Merge Target::ARM and Target::X86 into Target::CPU to make global layout transform easier to use
GitOrigin-RevId: cc9363fa38
release-1.7
@@ -830,9 +830,9 @@ typename ConvolutionBase<Parameter>::CanonizedFilterMeta ConvolutionBase<Paramet | |||
src[3], cflt.dilated_spatial[1], cflt.stride[1], cflt.padding[1]); | |||
dst[4] = 32; | |||
} else if (param().format == Param::Format::NCHW88) { | |||
megdnn_assert(src.ndim == 5 || src.ndim == 4, | |||
"invalid src ndim for NCHW88, expected=5 or 4, got=%zu", | |||
src.ndim); | |||
megdnn_assert( | |||
src.ndim == 5 || src.ndim == 4, | |||
"invalid src ndim for NCHW88, expected=5 or 4, got=%zu", src.ndim); | |||
dst.ndim = 5; | |||
dst[0] = src[0]; | |||
auto oc = cflt.ocpg * cflt.group; | |||
@@ -850,11 +850,12 @@ typename ConvolutionBase<Parameter>::CanonizedFilterMeta ConvolutionBase<Paramet | |||
"%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg, cflt.group); | |||
} | |||
} else if (param().format == Param::Format::NCHW44 || | |||
param().format == Param::Format::NCHW44_DOT) { | |||
megdnn_assert(src.ndim == 5 || src.ndim == 4, | |||
"invalid src ndim for NCHW44, expected=5 or 4, got=%zu", | |||
src.ndim); | |||
} else if ( | |||
param().format == Param::Format::NCHW44 || | |||
param().format == Param::Format::NCHW44_DOT) { | |||
megdnn_assert( | |||
src.ndim == 5 || src.ndim == 4, | |||
"invalid src ndim for NCHW44, expected=5 or 4, got=%zu", src.ndim); | |||
dst.ndim = 5; | |||
dst[0] = src[0]; | |||
auto oc = cflt.ocpg * cflt.group; | |||
@@ -491,7 +491,6 @@ DynamicProgrammingSolver::Solution DynamicProgrammingSolver::Impl::solve( | |||
auto& states = cuts.back().states; | |||
prune(states, edges[cur], ctx); | |||
force_prune(states); | |||
} | |||
cur++; | |||
} | |||
@@ -32,8 +32,7 @@ const char* target_to_string(Target target) { | |||
return #_target | |||
switch (target) { | |||
cb(CUDA); | |||
cb(X86); | |||
cb(ARM); | |||
cb(CPU); | |||
cb(UNSPEC); | |||
default: | |||
mgb_assert( | |||
@@ -89,7 +88,7 @@ std::unique_ptr<LayoutTransformContext> make_cuda_ctx( | |||
return ctx; | |||
} | |||
std::unique_ptr<LayoutTransformContext> make_arm_ctx( | |||
std::unique_ptr<LayoutTransformContext> make_cpu_ctx( | |||
OprFormatConfigID base_config_id, TensorFormats base_tensor_format) { | |||
OprList opr_list = { | |||
opr::ConvBiasForward::typeinfo(), | |||
@@ -104,34 +103,30 @@ std::unique_ptr<LayoutTransformContext> make_arm_ctx( | |||
}; | |||
SmallVector<TensorFormats> available_tensor_formats = { | |||
TensorFormats::NCHW, TensorFormats::NCHWc4, | |||
DNN_INC_FLOAT16(TensorFormats::NCHWc8)}; | |||
Attribute attribute = {base_config_id, base_tensor_format, Target::ARM}; | |||
TensorFormats::NCHW, TensorFormats::NCHWc4, TensorFormats::NCHWc8}; | |||
Attribute attribute = {base_config_id, base_tensor_format, Target::CPU}; | |||
auto ctx = std::make_unique<LayoutTransformContext>( | |||
std::move(opr_list), std::move(available_tensor_formats), attribute); | |||
ctx->add_opr_config( | |||
opr::ConvBiasForward::typeinfo(), | |||
{OprFormatConfigID::NCHW, OprFormatConfigID::NCHW44, | |||
OprFormatConfigID::NCHW44_HYBRID, | |||
DNN_INC_FLOAT16(OprFormatConfigID::NCHW88), | |||
DNN_INC_FLOAT16(OprFormatConfigID::NCHW88_HYBRID), | |||
OprFormatConfigID::NCHW44_DOT, OprFormatConfigID::NCHW44_DOT_HYBRID}) | |||
OprFormatConfigID::NCHW44_HYBRID, OprFormatConfigID::NCHW88, | |||
OprFormatConfigID::NCHW88_HYBRID, OprFormatConfigID::NCHW44_DOT, | |||
OprFormatConfigID::NCHW44_DOT_HYBRID}) | |||
.add_opr_config( | |||
opr::ConvolutionForward::typeinfo(), | |||
{OprFormatConfigID::NCHW, OprFormatConfigID::NCHW44, | |||
OprFormatConfigID::NCHW44_HYBRID, | |||
DNN_INC_FLOAT16(OprFormatConfigID::NCHW88), | |||
DNN_INC_FLOAT16(OprFormatConfigID::NCHW88_HYBRID), | |||
OprFormatConfigID::NCHW44_DOT, | |||
OprFormatConfigID::NCHW44_HYBRID, OprFormatConfigID::NCHW88, | |||
OprFormatConfigID::NCHW88_HYBRID, OprFormatConfigID::NCHW44_DOT, | |||
OprFormatConfigID::NCHW44_DOT_HYBRID}) | |||
.add_opr_config( | |||
opr::PoolingForward::typeinfo(), | |||
{OprFormatConfigID::NCHW, OprFormatConfigID::NCHW44, | |||
DNN_INC_FLOAT16(OprFormatConfigID::NCHW88)}) | |||
OprFormatConfigID::NCHW88}) | |||
.add_opr_config( | |||
opr::ResizeForward::typeinfo(), | |||
{OprFormatConfigID::NCHW, OprFormatConfigID::NCHW44, | |||
DNN_INC_FLOAT16(OprFormatConfigID::NCHW88)}); | |||
OprFormatConfigID::NCHW88}); | |||
return ctx; | |||
} | |||
} // namespace | |||
@@ -162,8 +157,8 @@ std::unique_ptr<LayoutTransformContext> LayoutTransformContext::make( | |||
switch (target) { | |||
case Target::CUDA: | |||
return make_cuda_ctx(base_config_id, base_tensor_format); | |||
case Target::ARM: | |||
return make_arm_ctx(base_config_id, base_tensor_format); | |||
case Target::CPU: | |||
return make_cpu_ctx(base_config_id, base_tensor_format); | |||
default: | |||
mgb_assert(false, "unsupported target %s\n", target_to_string(target)); | |||
} | |||
@@ -82,6 +82,8 @@ struct OprSingleInOutTensorFormatsDispatcherImpl<OprFormatConfigID::NCHW> { | |||
} | |||
}; | |||
/* \remark: Here, maybe we needn't check data type of input and output tensors. Because | |||
* algo available checker will skip the configuration that has no underlying impls. */ | |||
template <> | |||
struct OprSingleInOutTensorFormatsDispatcherImpl<OprFormatConfigID::NCHW44> { | |||
static Maybe<OprTensorFormatsConfiguration> dispatch(const OperatorNodeBase* opr) { | |||
@@ -89,8 +91,9 @@ struct OprSingleInOutTensorFormatsDispatcherImpl<OprFormatConfigID::NCHW44> { | |||
config.typeinfo = opr->dyn_typeinfo(); | |||
config.opr_format = OprFormat::NCHW44; | |||
config.config_id = OprFormatConfigID::NCHW44; | |||
bool available = true; | |||
available &= opr->input(0)->dtype().enumv() == DTypeEnum::Float32; | |||
bool f32_config = opr->input(0)->dtype().enumv() == DTypeEnum::Float32; | |||
bool i8_config = opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS8; | |||
bool available = f32_config || i8_config; | |||
config.input_dtypes = {opr->input(0)->dtype().enumv()}; | |||
config.input_tensor_types = {TensorType::FEATURE}; | |||
config.output_dtypes = {opr->output(0)->dtype().enumv()}; | |||
@@ -102,7 +105,6 @@ struct OprSingleInOutTensorFormatsDispatcherImpl<OprFormatConfigID::NCHW44> { | |||
} | |||
}; | |||
#if !MEGDNN_DISABLE_FLOAT16 | |||
template <> | |||
struct OprSingleInOutTensorFormatsDispatcherImpl<OprFormatConfigID::NCHW88> { | |||
static Maybe<OprTensorFormatsConfiguration> dispatch(const OperatorNodeBase* opr) { | |||
@@ -110,8 +112,7 @@ struct OprSingleInOutTensorFormatsDispatcherImpl<OprFormatConfigID::NCHW88> { | |||
config.typeinfo = opr->dyn_typeinfo(); | |||
config.opr_format = OprFormat::NCHW88; | |||
config.config_id = OprFormatConfigID::NCHW88; | |||
bool available = true; | |||
available &= opr->input(0)->dtype().enumv() == DTypeEnum::Float16; | |||
bool available = opr->input(0)->dtype().enumv() == DTypeEnum::Float32; | |||
config.input_dtypes = {opr->input(0)->dtype().enumv()}; | |||
config.input_tensor_types = {TensorType::FEATURE}; | |||
config.output_dtypes = {opr->output(0)->dtype().enumv()}; | |||
@@ -122,7 +123,6 @@ struct OprSingleInOutTensorFormatsDispatcherImpl<OprFormatConfigID::NCHW88> { | |||
return config; | |||
} | |||
}; | |||
#endif | |||
template <> | |||
struct OprSingleInOutTensorFormatsDispatcherImpl<OprFormatConfigID::NCHW4> { | |||
@@ -131,8 +131,7 @@ struct OprSingleInOutTensorFormatsDispatcherImpl<OprFormatConfigID::NCHW4> { | |||
config.typeinfo = opr->dyn_typeinfo(); | |||
config.opr_format = OprFormat::NCHW4; | |||
config.config_id = OprFormatConfigID::NCHW4; | |||
bool available = true; | |||
available &= opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS8; | |||
bool available = opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS8; | |||
config.input_dtypes = {opr->input(0)->dtype().enumv()}; | |||
config.input_tensor_types = {TensorType::FEATURE}; | |||
available &= opr->output(0)->dtype().enumv() == DTypeEnum::QuantizedS8; | |||
@@ -152,8 +151,7 @@ struct OprSingleInOutTensorFormatsDispatcherImpl<OprFormatConfigID::CHWN4> { | |||
config.typeinfo = opr->dyn_typeinfo(); | |||
config.opr_format = OprFormat::CHWN4; | |||
config.config_id = OprFormatConfigID::CHWN4; | |||
bool available = true; | |||
available &= opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS8; | |||
bool available = opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS8; | |||
config.input_dtypes = {opr->input(0)->dtype().enumv()}; | |||
config.input_tensor_types = {TensorType::FEATURE}; | |||
available &= opr->output(0)->dtype().enumv() == DTypeEnum::QuantizedS8; | |||
@@ -173,8 +171,7 @@ struct OprSingleInOutTensorFormatsDispatcherImpl<OprFormatConfigID::NCHW32> { | |||
config.typeinfo = opr->dyn_typeinfo(); | |||
config.opr_format = OprFormat::NCHW32; | |||
config.config_id = OprFormatConfigID::NCHW32; | |||
bool available = true; | |||
available &= opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS8; | |||
bool available = opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS8; | |||
config.input_dtypes = {opr->input(0)->dtype().enumv()}; | |||
config.input_tensor_types = {TensorType::FEATURE}; | |||
available &= opr->output(0)->dtype().enumv() == DTypeEnum::QuantizedS8; | |||
@@ -194,9 +191,8 @@ struct OprSingleInOutTensorFormatsDispatcherImpl<OprFormatConfigID::NHWC> { | |||
config.typeinfo = opr->dyn_typeinfo(); | |||
config.opr_format = OprFormat::NHWC; | |||
config.config_id = OprFormatConfigID::NHWC; | |||
bool available = true; | |||
available &= opr->input(0)->dtype().enumv() == DTypeEnum::Quantized4Asymm || | |||
opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS4; | |||
bool available = opr->input(0)->dtype().enumv() == DTypeEnum::Quantized4Asymm || | |||
opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS4; | |||
config.input_dtypes = {opr->input(0)->dtype().enumv()}; | |||
config.input_tensor_types = {TensorType::FEATURE}; | |||
available &= opr->output(0)->dtype().enumv() == opr->input(0)->dtype().enumv(); | |||
@@ -216,9 +212,8 @@ struct OprSingleInOutTensorFormatsDispatcherImpl<OprFormatConfigID::NCHW64> { | |||
config.typeinfo = opr->dyn_typeinfo(); | |||
config.opr_format = OprFormat::NCHW64; | |||
config.config_id = OprFormatConfigID::NCHW64; | |||
bool available = true; | |||
available &= opr->input(0)->dtype().enumv() == DTypeEnum::Quantized4Asymm || | |||
opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS4; | |||
bool available = opr->input(0)->dtype().enumv() == DTypeEnum::Quantized4Asymm || | |||
opr->input(0)->dtype().enumv() == DTypeEnum::QuantizedS4; | |||
config.input_dtypes = {opr->input(0)->dtype().enumv()}; | |||
config.input_tensor_types = {TensorType::FEATURE}; | |||
available &= opr->output(0)->dtype().enumv() == opr->input(0)->dtype().enumv(); | |||
@@ -552,14 +547,24 @@ struct ConvTensorFormatsDispatcherImpl<Opr, OprFormatConfigID::NCHW44> { | |||
config.opr_format = OprFormat::NCHW44; | |||
config.config_id = OprFormatConfigID::NCHW44; | |||
bool available = true; | |||
auto check_dtype = [](DType dt, bool is_bias) { | |||
bool f32_config = dt.enumv() == DTypeEnum::Float32; | |||
auto i8_dtype = DTypeEnum::QuantizedS8; | |||
if (is_bias) | |||
i8_dtype = DTypeEnum::QuantizedS32; | |||
bool i8_config = dt.enumv() == i8_dtype; | |||
return f32_config || i8_config; | |||
}; | |||
// setup dtypes | |||
for (size_t i = 0; i < opr->input().size(); ++i) { | |||
available &= opr->input(i)->dtype().enumv() == DTypeEnum::Float32; | |||
bool is_bias = | |||
ConvParamTrait<Opr>::has_bias && i == ConvParamTrait<Opr>::bias_idx; | |||
available &= check_dtype(opr->input(i)->dtype(), is_bias); | |||
config.input_dtypes.emplace_back(opr->input(i)->dtype().enumv()); | |||
TensorType tensor_type = i == 1 ? TensorType::WEIGHT : TensorType::FEATURE; | |||
config.input_tensor_types.emplace_back(tensor_type); | |||
} | |||
available &= opr->output(0)->dtype().enumv() == DTypeEnum::Float32; | |||
available &= check_dtype(opr->output(0)->dtype(), false); | |||
config.output_dtypes.emplace_back(opr->output(0)->dtype().enumv()); | |||
// setup tensor formats | |||
if (conv.param().sparse == Opr::Param::Sparse::DENSE) { | |||
@@ -594,14 +599,24 @@ struct ConvTensorFormatsDispatcherImpl<Opr, OprFormatConfigID::NCHW44_HYBRID> { | |||
config.opr_format = OprFormat::NCHW44; | |||
config.config_id = OprFormatConfigID::NCHW44_HYBRID; | |||
bool available = true; | |||
auto check_dtype = [](DType dt, bool is_bias) { | |||
bool f32_config = dt.enumv() == DTypeEnum::Float32; | |||
auto i8_dtype = DTypeEnum::QuantizedS8; | |||
if (is_bias) | |||
i8_dtype = DTypeEnum::QuantizedS32; | |||
bool i8_config = dt.enumv() == i8_dtype; | |||
return f32_config || i8_config; | |||
}; | |||
// setup dtypes | |||
for (size_t i = 0; i < opr->input().size(); ++i) { | |||
available &= opr->input(i)->dtype().enumv() == DTypeEnum::Float32; | |||
bool is_bias = | |||
ConvParamTrait<Opr>::has_bias && i == ConvParamTrait<Opr>::bias_idx; | |||
available &= check_dtype(opr->input(i)->dtype(), is_bias); | |||
config.input_dtypes.emplace_back(opr->input(i)->dtype().enumv()); | |||
TensorType tensor_type = i == 1 ? TensorType::WEIGHT : TensorType::FEATURE; | |||
config.input_tensor_types.emplace_back(tensor_type); | |||
} | |||
available &= opr->output(0)->dtype().enumv() == DTypeEnum::Float32; | |||
available &= check_dtype(opr->output(0)->dtype(), false); | |||
config.output_dtypes.emplace_back(opr->output(0)->dtype().enumv()); | |||
available &= conv.param().sparse == Opr::Param::Sparse::DENSE; | |||
config.input_tensor_formats = { | |||
@@ -614,7 +629,6 @@ struct ConvTensorFormatsDispatcherImpl<Opr, OprFormatConfigID::NCHW44_HYBRID> { | |||
} | |||
}; | |||
#if !MEGDNN_DISABLE_FLOAT16 | |||
template <typename Opr> | |||
struct ConvTensorFormatsDispatcherImpl<Opr, OprFormatConfigID::NCHW88> { | |||
static Maybe<OprTensorFormatsConfiguration> dispatch(const OperatorNodeBase* opr) { | |||
@@ -626,12 +640,12 @@ struct ConvTensorFormatsDispatcherImpl<Opr, OprFormatConfigID::NCHW88> { | |||
bool available = true; | |||
// setup dtypes | |||
for (size_t i = 0; i < opr->input().size(); ++i) { | |||
available &= opr->input(i)->dtype().enumv() == DTypeEnum::Float16; | |||
available &= opr->input(i)->dtype().enumv() == DTypeEnum::Float32; | |||
config.input_dtypes.emplace_back(opr->input(i)->dtype().enumv()); | |||
TensorType tensor_type = i == 1 ? TensorType::WEIGHT : TensorType::FEATURE; | |||
config.input_tensor_types.emplace_back(tensor_type); | |||
} | |||
available &= opr->output(0)->dtype().enumv() == DTypeEnum::Float16; | |||
available &= opr->output(0)->dtype().enumv() == DTypeEnum::Float32; | |||
config.output_dtypes.emplace_back(opr->output(0)->dtype().enumv()); | |||
// setup tensor formats | |||
if (conv.param().sparse == Opr::Param::Sparse::DENSE) { | |||
@@ -668,12 +682,12 @@ struct ConvTensorFormatsDispatcherImpl<Opr, OprFormatConfigID::NCHW88_HYBRID> { | |||
bool available = true; | |||
// setup dtypes | |||
for (size_t i = 0; i < opr->input().size(); ++i) { | |||
available &= opr->input(i)->dtype().enumv() == DTypeEnum::Float16; | |||
available &= opr->input(i)->dtype().enumv() == DTypeEnum::Float32; | |||
config.input_dtypes.emplace_back(opr->input(i)->dtype().enumv()); | |||
TensorType tensor_type = i == 1 ? TensorType::WEIGHT : TensorType::FEATURE; | |||
config.input_tensor_types.emplace_back(tensor_type); | |||
} | |||
available &= opr->output(0)->dtype().enumv() == DTypeEnum::Float16; | |||
available &= opr->output(0)->dtype().enumv() == DTypeEnum::Float32; | |||
config.output_dtypes.emplace_back(opr->output(0)->dtype().enumv()); | |||
available &= conv.param().sparse == Opr::Param::Sparse::DENSE; | |||
// setup tensor formats | |||
@@ -686,7 +700,6 @@ struct ConvTensorFormatsDispatcherImpl<Opr, OprFormatConfigID::NCHW88_HYBRID> { | |||
return config; | |||
} | |||
}; | |||
#endif | |||
template <typename Opr> | |||
struct ConvTensorFormatsDispatcherImpl<Opr, OprFormatConfigID::NCHW44_DOT> { | |||
@@ -914,10 +927,8 @@ StaticData::StaticData() { | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvBias, NCHW32); | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvBias, NCHW64); | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvBias, NCHW44); | |||
#if !MEGDNN_DISABLE_FLOAT16 | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvBias, NCHW88); | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvBias, NCHW88_HYBRID); | |||
#endif | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvBias, NCHW44_DOT); | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvBias, NCHW44_HYBRID); | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvBias, NCHW44_DOT_HYBRID); | |||
@@ -925,10 +936,8 @@ StaticData::StaticData() { | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvolutionForward, NCHW); | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvolutionForward, NCHW4); | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvolutionForward, NCHW44); | |||
#if !MEGDNN_DISABLE_FLOAT16 | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvolutionForward, NCHW88); | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvolutionForward, NCHW88_HYBRID); | |||
#endif | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvolutionForward, NCHW44_DOT); | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvolutionForward, NCHW44_HYBRID); | |||
OPR_TENSOR_FORMATS_CONFIG_REG(ConvolutionForward, NCHW44_DOT_HYBRID); | |||
@@ -949,15 +958,11 @@ StaticData::StaticData() { | |||
OPR_SINGLE_IN_OUT_TENSOR_FORMATS_CONFIG_REG(PoolingForward, NCHW32); | |||
OPR_SINGLE_IN_OUT_TENSOR_FORMATS_CONFIG_REG(PoolingForward, NCHW64); | |||
OPR_SINGLE_IN_OUT_TENSOR_FORMATS_CONFIG_REG(PoolingForward, NCHW44); | |||
#if !MEGDNN_DISABLE_FLOAT16 | |||
OPR_SINGLE_IN_OUT_TENSOR_FORMATS_CONFIG_REG(PoolingForward, NCHW88); | |||
#endif | |||
OPR_SINGLE_IN_OUT_TENSOR_FORMATS_CONFIG_REG(ResizeForward, NCHW); | |||
OPR_SINGLE_IN_OUT_TENSOR_FORMATS_CONFIG_REG(ResizeForward, NCHW44); | |||
#if !MEGDNN_DISABLE_FLOAT16 | |||
OPR_SINGLE_IN_OUT_TENSOR_FORMATS_CONFIG_REG(ResizeForward, NCHW88); | |||
#endif | |||
#undef OPR_TENSOR_FORMATS_CONFIG_REG | |||
#undef OPR_SINGLE_IN_OUT_TENSOR_FORMATS_CONFIG_REG | |||
@@ -357,9 +357,8 @@ struct GraphTuningOptions { | |||
enum class Target : uint32_t { | |||
UNSPEC = 0, ///< unspecific device target | |||
CUDA = 1, ///< CUDA device, usually refer to GPU devices of Nvidia | |||
X86 = 2, ///< x86 cpu | |||
ARM = 3, ///< arm cpu | |||
OPENCL = 4, ///< opencl, usually run on mobile devices | |||
CPU = 2, ///< cpu | |||
OPENCL = 3, ///< opencl, usually run on mobile devices | |||
}; | |||
Target target; | |||
bool layout_transform = false; ///< whether to enable graph level | |||
@@ -23,7 +23,7 @@ | |||
#include "megbrain/plugin/profiler.h" | |||
#include "megbrain/serialization/serializer.h" | |||
#define MGB_WITH_CACHED_TEST 0 | |||
#define MGB_WITH_CACHED_TEST 1 | |||
#if MGB_WITH_CACHED_TEST | |||
#include "./cache_data.h" | |||
@@ -923,9 +923,196 @@ TEST(TestLayoutTransform, MobileNetV2) { | |||
HostTensorND t2; | |||
auto func2 = network.graph->compile({make_callback_copy(new_out_var, t2)}); | |||
func2->execute(); | |||
gprof.to_json_full(func2.get())->writeto_fpath(output_file("mobilenet_v2_f32.json")); | |||
gprof.to_json_full(func2.get()) | |||
->writeto_fpath(output_file("mobilenet_v2_f32.json")); | |||
/// check correct | |||
MGB_ASSERT_TENSOR_EQ(t1, t2); | |||
} | |||
TEST(TestLayoutTransform, MobileNetV2_NCHW88) { | |||
auto cn = CompNode::load("cpu0"); | |||
Network network(cn); | |||
auto output = make_mobilenet_v2(network, 1); | |||
HostTensorND t1; | |||
auto func1 = network.graph->compile({make_callback_copy(output, t1)}); | |||
func1->execute(); | |||
using OprFormatConfigID = LayoutTransformContext::OprFormatConfigID; | |||
using OprList = LayoutTransformContext::OprList; | |||
using Target = LayoutTransformContext::Target; | |||
using Attribute = LayoutTransformContext::Attribute; | |||
OprList opr_list = { | |||
opr::ConvBiasForward::typeinfo(), | |||
opr::ConvolutionForward::typeinfo(), | |||
opr::ElemwiseMultiType::typeinfo(), | |||
opr::Elemwise::typeinfo(), | |||
opr::TypeCvt::typeinfo(), | |||
opr::Concat::typeinfo(), | |||
opr::PoolingForward::typeinfo(), | |||
opr::WarpPerspectiveForward::typeinfo(), | |||
opr::Resize::typeinfo(), | |||
}; | |||
SmallVector<TensorFormats> available_tensor_formats = { | |||
TensorFormats::NCHW, | |||
TensorFormats::NCHWc4, | |||
TensorFormats::NCHWc8, | |||
}; | |||
Attribute attribute = { | |||
OprFormatConfigID::NCHW, TensorFormats::NCHW, Target::UNSPEC}; | |||
auto ctx = std::make_unique<LayoutTransformContext>( | |||
std::move(opr_list), std::move(available_tensor_formats), attribute); | |||
ctx->add_opr_config( | |||
opr::ConvBiasForward::typeinfo(), | |||
{ | |||
OprFormatConfigID::NCHW88, | |||
OprFormatConfigID::NCHW, | |||
OprFormatConfigID::NCHW88_HYBRID, | |||
}) | |||
.add_opr_config( | |||
opr::ConvolutionForward::typeinfo(), | |||
{ | |||
OprFormatConfigID::NCHW88, | |||
OprFormatConfigID::NCHW, | |||
OprFormatConfigID::NCHW88_HYBRID, | |||
}) | |||
.add_opr_config( | |||
opr::PoolingForward::typeinfo(), { | |||
OprFormatConfigID::NCHW, | |||
OprFormatConfigID::NCHW88, | |||
}); | |||
#if MGB_WITH_CACHED_TEST | |||
auto profiler = std::make_unique<ProfilerMock>( | |||
static_cast<const uint8_t*>(TestLayoutTransform_MobileNetV2_NCHW88.data()), | |||
TestLayoutTransform_MobileNetV2_NCHW88.size()); | |||
#else | |||
auto profiler = ProfilerBase::make_cached_profiler( | |||
"TestLayoutTransform.MobileNetV2_NCHW88.cache"); | |||
#endif | |||
std::unique_ptr<SolverBase> solver{ | |||
new DynamicProgrammingSolver(std::move(profiler))}; | |||
auto new_output = | |||
gopt::GraphOptimizer{} | |||
.add_pass<FuseConvBiasNonlinPass>() | |||
.add_pass<LayoutTransformPass>(std::move(ctx), std::move(solver)) | |||
.add_pass<ShuffleShuffleRemovePass>() | |||
.add_pass<ParamFusePass>() | |||
.add_pass<ParamMergePass>() | |||
.apply({{output}}) | |||
.endpoint_vars(); | |||
auto new_out_var = new_output[0]; | |||
/// check global layout transform pass | |||
auto nr_dimshuffle = find_opr_num<opr::Dimshuffle>(new_out_var); | |||
ASSERT_EQ(nr_dimshuffle, 1u); | |||
/// check first conv format | |||
const auto& first_conv = find_opr<opr::ConvBiasForward>(new_out_var); | |||
const auto& cast = first_conv.cast_final_safe<opr::ConvBiasForward>(); | |||
ASSERT_EQ(cast.param().format, opr::ConvBias::Param::Format::NCHW88); | |||
GraphProfiler gprof{network.graph.get()}; | |||
HostTensorND t2; | |||
auto func2 = network.graph->compile({make_callback_copy(new_out_var, t2)}); | |||
func2->execute(); | |||
gprof.to_json_full(func2.get()) | |||
->writeto_fpath(output_file("mobilenet_v2_nchw88.json")); | |||
/// check correct | |||
MGB_ASSERT_TENSOR_EQ(t1, t2); | |||
} | |||
TEST(TestLayoutTransform, MobileNetV2_NCHW44_DOT) { | |||
auto cn = CompNode::load("cpu0"); | |||
Network network(cn); | |||
auto output = make_mobilenet_v2(network, 1, dtype::QuantizedS8{1.f}); | |||
HostTensorND t1; | |||
auto func1 = network.graph->compile({make_callback_copy(output, t1)}); | |||
func1->execute(); | |||
using OprFormatConfigID = LayoutTransformContext::OprFormatConfigID; | |||
using OprList = LayoutTransformContext::OprList; | |||
using Target = LayoutTransformContext::Target; | |||
using Attribute = LayoutTransformContext::Attribute; | |||
OprList opr_list = { | |||
opr::ConvBiasForward::typeinfo(), | |||
opr::ConvolutionForward::typeinfo(), | |||
opr::ElemwiseMultiType::typeinfo(), | |||
opr::Elemwise::typeinfo(), | |||
opr::TypeCvt::typeinfo(), | |||
opr::Concat::typeinfo(), | |||
opr::PoolingForward::typeinfo(), | |||
opr::WarpPerspectiveForward::typeinfo(), | |||
opr::Resize::typeinfo(), | |||
}; | |||
SmallVector<TensorFormats> available_tensor_formats = { | |||
TensorFormats::NCHW, | |||
TensorFormats::NCHWc4, | |||
TensorFormats::NCHWc8, | |||
}; | |||
Attribute attribute = { | |||
OprFormatConfigID::NCHW, TensorFormats::NCHW, Target::UNSPEC}; | |||
auto ctx = std::make_unique<LayoutTransformContext>( | |||
std::move(opr_list), std::move(available_tensor_formats), attribute); | |||
ctx->add_opr_config( | |||
opr::ConvBiasForward::typeinfo(), | |||
{ | |||
OprFormatConfigID::NCHW, | |||
OprFormatConfigID::NCHW44, | |||
OprFormatConfigID::NCHW44_HYBRID, | |||
OprFormatConfigID::NCHW44_DOT, | |||
OprFormatConfigID::NCHW44_DOT_HYBRID, | |||
}) | |||
.add_opr_config( | |||
opr::ConvolutionForward::typeinfo(), | |||
{ | |||
OprFormatConfigID::NCHW, | |||
OprFormatConfigID::NCHW44, | |||
OprFormatConfigID::NCHW44_HYBRID, | |||
OprFormatConfigID::NCHW44_DOT, | |||
OprFormatConfigID::NCHW44_DOT_HYBRID, | |||
}) | |||
.add_opr_config( | |||
opr::PoolingForward::typeinfo(), { | |||
OprFormatConfigID::NCHW, | |||
OprFormatConfigID::NCHW44, | |||
}); | |||
#if MGB_WITH_CACHED_TEST | |||
auto profiler = std::make_unique<ProfilerMock>( | |||
static_cast<const uint8_t*>( | |||
TestLayoutTransform_MobileNetV2_NCHW44_DOT.data()), | |||
TestLayoutTransform_MobileNetV2_NCHW44_DOT.size()); | |||
#else | |||
auto profiler = ProfilerBase::make_cached_profiler( | |||
"TestLayoutTransform.MobileNetV2_NCHW44_DOT.cache"); | |||
#endif | |||
std::unique_ptr<SolverBase> solver{ | |||
new DynamicProgrammingSolver(std::move(profiler))}; | |||
auto new_output = | |||
gopt::GraphOptimizer{} | |||
.add_pass<FuseConvBiasNonlinPass>() | |||
.add_pass<LayoutTransformPass>(std::move(ctx), std::move(solver)) | |||
.add_pass<ShuffleShuffleRemovePass>() | |||
.add_pass<ParamFusePass>() | |||
.add_pass<ParamMergePass>() | |||
.apply({{output}}) | |||
.endpoint_vars(); | |||
auto new_out_var = new_output[0]; | |||
/// check global layout transform pass | |||
auto nr_dimshuffle = find_opr_num<opr::Dimshuffle>(new_out_var); | |||
ASSERT_EQ(nr_dimshuffle, 1u); | |||
/// check first conv format | |||
const auto& first_conv = find_opr<opr::ConvBiasForward>(new_out_var); | |||
const auto& cast = first_conv.cast_final_safe<opr::ConvBiasForward>(); | |||
ASSERT_EQ(cast.param().format, opr::ConvBias::Param::Format::NCHW44_DOT); | |||
GraphProfiler gprof{network.graph.get()}; | |||
HostTensorND t2; | |||
auto func2 = network.graph->compile({make_callback_copy(new_out_var, t2)}); | |||
func2->execute(); | |||
gprof.to_json_full(func2.get()) | |||
->writeto_fpath(output_file("mobilenet_v2_nchw44_dot.json")); | |||
/// check correct | |||
MGB_ASSERT_TENSOR_EQ(t1, t2); | |||
} | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -57,7 +57,10 @@ SymbolVar Network::add_group_conv( | |||
{groups, output_channels / groups, input_channels / groups, kern_size[0], | |||
kern_size[1]}); | |||
auto bias = add_cvar(ssprintf("b%d", bias_idx).c_str(), {1, output_channels, 1, 1}); | |||
mgb_assert(out_dtype.category() == DTypeCategory::FLOAT); | |||
if (out_dtype.category() == DTypeCategory::QUANTIZED) { | |||
weight = add_type_cvt(weight, out_dtype); | |||
bias = add_type_cvt(bias, dtype::QuantizedS32{1.f}); | |||
} | |||
opr::ConvBias::Param param; | |||
param.sparse = opr::ConvBias::Param::Sparse::GROUP; | |||
param.stride_h = stride[0], param.stride_w = stride[1]; | |||
@@ -68,8 +71,15 @@ SymbolVar Network::add_group_conv( | |||
param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY; | |||
} | |||
auto conv = opr::ConvBias::make( | |||
f, weight, bias, param, {}, OperatorNodeConfig{out_dtype}); | |||
weight_idx++; | |||
bias_idx++; | |||
SymbolVar conv; | |||
if (out_dtype.category() == DTypeCategory::QUANTIZED) { | |||
conv = opr::ConvBias::make( | |||
f, weight, bias, param, {}, OperatorNodeConfig{out_dtype}); | |||
} else { | |||
conv = opr::ConvBias::make(f, weight, bias, param, {}); | |||
} | |||
weight_idx++; | |||
bias_idx++; | |||
return conv; | |||
@@ -269,17 +279,17 @@ SymbolVarArray mgb::make_det(Network& network, size_t batch, DType out_dtype) { | |||
SymbolVar mgb::bottleneck( | |||
Network& network, SymbolVar f, size_t input_channels, size_t channels, size_t t, | |||
size_t stride) { | |||
size_t stride, DType out_dtype) { | |||
size_t in_channels = f.node()->shape()[1]; | |||
SymbolVar x = f; | |||
if (t != 1) { | |||
x = network.add_conv( | |||
f, input_channels * t, {1, 1}, dtype::Float32(), true, {1, 1}, {0, 0}); | |||
f, input_channels * t, {1, 1}, out_dtype, true, {1, 1}, {0, 0}); | |||
} | |||
x = network.add_group_conv( | |||
x, input_channels * t, input_channels * t, {3, 3}, dtype::Float32(), true, | |||
x, input_channels * t, input_channels * t, {3, 3}, out_dtype, true, | |||
{stride, stride}, {1, 1}); | |||
x = network.add_conv(x, channels, {1, 1}, dtype::Float32(), false, {1, 1}, {0, 0}); | |||
x = network.add_conv(x, channels, {1, 1}, out_dtype, false, {1, 1}, {0, 0}); | |||
if (stride == 1 && in_channels == channels) | |||
x = f + x; | |||
return x; | |||
@@ -287,11 +297,11 @@ SymbolVar mgb::bottleneck( | |||
SymbolVar mgb::bottleneck_group( | |||
Network& network, SymbolVar f, size_t input_channels, size_t channels, | |||
size_t stages, size_t s, size_t t) { | |||
size_t stages, size_t s, size_t t, DType out_dtype) { | |||
SymbolVar x = f; | |||
for (size_t i = 0; i < stages; ++i) { | |||
size_t stride = i == 0 ? s : 1; | |||
x = bottleneck(network, x, input_channels, channels, t, stride); | |||
x = bottleneck(network, x, input_channels, channels, t, stride, out_dtype); | |||
input_channels = channels; | |||
} | |||
return x; | |||
@@ -307,22 +317,34 @@ size_t make_divisible(size_t v, size_t divisor) { | |||
} | |||
} // namespace | |||
SymbolVar mgb::make_mobilenet_v2(Network& network, size_t batch) { | |||
SymbolVar mgb::make_mobilenet_v2(Network& network, size_t batch, DType out_dtype) { | |||
auto data = network.add_var("data", {batch, 3, 224, 224}); | |||
if (out_dtype.category() == DTypeCategory::QUANTIZED) { | |||
data = network.add_type_cvt(data, dtype::QuantizedS8{1.f}); | |||
} | |||
constexpr size_t round_nearest = 8; | |||
auto x = network.add_conv( | |||
data, make_divisible(32, round_nearest), {3, 3}, dtype::Float32(), true, | |||
{2, 2}, {1, 1}); | |||
x = bottleneck(network, x, 32, make_divisible(16, round_nearest), 1, 1); | |||
x = bottleneck_group(network, x, 16, make_divisible(24, round_nearest), 2, 2, 6); | |||
x = bottleneck_group(network, x, 24, make_divisible(32, round_nearest), 3, 2, 6); | |||
x = bottleneck_group(network, x, 32, make_divisible(64, round_nearest), 4, 2, 6); | |||
x = bottleneck_group(network, x, 64, make_divisible(96, round_nearest), 3, 1, 6); | |||
x = bottleneck_group(network, x, 96, make_divisible(160, round_nearest), 3, 2, 6); | |||
x = bottleneck_group(network, x, 160, make_divisible(320, round_nearest), 1, 1, 6); | |||
data, make_divisible(32, round_nearest), {3, 3}, out_dtype, true, {2, 2}, | |||
{1, 1}); | |||
x = bottleneck(network, x, 32, make_divisible(16, round_nearest), 1, 1, out_dtype); | |||
x = bottleneck_group( | |||
network, x, 16, make_divisible(24, round_nearest), 2, 2, 6, out_dtype); | |||
x = bottleneck_group( | |||
network, x, 24, make_divisible(32, round_nearest), 3, 2, 6, out_dtype); | |||
x = bottleneck_group( | |||
network, x, 32, make_divisible(64, round_nearest), 4, 2, 6, out_dtype); | |||
x = bottleneck_group( | |||
network, x, 64, make_divisible(96, round_nearest), 3, 1, 6, out_dtype); | |||
x = bottleneck_group( | |||
network, x, 96, make_divisible(160, round_nearest), 3, 2, 6, out_dtype); | |||
x = bottleneck_group( | |||
network, x, 160, make_divisible(320, round_nearest), 1, 1, 6, out_dtype); | |||
x = network.add_conv( | |||
x, make_divisible(1280, round_nearest), {1, 1}, dtype::Float32(), true, | |||
{1, 1}, {0, 0}); | |||
x, make_divisible(1280, round_nearest), {1, 1}, out_dtype, true, {1, 1}, | |||
{0, 0}); | |||
if (out_dtype.category() == DTypeCategory::QUANTIZED) { | |||
x = network.add_type_cvt(x, dtype::Float32()); | |||
} | |||
return x; | |||
} | |||
@@ -79,13 +79,14 @@ SymbolVarArray make_det( | |||
SymbolVar bottleneck( | |||
Network& network, SymbolVar f, size_t input_channels, size_t channels, size_t t, | |||
size_t stride); | |||
size_t stride, DType out_dtype = dtype::Float32()); | |||
SymbolVar bottleneck_group( | |||
Network& network, SymbolVar f, size_t input_channels, size_t channels, | |||
size_t stages, size_t s, size_t t); | |||
size_t stages, size_t s, size_t t, DType out_dtype = dtype::Float32()); | |||
SymbolVar make_mobilenet_v2(Network& network, size_t batch = 1); | |||
SymbolVar make_mobilenet_v2( | |||
Network& network, size_t batch = 1, DType out_dtype = dtype::Float32()); | |||
} // namespace mgb | |||