | |||
load_helper<filter_size, 0, oc_step, c_dim, Vld1q_f32>( \ | |||
weight, weight_ptr + step * ld_weight_fw, ld_weight_oc); \ | |||
cal_helper<0, 0, c_dim, Vfmaq_laneq_f32>(c, src, weight); \ | |||
cal_helper<1, 1, c_dim, Vfmaq_laneq_f32>(c, src, weight); \ | |||
cal_helper<2, 2, c_dim, Vfmaq_laneq_f32>(c, src, weight); \ | |||
cal_helper<3, 3, c_dim, Vfmaq_laneq_f32>(c, src, weight); \ | |||
cal_helper<4, 4, c_dim, Vfmaq_laneq_f32>(c, src, weight); \ | |||
cal_helper<5, 5, c_dim, Vfmaq_laneq_f32>(c, src, weight); \ | |||
cal_helper<6, 6, c_dim, Vfmaq_laneq_f32>(c, src, weight); | |||
UNROLL_CALL_RAW(7, KERNEL_CB) | |||
#undef KERNEL_CB | |||
src_ptr += ld_src_ic; | |||
weight_ptr += ld_weight_ic; | |||
} | |||
store_ocx_ow8_remain_static<c_dim, remain_w, Op>(c, op, dst_ptr, | |||
ld_dst_oc); | |||
} | |||
}; | |||
template <BiasMode bias_mode, typename Op, int remain_w, int oc_block> | |||
struct KerNeonXXs2NchwNchw44FP32<bias_mode, Op, remain_w, 5, oc_block> { | |||
static void impl(const float32_t* src_ptr, const float32_t* weight_ptr, | |||
const float32_t* bias_ptr, float32_t* dst_ptr, int ic, | |||
int ih, int iw, int ld_dst_oc, const Op& op) { | |||
constexpr int loop_ic_step = 1; | |||
constexpr int filter_size = 5; | |||
constexpr int oc_step = 4; | |||
constexpr int simd_len = 4; | |||
constexpr int src_reg_size = 5; | |||
constexpr int ld_weight_fw = oc_step * filter_size; | |||
const int ld_weight_oc = oc_step * filter_size * filter_size * ic; | |||
const int ld_weight_ic = oc_step * filter_size * filter_size; | |||
const int ld_src_ic = ih * iw; | |||
constexpr int c_dim = OCHelper<oc_block>::val; | |||
float32x4_t c[c_dim][8]; | |||
init_ocx_ow8<c_dim, bias_mode>(c, bias_ptr, oc_step); | |||
for (int ic_idx = 0; ic_idx < ic; ic_idx += loop_ic_step) { | |||
float32x4_t src[src_reg_size]; | |||
float32x4_t weight[c_dim][filter_size]; | |||
#define KERNEL_CB(step) \ | |||
load_helper<src_reg_size, 0, simd_len, 0, Vld1q_f32>( \ | |||
src, src_ptr + step * iw, 0); \ | |||
load_helper<filter_size, 0, oc_step, c_dim, Vld1q_f32>( \ | |||
weight, weight_ptr + step * ld_weight_fw, ld_weight_oc); \ | |||
cal_helper<0, 0, c_dim, Vfmaq_laneq_f32>(c, src, weight); \ | |||
cal_helper<1, 1, c_dim, Vfmaq_laneq_f32>(c, src, weight); \ | |||
cal_helper<2, 2, c_dim, Vfmaq_laneq_f32>(c, src, weight); \ | |||
cal_helper<3, 3, c_dim, Vfmaq_laneq_f32>(c, src, weight); \ | |||
cal_helper<4, 4, c_dim, Vfmaq_laneq_f32>(c, src, weight); | |||
UNROLL_CALL_RAW(5, KERNEL_CB) | |||
#undef KERNEL_CB | |||
src_ptr += ld_src_ic; | |||
weight_ptr += ld_weight_ic; | |||
} | |||
store_ocx_ow8_remain_static<c_dim, remain_w, Op>(c, op, dst_ptr, | |||
ld_dst_oc); | |||
} | |||
}; | |||
template <BiasMode bias_mode, typename Op, int remain_w, int oc_block> | |||
struct KerNeonXXs2NchwNchw44FP32<bias_mode, Op, remain_w, 3, oc_block> { | |||
static void impl(const float32_t* src_ptr, const float32_t* weight_ptr, | |||
const float32_t* bias_ptr, float32_t* dst_ptr, int ic, | |||
int ih, int iw, int ld_dst_oc, const Op& op) { | |||
constexpr int loop_ic_step = 1; | |||
constexpr int filter_size = 3; | |||
constexpr int oc_step = 4; | |||
constexpr int simd_len = 4; | |||
constexpr int src_reg_size = 5; | |||
constexpr int ld_weight_fw = oc_step * filter_size; | |||
const int ld_weight_oc = oc_step * filter_size * filter_size * ic; | |||
const int ld_weight_ic = oc_step * filter_size * filter_size; | |||
const int ld_src_ic = ih * iw; | |||
constexpr int c_dim = OCHelper<oc_block>::val; | |||
float32x4_t c[c_dim][8]; | |||
init_ocx_ow8<c_dim, bias_mode>(c, bias_ptr, oc_step); | |||
for (int ic_idx = 0; ic_idx < ic; ic_idx += loop_ic_step) { | |||
float32x4_t src[src_reg_size]; | |||
float32x4_t weight[c_dim][filter_size]; | |||
// row 0 | |||
load_helper<5, 0, simd_len, 0, Vld1q_f32>(src, src_ptr, 0); | |||
load_helper<3, 0, oc_step, c_dim, Vld1q_f32>(weight, weight_ptr, | |||
ld_weight_oc); | |||
cal_helper<0, 0, c_dim, Vfmaq_laneq_f32>(c, src, weight); | |||
cal_helper<1, 1, c_dim, Vfmaq_laneq_f32>(c, src, weight); | |||
cal_helper<2, 2, c_dim, Vfmaq_laneq_f32>(c, src, weight); | |||
// row 1 | |||
load_helper<5, 0, simd_len, 0, Vld1q_f32>(src, src_ptr + iw, 0); | |||
load_helper<3, 0, oc_step, c_dim, Vld1q_f32>( | |||
weight, weight_ptr + 1 * ld_weight_fw, ld_weight_oc); | |||
cal_helper<0, 0, c_dim, Vfmaq_laneq_f32>(c, src, weight); | |||
cal_helper<1, 1, c_dim, Vfmaq_laneq_f32>(c, src, weight); | |||
cal_helper<2, 2, c_dim, Vfmaq_laneq_f32>(c, src, weight); | |||
// row 2 | |||
load_helper<5, 0, simd_len, 0, Vld1q_f32>(src, src_ptr + 2 * iw, 0); | |||
load_helper<3, 0, oc_step, c_dim, Vld1q_f32>( | |||
weight, weight_ptr + 2 * ld_weight_fw, ld_weight_oc); | |||
cal_helper<0, 0, c_dim, Vfmaq_laneq_f32>(c, src, weight); | |||
cal_helper<1, 1, c_dim, Vfmaq_laneq_f32>(c, src, weight); | |||
cal_helper<2, 2, c_dim, Vfmaq_laneq_f32>(c, src, weight); | |||
src_ptr += ld_src_ic; | |||
weight_ptr += ld_weight_ic; | |||
} | |||
store_ocx_ow8_remain_static<c_dim, remain_w, Op>(c, op, dst_ptr, | |||
ld_dst_oc); | |||
} | |||
}; | |||
} // namespace | |||
void conv_bias::pack_weight_fp32_nchw_nchw44(const float32_t* in_ptr, | |||
float32_t* dst_ptr, const int oc, | |||
const int kh, const int kw, | |||
const int ic) { | |||
constexpr int oc_step = 4; | |||
const int filter_oc_stride = kh * kw * ic; | |||
const int filter_ic_stride = kh * kw * oc_step; | |||
for (int oc_idx = 0; oc_idx < oc; oc_idx += oc_step) { | |||
const float32_t* in_ptr_oc = in_ptr + oc_idx * filter_oc_stride; | |||
float32_t* dst_ptr_oc = dst_ptr + oc_idx * filter_oc_stride; | |||
for (int kh_idx = 0; kh_idx < kh; ++kh_idx) { | |||
for (int kw_idx = 0; kw_idx < kw; ++kw_idx) { | |||
for (int ic_idx = 0; ic_idx < ic; ++ic_idx) { | |||
float32x4_t vsrc = vld1q_f32(in_ptr_oc); | |||
vst1q_f32(dst_ptr_oc + ic_idx * filter_ic_stride, vsrc); | |||
in_ptr_oc += oc_step; | |||
} | |||
dst_ptr_oc += oc_step; | |||
} | |||
} | |||
} | |||
} | |||
template <BiasMode bias_mode, typename Op, int filter_size> | |||
static void conv_direct_stride2_fp32_nchw_nchw44( | |||
const float32_t* src, const float32_t* filter, const float32_t* bias, | |||
float32_t*, float32_t* dst, const int oc, const int ic, const int ih, | |||
const int iw, const int oh, const int oh_block, const int ow, | |||
const Op& op, const int, const int) { | |||
constexpr int fh = filter_size; | |||
constexpr int fw = filter_size; | |||
constexpr int ic_step = 1; | |||
constexpr int big_oc_step = 8; | |||
constexpr int oc_step = 4; | |||
constexpr int ih_step = 1; | |||
constexpr int oh_step = 1; | |||
constexpr int ow_step = 8; | |||
constexpr int stride_h = 2; | |||
constexpr int stride_w = 2; | |||
constexpr int pack_iw_len = 1; | |||
const int img_stride = oh * ow; | |||
const int ow_end = ow / ow_step * ow_step; | |||
const int ow_remain = ow - ow_end; | |||
const int oc_end = oc / big_oc_step * big_oc_step; | |||
const int oc_remain = oc - oc_end; | |||
const int ld_dst_oc = oc_step * img_stride; | |||
using remain_fun = std::function<void( | |||
const float32_t* src_ptr, const float32_t* weight_ptr, | |||
const float32_t* bias_ptr, float32_t* dst_ptr, int ic, int ih, | |||
int iw, int ld_dst_oc, const Op& op)>; | |||
remain_fun kern_big_oc_remain = nullptr; | |||
remain_fun kern_small_oc_remain = nullptr; | |||
switch (ow_remain) { | |||
#define cb(step) \ | |||
case step: \ | |||
kern_big_oc_remain = \ | |||
KerNeonXXs2NchwNchw44FP32<bias_mode, Op, step, filter_size, \ | |||
big_oc_step>::impl; \ | |||
kern_small_oc_remain = \ | |||
KerNeonXXs2NchwNchw44FP32<bias_mode, Op, step, filter_size, \ | |||
oc_step>::impl; \ | |||
break; | |||
UNROLL_CALL_RAW(8, cb); | |||
default: | |||
megdnn_assert(0, "no remain %d for kern", ow_remain); | |||
} | |||
for (int oc_idx = 0; oc_idx < oc_end; oc_idx += big_oc_step) { | |||
const int weight_offset = oc_idx * ic * fh * fw; | |||
for (int oh_idx = 0; oh_idx < oh_block; oh_idx += oh_step) { | |||
for (int ow_idx = 0; ow_idx < ow_end; ow_idx += ow_step) { | |||
const int src_offset = | |||
(oh_idx * stride_h * iw + ow_idx * stride_w * ih_step) * | |||
ic_step * pack_iw_len; | |||
const int dst_offset = | |||
oc_idx * img_stride + (oh_idx * ow + ow_idx) * oc_step; | |||
KerNeonXXs2NchwNchw44FP32< | |||
bias_mode, Op, 0, filter_size, | |||
big_oc_step>::impl(src + src_offset, | |||
filter + weight_offset, | |||
bias + oc_idx, dst + dst_offset, ic, | |||
ih, iw, ld_dst_oc, op); | |||
} | |||
if (ow_remain > 0) { | |||
const int src_offset = | |||
(oh_idx * stride_h * iw + ow_end * stride_w * ih_step) * | |||
ic_step * pack_iw_len; | |||
const int dst_offset = | |||
oc_idx * img_stride + (oh_idx * ow + ow_end) * oc_step; | |||
kern_big_oc_remain(src + src_offset, filter + weight_offset, | |||
bias + oc_idx, dst + dst_offset, ic, ih, iw, | |||
ld_dst_oc, op); | |||
} | |||
} | |||
} | |||
if (oc_remain > 0) { | |||
int oc_idx = oc_end; | |||
const int weight_offset = oc_idx * ic * fh * fw; | |||
for (int oh_idx = 0; oh_idx < oh_block; oh_idx += oh_step) { | |||
for (int ow_idx = 0; ow_idx < ow_end; ow_idx += ow_step) { | |||
const int src_offset = | |||
(oh_idx * stride_h * iw + ow_idx * stride_w * ih_step) * | |||
ic_step * pack_iw_len; | |||
const int dst_offset = | |||
oc_idx * img_stride + (oh_idx * ow + ow_idx) * oc_step; | |||
KerNeonXXs2NchwNchw44FP32<bias_mode, Op, 0, filter_size, | |||
oc_step>::impl(src + src_offset, | |||
filter + weight_offset, | |||
bias + oc_idx, | |||
dst + dst_offset, ic, | |||
ih, iw, ld_dst_oc, op); | |||
} | |||
if (ow_remain > 0) { | |||
const int src_offset = | |||
(oh_idx * stride_h * iw + ow_end * stride_w * ih_step) * | |||
ic_step * pack_iw_len; | |||
const int dst_offset = | |||
oc_idx * img_stride + (oh_idx * ow + ow_end) * oc_step; | |||
kern_small_oc_remain(src + src_offset, filter + weight_offset, | |||
bias + oc_idx, dst + dst_offset, ic, ih, | |||
iw, ld_dst_oc, op); | |||
} | |||
} | |||
} | |||
} | |||
#define CONSTRUCT_FUNC(filter_size) \ | |||
template <BiasMode bias_mode, typename Op> \ | |||
void conv_bias:: \ | |||
conv_direct_stride2_##filter_size##x##filter_size##_fp32_nchw_nchw44( \ | |||
const float32_t* src, const float32_t* filter, \ | |||
const float32_t* bias, float32_t* temp, float32_t* dst, \ | |||
const int oc, const int ic, const int ih, const int iw, \ | |||
const int oh, const int oh_block, const int ow, \ | |||
const Op& op, const int ph, const int pw) { \ | |||
conv_direct_stride2_fp32_nchw_nchw44<bias_mode, Op, filter_size>( \ | |||
src, filter, bias, temp, dst, oc, ic, ih, iw, oh, oh_block, \ | |||
ow, op, ph, pw); \ | |||
} | |||
CONSTRUCT_FUNC(3); | |||
CONSTRUCT_FUNC(5); | |||
CONSTRUCT_FUNC(7); | |||
#undef CONSTRUCT_FUNC | |||
template <BiasMode bias_mode, typename Op> | |||
void conv_bias::conv_direct_stride2_2x2_fp32_nchw_nchw44( | |||
const float32_t*, const float32_t*, const float32_t*, float32_t*, | |||
float32_t*, const int, const int, const int, const int, const int, | |||
const int, const int, const Op&, const int, const int) { | |||
megdnn_assert(0, "not imple nchw_nchw44 2x2s2 conv"); | |||
} | |||
#define INSTANTIATION(stride, i, bias, Op) \ | |||
template void conv_bias:: \ | |||
conv_direct_##stride##_##i##x##i##_fp32_nchw_nchw44<bias, Op>( \ | |||
const float32_t*, const float32_t*, const float32_t*, \ | |||
float32_t*, float32_t*, const int, const int, const int, \ | |||
const int, const int, const int, const int, const Op&, \ | |||
const int, const int); | |||
#define FOR_OP(stride, i, bias) \ | |||
INSTANTIATION(stride, i, bias, NoneOp<dt_float32>) \ | |||
INSTANTIATION(stride, i, bias, ReluOp<dt_float32>) \ | |||
INSTANTIATION(stride, i, bias, HSwishOp<dt_float32>) | |||
#define FOR_BIAS(stride, i) \ | |||
FOR_OP(stride, i, BiasMode::NO_BIAS) \ | |||
FOR_OP(stride, i, BiasMode::BROADCAST_CHANNEL_BIAS) | |||
#define FOR_FILTER(stride) \ | |||
FOR_BIAS(stride, 2) \ | |||
FOR_BIAS(stride, 3) \ | |||
FOR_BIAS(stride, 5) \ | |||
FOR_BIAS(stride, 7) | |||
FOR_FILTER(stride2) | |||
#undef FOR_STRIDE | |||
#undef FOR_FILTER | |||
#undef FOR_IC | |||
#undef FOR_BIAS | |||
#undef FOR_NONLINEAR | |||
#undef FOR_REMAIN | |||
#undef INSTANTIATION |
@@ -0,0 +1,38 @@ | |||
/** | |||
* \file dnn/src/arm_common/conv_bias/fp32/f32_direct_stride2_nchw_nchw44_kern.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/arm_common/conv_bias/opr_impl.h" | |||
#include "src/fallback/conv_bias/common.h" | |||
namespace megdnn { | |||
namespace arm_common { | |||
namespace conv_bias { | |||
#define KERN(stride, i, layout) \ | |||
template <BiasMode bias_mode, typename Op> \ | |||
void conv_direct_##stride##_##i##x##i##_fp32_nchw_##layout( \ | |||
const float* src, const float* filter, const float* bias, \ | |||
float* temp, float* dst, const int oc, const int ic, const int ih, \ | |||
const int iw, const int oh, const int oh_block, const int ow, \ | |||
const Op& op, const int ph, const int pw); | |||
KERN(stride2, 2, nchw44) | |||
KERN(stride2, 3, nchw44) | |||
KERN(stride2, 5, nchw44) | |||
KERN(stride2, 7, nchw44) | |||
#undef KERN | |||
void pack_weight_fp32_nchw_nchw44(const float_t* in_ptr, float_t* dst_ptr, | |||
const int oc, const int kh, const int kw, | |||
const int ic); | |||
} // namespace conv_bias | |||
} // namespace arm_common | |||
} // namespace megdnn |
@@ -174,7 +174,167 @@ inline void store_ocx_ow4_remain_static(T& c, const Op& op, int8_t* dst_ptr, | |||
int ld_dst_oc) { | |||
StoreOcxOw4Remain<c_dim, ow_remain, Op, T>::impl(c, op, dst_ptr, ld_dst_oc); | |||
} | |||
////////////////////Store_OCX_OW8_Remain///////////////////////// | |||
template <int c_dim, int ow_remain, typename Op, typename T> | |||
struct StoreOcxOw8Remain { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int ld_dst_oc); | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<2, 0, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int ld_dst_oc) { | |||
op({{c[0][0], c[0][1]}}, dst_ptr); | |||
op({{c[0][2], c[0][3]}}, dst_ptr + 8); | |||
op({{c[0][4], c[0][5]}}, dst_ptr + 16); | |||
op({{c[0][6], c[0][7]}}, dst_ptr + 24); | |||
op({{c[1][0], c[1][1]}}, dst_ptr + ld_dst_oc); | |||
op({{c[1][2], c[1][3]}}, dst_ptr + ld_dst_oc + 8); | |||
op({{c[1][4], c[1][5]}}, dst_ptr + ld_dst_oc + 16); | |||
op({{c[1][6], c[1][7]}}, dst_ptr + ld_dst_oc + 24); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<2, 7, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int ld_dst_oc) { | |||
op({{c[0][0], c[0][1]}}, dst_ptr); | |||
op({{c[0][2], c[0][3]}}, dst_ptr + 8); | |||
op({{c[0][4], c[0][5]}}, dst_ptr + 16); | |||
op(c[0][6], dst_ptr + 24); | |||
op({{c[1][0], c[1][1]}}, dst_ptr + ld_dst_oc); | |||
op({{c[1][2], c[1][3]}}, dst_ptr + ld_dst_oc + 8); | |||
op({{c[1][4], c[1][5]}}, dst_ptr + ld_dst_oc + 16); | |||
op(c[1][6], dst_ptr + ld_dst_oc + 24); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<2, 6, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int ld_dst_oc) { | |||
op({{c[0][0], c[0][1]}}, dst_ptr); | |||
op({{c[0][2], c[0][3]}}, dst_ptr + 8); | |||
op({{c[0][4], c[0][5]}}, dst_ptr + 16); | |||
op({{c[1][0], c[1][1]}}, dst_ptr + ld_dst_oc); | |||
op({{c[1][2], c[1][3]}}, dst_ptr + ld_dst_oc + 8); | |||
op({{c[1][4], c[1][5]}}, dst_ptr + ld_dst_oc + 16); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<2, 5, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int ld_dst_oc) { | |||
op({{c[0][0], c[0][1]}}, dst_ptr); | |||
op({{c[0][2], c[0][3]}}, dst_ptr + 8); | |||
op(c[0][4], dst_ptr + 16); | |||
op({{c[1][0], c[1][1]}}, dst_ptr + ld_dst_oc); | |||
op({{c[1][2], c[1][3]}}, dst_ptr + ld_dst_oc + 8); | |||
op(c[1][4], dst_ptr + ld_dst_oc + 16); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<2, 4, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int ld_dst_oc) { | |||
op({{c[0][0], c[0][1]}}, dst_ptr); | |||
op({{c[0][2], c[0][3]}}, dst_ptr + 8); | |||
op({{c[1][0], c[1][1]}}, dst_ptr + ld_dst_oc); | |||
op({{c[1][2], c[1][3]}}, dst_ptr + ld_dst_oc + 8); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<2, 3, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int ld_dst_oc) { | |||
op({{c[0][0], c[0][1]}}, dst_ptr); | |||
op(c[0][2], dst_ptr + 8); | |||
op({{c[1][0], c[1][1]}}, dst_ptr + ld_dst_oc); | |||
op(c[1][2], dst_ptr + ld_dst_oc + 8); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<2, 2, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int ld_dst_oc) { | |||
op({{c[0][0], c[0][1]}}, dst_ptr); | |||
op({{c[1][0], c[1][1]}}, dst_ptr + ld_dst_oc); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<2, 1, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int ld_dst_oc) { | |||
op(c[0][0], dst_ptr); | |||
op(c[1][0], dst_ptr + ld_dst_oc); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<1, 0, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int) { | |||
op({{c[0][0], c[0][1]}}, dst_ptr); | |||
op({{c[0][2], c[0][3]}}, dst_ptr + 8); | |||
op({{c[0][4], c[0][5]}}, dst_ptr + 16); | |||
op({{c[0][6], c[0][7]}}, dst_ptr + 24); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<1, 7, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int) { | |||
op({{c[0][0], c[0][1]}}, dst_ptr); | |||
op({{c[0][2], c[0][3]}}, dst_ptr + 8); | |||
op({{c[0][4], c[0][5]}}, dst_ptr + 16); | |||
op(c[0][6], dst_ptr + 24); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<1, 6, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int) { | |||
op({{c[0][0], c[0][1]}}, dst_ptr); | |||
op({{c[0][2], c[0][3]}}, dst_ptr + 8); | |||
op({{c[0][4], c[0][5]}}, dst_ptr + 16); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<1, 5, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int) { | |||
op({{c[0][0], c[0][1]}}, dst_ptr); | |||
op({{c[0][2], c[0][3]}}, dst_ptr + 8); | |||
op(c[0][4], dst_ptr + 16); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<1, 4, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int) { | |||
op({{c[0][0], c[0][1]}}, dst_ptr); | |||
op({{c[0][2], c[0][3]}}, dst_ptr + 8); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<1, 3, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int) { | |||
op({{c[0][0], c[0][1]}}, dst_ptr); | |||
op(c[0][2], dst_ptr + 8); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<1, 2, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int) { | |||
op({{c[0][0], c[0][1]}}, dst_ptr); | |||
} | |||
}; | |||
template <typename Op, typename T> | |||
struct StoreOcxOw8Remain<1, 1, Op, T> { | |||
static void impl(T& c, const Op& op, float32_t* dst_ptr, int) { | |||
op(c[0][0], dst_ptr); | |||
} | |||
}; | |||
template <int c_dim, int ow_remain, typename Op, typename T> | |||
inline void store_ocx_ow8_remain_static(T& c, const Op& op, float32_t* dst_ptr, | |||
int ld_dst_oc) { | |||
StoreOcxOw8Remain<c_dim, ow_remain, Op, T>::impl(c, op, dst_ptr, ld_dst_oc); | |||
} | |||
////////////////////Store_OC8_OW8_Remain///////////////////////// | |||
template <int ow_remain, typename Op> | |||
@@ -299,14 +459,15 @@ struct Store_OC8_OW8_Remain<1, Op> { | |||
} | |||
}; | |||
template <int ow_remain, typename Op> | |||
inline void store_oc8_ow8_remain_static(int32x4_t c[2][8], const Op& op, | |||
int8_t* dst_ptr, int ld_dst_oc) { | |||
/////////// | |||
template <int ow_remain, typename Op, typename T, typename T2> | |||
inline void store_oc8_ow8_remain_static(T& c, const Op& op, T2 dst_ptr, | |||
int ld_dst_oc) { | |||
Store_OC8_OW8_Remain<ow_remain, Op>::impl(c, op, dst_ptr, ld_dst_oc); | |||
} | |||
/////////////////////////////////////////////////////// | |||
////////////////////////////////////// | |||
template <BiasMode bias_mode> | |||
inline void init_oc4_ow8(int32x4_t c[8], const int32_t* bias_ptr) { | |||
if (bias_mode == BiasMode::BROADCAST_CHANNEL_BIAS) { | |||
@@ -337,6 +498,49 @@ inline void init_oc8_ow8(int32x4_t c[2][8], const int32_t* bias_ptr, | |||
#undef BAIS_INIT | |||
} | |||
} | |||
/////////////////////////init_ocx_ow8//////////////////// | |||
template <int c_dim, BiasMode bias_mode, typename T, typename T2> | |||
struct InitOcxOw8 { | |||
static void impl(T& c, T2 bias_ptr, int oc_step); | |||
}; | |||
template <BiasMode bias_mode, typename T, typename T2> | |||
struct InitOcxOw8<2, bias_mode, T, T2> { | |||
static void impl(T& c, const float32_t* bias_ptr, int oc_step) { | |||
if (bias_mode == BiasMode::BROADCAST_CHANNEL_BIAS) { | |||
#define BAIS_INIT(step) \ | |||
c[0][step] = vld1q_f32(bias_ptr); \ | |||
c[1][step] = vld1q_f32(bias_ptr + oc_step); | |||
UNROLL_CALL_RAW(8, BAIS_INIT); | |||
#undef BAIS_INIT | |||
} else { | |||
#define BAIS_INIT(step) \ | |||
c[0][step] = vdupq_n_f32(0); \ | |||
c[1][step] = vdupq_n_f32(0); | |||
UNROLL_CALL_RAW(8, BAIS_INIT); | |||
#undef BAIS_INIT | |||
} | |||
} | |||
}; | |||
template <BiasMode bias_mode, typename T, typename T2> | |||
struct InitOcxOw8<1, bias_mode, T, T2> { | |||
static void impl(T& c, const float32_t* bias_ptr, int) { | |||
if (bias_mode == BiasMode::BROADCAST_CHANNEL_BIAS) { | |||
#define BAIS_INIT(step) c[0][step] = vld1q_f32(bias_ptr); | |||
UNROLL_CALL_RAW(8, BAIS_INIT); | |||
#undef BAIS_INIT | |||
} else { | |||
#define BAIS_INIT(step) c[0][step] = vdupq_n_f32(0); | |||
UNROLL_CALL_RAW(8, BAIS_INIT); | |||
#undef BAIS_INIT | |||
} | |||
} | |||
}; | |||
template <int c_dim, BiasMode bias_mode, typename T, typename T2> | |||
inline void init_ocx_ow8(T& c, T2 bias_ptr, int oc_step) { | |||
InitOcxOw8<c_dim, bias_mode, T, T2>::impl(c, bias_ptr, oc_step); | |||
} | |||
/////////////////////init_ocx_ow4///////////////////// | |||
template <int c_dim, BiasMode bias_mode, typename T> | |||
struct InitOcxOw4 { | |||
static void impl(T& c, const int32_t* bias_ptr, int oc_step); | |||
@@ -383,57 +587,54 @@ inline void init_ocx_ow4(T& c, const int32_t* bias_ptr, int oc_step) { | |||
} | |||
/////////////////////////////////////// | |||
template <int weight_number, int base_offset, int ptr_step, int oc_block, | |||
typename Func, typename T, typename... XT> | |||
typename Func, typename T, typename T2, typename... XT> | |||
struct LoadHelper { | |||
static void impl(T& weight, const int8_t* ptr, int oc_offset, XT... args); | |||
static void impl(T& weight, T2 ptr, int oc_offset, XT... args); | |||
}; | |||
#define WEIGHT_CB(step) \ | |||
src[step] = Func::impl(ptr + base_offset + step * ptr_step, args...); | |||
template <int base_offset, int ptr_step, typename Func, typename T, | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2, | |||
typename... XT> | |||
struct LoadHelper<1, base_offset, ptr_step, 0, Func, T, XT...> { | |||
static void impl(T& src, const int8_t* ptr, int oc_offset, XT... args) { | |||
struct LoadHelper<1, base_offset, ptr_step, 0, Func, T, T2, XT...> { | |||
static void impl(T& src, T2 ptr, int, XT... args) { | |||
UNROLL_CALL_RAW(1, WEIGHT_CB); | |||
} | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T, | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2, | |||
typename... XT> | |||
struct LoadHelper<2, base_offset, ptr_step, 0, Func, T, XT...> { | |||
static void impl(T& src, const int8_t* ptr, int oc_offset, XT... args) { | |||
struct LoadHelper<2, base_offset, ptr_step, 0, Func, T, T2, XT...> { | |||
static void impl(T& src, T2 ptr, int, XT... args) { | |||
UNROLL_CALL_RAW(2, WEIGHT_CB); | |||
} | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T, | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2, | |||
typename... XT> | |||
struct LoadHelper<3, base_offset, ptr_step, 0, Func, T, XT...> { | |||
static void impl(T& src, const int8_t* ptr, int oc_offset, XT... args) { | |||
struct LoadHelper<3, base_offset, ptr_step, 0, Func, T, T2, XT...> { | |||
static void impl(T& src, T2 ptr, int, XT... args) { | |||
UNROLL_CALL_RAW(3, WEIGHT_CB); | |||
} | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T, | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2, | |||
typename... XT> | |||
struct LoadHelper<4, base_offset, ptr_step, 0, Func, T, XT...> { | |||
static void impl(T& src, const int8_t* ptr, int oc_offset, XT... args) { | |||
MEGDNN_MARK_USED_VAR(oc_offset); | |||
struct LoadHelper<4, base_offset, ptr_step, 0, Func, T, T2, XT...> { | |||
static void impl(T& src, T2 ptr, int, XT... args) { | |||
UNROLL_CALL_RAW(4, WEIGHT_CB); | |||
} | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T, | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2, | |||
typename... XT> | |||
struct LoadHelper<5, base_offset, ptr_step, 0, Func, T, XT...> { | |||
static void impl(T& src, const int8_t* ptr, int oc_offset, XT... args) { | |||
MEGDNN_MARK_USED_VAR(oc_offset); | |||
struct LoadHelper<5, base_offset, ptr_step, 0, Func, T, T2, XT...> { | |||
static void impl(T& src, T2 ptr, int, XT... args) { | |||
UNROLL_CALL_RAW(5, WEIGHT_CB); | |||
} | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T, | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2, | |||
typename... XT> | |||
struct LoadHelper<6, base_offset, ptr_step, 0, Func, T, XT...> { | |||
static void impl(T& src, const int8_t* ptr, int oc_offset, XT... args) { | |||
MEGDNN_MARK_USED_VAR(oc_offset); | |||
struct LoadHelper<6, base_offset, ptr_step, 0, Func, T, T2, XT...> { | |||
static void impl(T& src, T2 ptr, int, XT... args) { | |||
UNROLL_CALL_RAW(6, WEIGHT_CB); | |||
} | |||
}; | |||
@@ -441,27 +642,36 @@ struct LoadHelper<6, base_offset, ptr_step, 0, Func, T, XT...> { | |||
#define WEIGHT_CB(step) \ | |||
src[0][step] = Func::impl(ptr + base_offset + step * ptr_step); | |||
template <int base_offset, int ptr_step, typename Func, typename T> | |||
struct LoadHelper<1, base_offset, ptr_step, 1, Func, T> { | |||
static void impl(T& src, const int8_t* ptr, int oc_offset) { | |||
MEGDNN_MARK_USED_VAR(oc_offset); | |||
UNROLL_CALL_RAW(1, WEIGHT_CB); | |||
} | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2> | |||
struct LoadHelper<1, base_offset, ptr_step, 1, Func, T, T2> { | |||
static void impl(T& src, T2 ptr, int) { UNROLL_CALL_RAW(1, WEIGHT_CB); } | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T> | |||
struct LoadHelper<2, base_offset, ptr_step, 1, Func, T> { | |||
static void impl(T& src, const int8_t* ptr, int oc_offset) { | |||
MEGDNN_MARK_USED_VAR(oc_offset); | |||
UNROLL_CALL_RAW(2, WEIGHT_CB); | |||
} | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2> | |||
struct LoadHelper<2, base_offset, ptr_step, 1, Func, T, T2> { | |||
static void impl(T& src, T2 ptr, int) { UNROLL_CALL_RAW(2, WEIGHT_CB); } | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T> | |||
struct LoadHelper<3, base_offset, ptr_step, 1, Func, T> { | |||
static void impl(T& src, const int8_t* ptr, int oc_offset) { | |||
MEGDNN_MARK_USED_VAR(oc_offset); | |||
UNROLL_CALL_RAW(3, WEIGHT_CB); | |||
} | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2> | |||
struct LoadHelper<3, base_offset, ptr_step, 1, Func, T, T2> { | |||
static void impl(T& src, T2 ptr, int) { UNROLL_CALL_RAW(3, WEIGHT_CB); } | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2> | |||
struct LoadHelper<4, base_offset, ptr_step, 1, Func, T, T2> { | |||
static void impl(T& src, T2 ptr, int) { UNROLL_CALL_RAW(4, WEIGHT_CB); } | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2> | |||
struct LoadHelper<5, base_offset, ptr_step, 1, Func, T, T2> { | |||
static void impl(T& src, T2 ptr, int) { UNROLL_CALL_RAW(5, WEIGHT_CB); } | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2> | |||
struct LoadHelper<6, base_offset, ptr_step, 1, Func, T, T2> { | |||
static void impl(T& src, T2 ptr, int) { UNROLL_CALL_RAW(6, WEIGHT_CB); } | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2> | |||
struct LoadHelper<7, base_offset, ptr_step, 1, Func, T, T2> { | |||
static void impl(T& src, T2 ptr, int) { UNROLL_CALL_RAW(7, WEIGHT_CB); } | |||
}; | |||
#undef WEIGHT_CB | |||
@@ -470,40 +680,63 @@ struct LoadHelper<3, base_offset, ptr_step, 1, Func, T> { | |||
src[0][step] = Func::impl(ptr + base_offset + step * ptr_step); \ | |||
src[1][step] = Func::impl(ptr + base_offset + step * ptr_step + oc_offset); | |||
template <int base_offset, int ptr_step, typename Func, typename T> | |||
struct LoadHelper<1, base_offset, ptr_step, 2, Func, T> { | |||
static void impl(T& src, const int8_t* ptr, int oc_offset) { | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2> | |||
struct LoadHelper<1, base_offset, ptr_step, 2, Func, T, T2> { | |||
static void impl(T& src, T2 ptr, int oc_offset) { | |||
UNROLL_CALL_RAW(1, WEIGHT_CB); | |||
} | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T> | |||
struct LoadHelper<2, base_offset, ptr_step, 2, Func, T> { | |||
static void impl(T& src, const int8_t* ptr, int oc_offset) { | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2> | |||
struct LoadHelper<2, base_offset, ptr_step, 2, Func, T, T2> { | |||
static void impl(T& src, T2 ptr, int oc_offset) { | |||
UNROLL_CALL_RAW(2, WEIGHT_CB); | |||
} | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T> | |||
struct LoadHelper<3, base_offset, ptr_step, 2, Func, T> { | |||
static void impl(T& src, const int8_t* ptr, int oc_offset) { | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2> | |||
struct LoadHelper<3, base_offset, ptr_step, 2, Func, T, T2> { | |||
static void impl(T& src, T2 ptr, int oc_offset) { | |||
UNROLL_CALL_RAW(3, WEIGHT_CB); | |||
} | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2> | |||
struct LoadHelper<4, base_offset, ptr_step, 2, Func, T, T2> { | |||
static void impl(T& src, T2 ptr, int oc_offset) { | |||
UNROLL_CALL_RAW(4, WEIGHT_CB); | |||
} | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2> | |||
struct LoadHelper<5, base_offset, ptr_step, 2, Func, T, T2> { | |||
static void impl(T& src, T2 ptr, int oc_offset) { | |||
UNROLL_CALL_RAW(5, WEIGHT_CB); | |||
} | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2> | |||
struct LoadHelper<6, base_offset, ptr_step, 2, Func, T, T2> { | |||
static void impl(T& src, T2 ptr, int oc_offset) { | |||
UNROLL_CALL_RAW(6, WEIGHT_CB); | |||
} | |||
}; | |||
template <int base_offset, int ptr_step, typename Func, typename T, typename T2> | |||
struct LoadHelper<7, base_offset, ptr_step, 2, Func, T, T2> { | |||
static void impl(T& src, T2 ptr, int oc_offset) { | |||
UNROLL_CALL_RAW(7, WEIGHT_CB); | |||
} | |||
}; | |||
#undef WEIGHT_CB | |||
template <int weight_number, int base_offset, int ptr_step, int c_dim, | |||
typename Func, typename T> | |||
inline void load_helper(T& weight, const int8_t* ptr, int oc_offset) { | |||
LoadHelper<weight_number, base_offset, ptr_step, c_dim, Func, T>::impl( | |||
typename Func, typename T, typename T2> | |||
inline void load_helper(T& weight, T2 ptr, int oc_offset) { | |||
LoadHelper<weight_number, base_offset, ptr_step, c_dim, Func, T, T2>::impl( | |||
weight, ptr, oc_offset); | |||
} | |||
template <int weight_number, int base_offset, int ptr_step, int c_dim, | |||
typename Func, typename T, typename... XT> | |||
inline void load_helper_x(T& weight, const int8_t* ptr, int oc_offset, | |||
XT... args) { | |||
LoadHelper<weight_number, base_offset, ptr_step, c_dim, Func, T, | |||
typename Func, typename T, typename T2, typename... XT> | |||
inline void load_helper_x(T& weight, T2 ptr, int oc_offset, XT... args) { | |||
LoadHelper<weight_number, base_offset, ptr_step, c_dim, Func, T, T2, | |||
XT...>::impl(weight, ptr, oc_offset, args...); | |||
} | |||
@@ -34,6 +34,9 @@ struct Vmlal_s16 { | |||
struct Vld1q_s8 { | |||
static int8x16_t impl(const int8_t* ptr) { return vld1q_s8(ptr); } | |||
}; | |||
struct Vld1q_f32 { | |||
static float32x4_t impl(const float32_t* ptr) { return vld1q_f32(ptr); } | |||
}; | |||
struct Vld1_s8 { | |||
static int8x8_t impl(const int8_t* ptr) { return vld1_s8(ptr); } | |||
}; | |||
@@ -50,5 +53,13 @@ struct Vldq_tbl_low_s8 { | |||
struct Vld1_dup_s8_s16 { | |||
static int16x8_t impl(const int8_t* ptr) { return vld1_dup_s8_s16(ptr); } | |||
}; | |||
struct Vfmaq_laneq_f32 { | |||
template <const int lane> | |||
static float32x4_t impl(float32x4_t a, float32x4_t b, float32x4_t v) { | |||
return vfmaq_laneq_f32(a, b, v, lane); | |||
} | |||
}; | |||
} // namespace | |||
} // namespace megdnn |
@@ -71,6 +71,7 @@ class ConvBiasImpl::AlgoPack : NonCopyableObj { | |||
AlgoF32DirectStride2 f32_direct_stride2_small_group{false}; | |||
AlgoF32DirectStride1 f32_direct_stride1_large_group{true}; | |||
AlgoF32DirectStride1 f32_direct_stride1_small_group{false}; | |||
AlgoF32DirectStride2NCHWNCHW44 f32_direct_stride2_nchw_nchw44; | |||
AlgoI8x8x16Direct i8x8x16_direct_large_group{true}; | |||
AlgoI8x8x16Direct i8x8x16_direct_small_group{false}; | |||
AlgoI8x8x16Stride2 i8x8x16_stride2_large_group{true}; | |||
@@ -123,6 +124,7 @@ public: | |||
direct_algos.emplace_back(&i8x8x16_stride2_filter2); | |||
direct_algos.emplace_back(&i8x8x16_stride2_large_group); | |||
direct_algos.emplace_back(&i8x8x16_stride2_small_group); | |||
direct_algos.emplace_back(&f32_direct_stride2_nchw_nchw44); | |||
direct_algos.emplace_back(&f32_direct_stride1_large_group); | |||
direct_algos.emplace_back(&f32_direct_stride1_small_group); | |||
direct_algos.emplace_back(&f32_direct_stride2_large_group); | |||
@@ -67,6 +67,7 @@ private: | |||
class AlgoF32Direct; | |||
class AlgoF32DirectStride1; | |||
class AlgoF32DirectStride2; | |||
class AlgoF32DirectStride2NCHWNCHW44; | |||
class AlgoI8x8x16Direct; | |||
class AlgoI8x8x16Stride2; | |||
class AlgoI8x8x16Stride2Filter2; | |||
@@ -45,13 +45,17 @@ struct HSwishOp; | |||
vst1q_##_func_suffix(dst, vitem.val[0]); \ | |||
vst1q_##_func_suffix(dst + SIMD_WIDTH, vitem.val[1]); \ | |||
} \ | |||
void operator()(const _neon_type& src, _ctype* dst) const { \ | |||
auto vitem = operator()(src); \ | |||
vst1q_##_func_suffix(dst, vitem); \ | |||
} \ | |||
_neon_type2 operator()(const _neon_type2& src) const { \ | |||
auto val1 = src.val[0]; \ | |||
auto val2 = src.val[1]; \ | |||
H_SWISH_KERN(_func_suffix, val1, val2); \ | |||
return {{val1, val2}}; \ | |||
} \ | |||
_neon_type operator()(const _neon_type& src) { \ | |||
_neon_type operator()(const _neon_type& src) const { \ | |||
auto val_zero = vdupq_n_##_func_suffix(0.f); \ | |||
auto val_six = vdupq_n_##_func_suffix(6.f); \ | |||
auto val_three = vdupq_n_##_func_suffix(3.f); \ | |||
@@ -64,6 +68,7 @@ struct HSwishOp; | |||
val_rec_six); \ | |||
} \ | |||
}; | |||
OP(dt_float32, float32x4_t, float32x4x2_t, f32, 4) | |||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
OP(__fp16, float16x8_t, float16x8x2_t, f16, 8) | |||
@@ -6,7 +6,8 @@ | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
@@ -30,6 +31,13 @@ struct NoneOp; | |||
using NoneOpBase::operator(); \ | |||
constexpr static size_t SIMD_WIDTH = _simd_width; \ | |||
_neon_type2 operator()(const _neon_type2& src) const { return src; } \ | |||
void operator()(const _neon_type2& src, _ctype* dst) const { \ | |||
vst1q_##_func_suffix(dst, src.val[0]); \ | |||
vst1q_##_func_suffix(dst + SIMD_WIDTH, src.val[1]); \ | |||
} \ | |||
void operator()(const _neon_type& src, _ctype* dst) const { \ | |||
vst1q_##_func_suffix(dst, src); \ | |||
} \ | |||
_neon_type operator()(const _neon_type& src) const { return src; } \ | |||
}; | |||
@@ -47,11 +47,16 @@ struct ReluOp; | |||
auto vitem1 = vmaxq_##_func_suffix(src.val[1], vzero); \ | |||
return {{vitem0, vitem1}}; \ | |||
} \ | |||
void operator()(const _neon_type& src, _ctype* dst) const { \ | |||
auto vitem = operator()(src); \ | |||
vst1q_##_func_suffix(dst, vitem); \ | |||
} \ | |||
_neon_type operator()(const _neon_type& src) const { \ | |||
auto vzero = vdupq_n_##_func_suffix(0); \ | |||
return vmaxq_##_func_suffix(src, vzero); \ | |||
} \ | |||
}; | |||
OP(dt_float32, float32x4_t, float32x4x2_t, f32, 4) | |||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
OP(__fp16, float16x8_t, float16x8x2_t, f16, 8) | |||
@@ -479,6 +479,39 @@ UNROLL_CALL_RAW(4, cb); | |||
#undef cb | |||
} // namespace | |||
#define vdup_laneq_s16(vec, lane) Vdup_laneq_s16_armv7<lane>::impl(vec) | |||
namespace { | |||
template <int lane> | |||
struct Vfmap_laneq_f32_armv7 { | |||
static float32x4_t impl(float32x4_t a, float32x4_t b, float32x4_t v); | |||
}; | |||
template <> | |||
struct Vfmap_laneq_f32_armv7<0> { | |||
static float32x4_t impl(float32x4_t a, float32x4_t b, float32x4_t v) { | |||
return vmlaq_lane_f32(a, b, vget_low_f32(v), 0); | |||
} | |||
}; | |||
template <> | |||
struct Vfmap_laneq_f32_armv7<1> { | |||
static float32x4_t impl(float32x4_t a, float32x4_t b, float32x4_t v) { | |||
return vmlaq_lane_f32(a, b, vget_low_f32(v), 1); | |||
} | |||
}; | |||
template <> | |||
struct Vfmap_laneq_f32_armv7<2> { | |||
static float32x4_t impl(float32x4_t a, float32x4_t b, float32x4_t v) { | |||
return vmlaq_lane_f32(a, b, vget_high_f32(v), 0); | |||
} | |||
}; | |||
template <> | |||
struct Vfmap_laneq_f32_armv7<3> { | |||
static float32x4_t impl(float32x4_t a, float32x4_t b, float32x4_t v) { | |||
return vmlaq_lane_f32(a, b, vget_high_f32(v), 1); | |||
} | |||
}; | |||
} // namespace | |||
#define vfmaq_laneq_f32(a, b, v, lane) \ | |||
Vfmap_laneq_f32_armv7<lane>::impl(a, b, v) | |||
#endif | |||
@@ -85,7 +85,7 @@ TEST_F(ARM_COMMON, CONV_BIAS_MATMUL_QU8) { | |||
#if MEGDNN_WITH_BENCHMARK | |||
static void benchmark_convbias(Handle* handle) { | |||
static void benchmark_convbias(Handle* handle, bool is_fp32 = false) { | |||
constexpr size_t RUNS = 30; | |||
Benchmarker<ConvBias> benchmarker_int(handle); | |||
@@ -102,15 +102,25 @@ static void benchmark_convbias(Handle* handle) { | |||
Benchmarker<ConvBias> benchmarker_float(handle); | |||
benchmarker_float.set_display(false).set_times(RUNS); | |||
benchmarker_float.set_before_exec_callback( | |||
conv_bias::ConvBiasAlgoChecker<ConvBias>(".+")); | |||
conv_bias::ConvBiasAlgoChecker<ConvBias>( | |||
"IM2COLMATMUL:AARCH64_F32K8X12X1:192")); | |||
Benchmarker<ConvBias> benchmarker_int_nchw44(handle); | |||
benchmarker_int_nchw44.set_times(RUNS) | |||
.set_dtype(0, dtype::QuantizedS8(2.5)) | |||
.set_dtype(1, dtype::QuantizedS8(2.5)) | |||
.set_dtype(2, dtype::QuantizedS32(6.25)) | |||
.set_dtype(4, dtype::QuantizedS8(60.25)) | |||
.set_display(false); | |||
if (is_fp32) { | |||
benchmarker_int_nchw44.set_times(RUNS) | |||
.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.set_dtype(2, dtype::Float32()) | |||
.set_dtype(4, dtype::Float32()) | |||
.set_display(false); | |||
} else { | |||
benchmarker_int_nchw44.set_times(RUNS) | |||
.set_dtype(0, dtype::QuantizedS8(2.5)) | |||
.set_dtype(1, dtype::QuantizedS8(2.5)) | |||
.set_dtype(2, dtype::QuantizedS32(6.25)) | |||
.set_dtype(4, dtype::QuantizedS8(60.25)) | |||
.set_display(false); | |||
} | |||
benchmarker_int_nchw44.set_before_exec_callback( | |||
conv_bias::ConvBiasAlgoChecker<ConvBias>(".+")); | |||
@@ -151,7 +161,6 @@ static void benchmark_convbias(Handle* handle) { | |||
auto int_nchw44_used = benchmarker_int_nchw44.set_param(param).exec( | |||
{src, filter, bias, {}, dst}) / | |||
RUNS; | |||
float computations = IC * (FS * FS) * dst.total_nr_elems() * 2 * 1e-6; | |||
printf("run: %s %s %s->%s \n", src.to_string().c_str(), | |||
filter.to_string().c_str(), bias.to_string().c_str(), | |||
@@ -160,32 +169,42 @@ static void benchmark_convbias(Handle* handle) { | |||
computations / float_used); | |||
printf("int_nchw: %f ms %f Gflops, ", int_used, | |||
computations / int_used); | |||
printf("int_nchw44: %f ms %f Gflops %f speedup, ", int_nchw44_used, | |||
computations / int_nchw44_used, int_used / int_nchw44_used); | |||
auto speed_up = int_used / int_nchw44_used; | |||
if (is_fp32) { | |||
speed_up = float_used / int_nchw44_used; | |||
printf("fp32_nchw44: %f ms %f Gflops %f speedup, ", int_nchw44_used, | |||
computations / int_nchw44_used, speed_up); | |||
} else { | |||
printf("int_nchw44: %f ms %f Gflops %f speedup, ", int_nchw44_used, | |||
computations / int_nchw44_used, speed_up); | |||
} | |||
printf("\n"); | |||
}; | |||
run(1, 3, 32, 224, 224, 3, 2, true); | |||
run(1, 3, 64, 224, 224, 5, 2, true); | |||
run(1, 3, 64, 224, 224, 7, 2, true); | |||
run(1, 3, 32, 224, 224, 7, 2, true); | |||
for (size_t stride : {1, 2}) { | |||
printf("stride %zu\n", stride); | |||
for (size_t filter_size : {2, 3, 5, 7}) { | |||
for (size_t img_size : {32}) { | |||
for (size_t channel : {8, 16, 32, 64, 128, 256}) { | |||
run(1, channel, channel, img_size, img_size, filter_size, | |||
stride, false); | |||
if (is_fp32) { | |||
run(1, 3, 32, 224, 224, 3, 2, true); | |||
run(1, 3, 64, 224, 224, 7, 2, true); | |||
} else { | |||
for (size_t stride : {1, 2}) { | |||
printf("stride %zu\n", stride); | |||
for (size_t filter_size : {2, 3, 5, 7}) { | |||
for (size_t img_size : {32}) { | |||
for (size_t channel : {8, 16, 32, 64, 128, 256}) { | |||
run(1, channel, channel, img_size, img_size, | |||
filter_size, stride, false); | |||
} | |||
} | |||
} | |||
} | |||
} | |||
} | |||
TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_NCHW44) { | |||
benchmark_convbias(handle()); | |||
benchmark_convbias(handle(), true); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, BENCHMARK_CONVBIAS_NCHW44) { | |||
benchmark_convbias(handle()); | |||
benchmark_convbias(handle(), true); | |||
} | |||
#endif | |||
TEST_F(ARM_COMMON, CONV_BIAS_MATMUL_QS8) { | |||
using namespace conv_bias; | |||
@@ -1464,7 +1483,8 @@ TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD) { | |||
#if MEGDNN_WITH_BENCHMARK | |||
namespace { | |||
std::vector<conv_bias::TestArg> get_conv_bias_1x1_benchmark_args(size_t pack_size = 1) { | |||
std::vector<conv_bias::TestArg> get_conv_bias_1x1_benchmark_args( | |||
size_t pack_size = 1) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args; | |||
param::ConvBias param; | |||
@@ -1474,15 +1494,17 @@ std::vector<conv_bias::TestArg> get_conv_bias_1x1_benchmark_args(size_t pack_siz | |||
param.pad_w = 0; | |||
param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY; | |||
auto bench_case = [&](size_t OC, size_t IC, size_t H, size_t W) { | |||
if(pack_size == 1) | |||
if (pack_size == 1) | |||
args.emplace_back(param, TensorShape{1, IC, H, W}, | |||
TensorShape{OC, IC, 1, 1}, TensorShape{}); | |||
TensorShape{OC, IC, 1, 1}, TensorShape{}); | |||
else { | |||
if(pack_size == 4) | |||
if (pack_size == 4) | |||
param.format = param::ConvBias::Format::NCHW44; | |||
args.emplace_back(param, TensorShape{1, IC / pack_size, H, W, pack_size}, | |||
TensorShape{OC / pack_size, IC / pack_size, 1, 1, pack_size, pack_size}, | |||
TensorShape{}); | |||
args.emplace_back(param, | |||
TensorShape{1, IC / pack_size, H, W, pack_size}, | |||
TensorShape{OC / pack_size, IC / pack_size, 1, 1, | |||
pack_size, pack_size}, | |||
TensorShape{}); | |||
} | |||
}; | |||
@@ -78,9 +78,10 @@ std::vector<conv_bias::TestArg> get_nchw44_conv_bias_args( | |||
std::vector<TestArg> args; | |||
auto pack = [&](size_t n, size_t oc, size_t ic, size_t h, size_t w, | |||
size_t kernel, size_t stride, size_t group, NLMode nlmode) { | |||
size_t kernel, size_t stride, size_t group, NLMode nlmode, | |||
int any_pad = -1) { | |||
constexpr int pack_c = 4; | |||
const size_t pad = no_pad ? 0 : kernel / 2; | |||
const size_t pad = any_pad >= 0 ? any_pad : kernel / 2; | |||
auto bias_mode = no_bias ? megdnn::BiasMode::NO_BIAS | |||
: megdnn::BiasMode::BROADCAST_CHANNEL_BIAS; | |||
auto oc_per_group = oc / group; | |||
@@ -90,7 +91,8 @@ std::vector<conv_bias::TestArg> get_nchw44_conv_bias_args( | |||
ic_per_group > 0; | |||
bool nchw_disable = group > 1 || ic_per_group >= 4; | |||
bool nchw44_disable = ic_per_group % pack_c != 0; | |||
if (!(ok_group)) { | |||
bool invalid_pad = (w + 2 * pad < kernel) || (h + 2 * pad < kernel); | |||
if (!(ok_group) || invalid_pad) { | |||
return; | |||
} | |||
if ((is_input_nchw && nchw_disable) || | |||
@@ -107,6 +109,7 @@ std::vector<conv_bias::TestArg> get_nchw44_conv_bias_args( | |||
param.pad_h = pad; | |||
param.pad_w = pad; | |||
param.nonlineMode = nlmode; | |||
auto src_tensor_shape = TensorShape{n, ic / pack_c, h, w, pack_c}; | |||
auto weight_tensor_shape = TensorShape{ | |||
oc / pack_c, ic / pack_c, kernel_h, kernel_w, pack_c, pack_c}; | |||
@@ -338,6 +341,11 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR2_SMALL_GROUP) { | |||
check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 2, false, false, false), | |||
handle(), "F32STRD2_SMALL_GROUP"); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_NCHW_NCHW44_F32) { | |||
check_conv_bias( | |||
get_nchw44_conv_bias_args({3, 5, 7}, 2, false, false, false, true), | |||
handle(), "F32_CONV_NCHW_NCHW44"); | |||
} | |||
/**********************************F16 direct************************/ | |||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_LARGE_GROUP) { | |||