|
|
@@ -1409,36 +1409,6 @@ def conv1d( |
|
|
|
return output |
|
|
|
|
|
|
|
|
|
|
|
def nvof(src: Tensor, precision: int = 1) -> Tensor: |
|
|
|
r""" |
|
|
|
Implements NVIDIA Optical Flow SDK. |
|
|
|
|
|
|
|
:src shape: input tensor with shape (n, t, h, w, c4). |
|
|
|
:src dtype: uint8. |
|
|
|
:param precision: 0:NV_OF_PERF_LEVEL_SLOW 1:NV_OF_PERF_LEVEL_MEDIUM 2:NV_OF_PERF_LEVEL_FAST. |
|
|
|
:output shape: (n, t-1, h//4, w//4, c2). |
|
|
|
:output dtype: int16. |
|
|
|
|
|
|
|
.. code-block:: python |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
from megengine import tensor |
|
|
|
import megengine.functional as F |
|
|
|
|
|
|
|
x = np.random.random_integers(0, 255, (1,2,224,244,4)).astype("uint8") |
|
|
|
src = tensor(x) |
|
|
|
result = F.nn.nvof(src, precision=1) |
|
|
|
print(result.numpy()) |
|
|
|
|
|
|
|
""" |
|
|
|
assert src.ndim == 5 and src.shape[4] == 4 |
|
|
|
|
|
|
|
src = src.detach() |
|
|
|
|
|
|
|
op = builtin.NvOf(precision=precision) |
|
|
|
return apply(op, src)[0] |
|
|
|
|
|
|
|
|
|
|
|
def hswish(x): |
|
|
|
""" |
|
|
|
Element-wise `x * relu6(x + 3) / 6`. |
|
|
@@ -1492,6 +1462,7 @@ roi_align = deprecated_func("1.3", "megengine.functional.vision", "roi_align", T |
|
|
|
nms = deprecated_func("1.3", "megengine.functional.vision", "nms", True) |
|
|
|
resize = deprecated_func("1.3", "megengine.functional.vision", "resize", True) |
|
|
|
remap = deprecated_func("1.3", "megengine.functional.vision", "remap", True) |
|
|
|
nvof = deprecated_func("1.3", "megengine.functional.vision", "nvof", True) |
|
|
|
warp_affine = deprecated_func("1.3", "megengine.functional.vision", "warp_affine", True) |
|
|
|
warp_perspective = deprecated_func( |
|
|
|
"1.3", "megengine.functional.vision", "warp_perspective", True |
|
|
|