GitOrigin-RevId: 878bb8c955
release-1.5
@@ -1,5 +1,6 @@ | |||||
# Mark generated files as binary, ignore them in git diff. | # Mark generated files as binary, ignore them in git diff. | ||||
# dnn | # dnn | ||||
dnn/src/cuda/conv_bias/int4/kimpl/* binary | |||||
dnn/src/cuda/conv_bias/int8/kimpl/* binary | dnn/src/cuda/conv_bias/int8/kimpl/* binary | ||||
dnn/src/cuda/conv_bias/int8_imma/kimpl/* binary | dnn/src/cuda/conv_bias/int8_imma/kimpl/* binary | ||||
dnn/src/cuda/batch_conv_bias/int8/kimpl/* binary | dnn/src/cuda/batch_conv_bias/int8/kimpl/* binary | ||||
@@ -84,6 +84,9 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||||
for (auto&& algo : int8_nchw32_imma) { | for (auto&& algo : int8_nchw32_imma) { | ||||
all_algos.push_back(&algo); | all_algos.push_back(&algo); | ||||
} | } | ||||
for (auto&& algo : int4_int4_nchw64_imma) { | |||||
all_algos.push_back(&algo); | |||||
} | |||||
#endif | #endif | ||||
#endif | #endif | ||||
fill_dp4a_algos(); | fill_dp4a_algos(); | ||||
@@ -225,6 +228,12 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() { | |||||
int8_nchw32_imma.emplace_back(AlgoParam{64, 64, 64, 32, 32, 64}); | int8_nchw32_imma.emplace_back(AlgoParam{64, 64, 64, 32, 32, 64}); | ||||
int8_nchw32_imma.emplace_back(AlgoParam{32, 64, 64, 32, 16, 64}); | int8_nchw32_imma.emplace_back(AlgoParam{32, 64, 64, 32, 16, 64}); | ||||
} | } | ||||
{ | |||||
using AlgoParam = AlgoInt4Int4NCHW64IMMAImplicitGemm::AlgoParam; | |||||
int4_int4_nchw64_imma.emplace_back(AlgoParam{128, 128, 128, 64, 64, 128}); | |||||
int4_int4_nchw64_imma.emplace_back(AlgoParam{256, 128, 128, 64, 64, 128}); | |||||
} | |||||
#endif | #endif | ||||
} | } | ||||
#endif | #endif | ||||
@@ -61,6 +61,7 @@ public: | |||||
CUDA_IMPLICIT_GEMM_REORDER_FILTER_CHWN4_IMMA_INT8, | CUDA_IMPLICIT_GEMM_REORDER_FILTER_CHWN4_IMMA_INT8, | ||||
CUDA_IMPLICIT_GEMM_UNROLL_WIDTH_CHWN4_IMMA_INT8, | CUDA_IMPLICIT_GEMM_UNROLL_WIDTH_CHWN4_IMMA_INT8, | ||||
CUDA_IMPLICIT_GEMM_IMMA_NCHW32_INT8, | CUDA_IMPLICIT_GEMM_IMMA_NCHW32_INT8, | ||||
CUDA_IMPLICIT_GEMM_IMMA_NCHW64_INT4_INT4, | |||||
CUDA_BFLOAT16, | CUDA_BFLOAT16, | ||||
CUDA_IMPLICIT_GEMM_SASS_NCHW4_DOTPROD_INT8, | CUDA_IMPLICIT_GEMM_SASS_NCHW4_DOTPROD_INT8, | ||||
CUDA_IMPLICIT_GEMM_1X1_SASS_NCHW4_DOTPROD_INT8, | CUDA_IMPLICIT_GEMM_1X1_SASS_NCHW4_DOTPROD_INT8, | ||||
@@ -762,6 +763,53 @@ private: | |||||
AlgoParam m_algo_param; | AlgoParam m_algo_param; | ||||
std::string m_name; | std::string m_name; | ||||
}; | }; | ||||
class ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm final | |||||
: public AlgoBase { | |||||
public: | |||||
struct AlgoParam { | |||||
int threadblock_m; | |||||
int threadblock_n; | |||||
int threadblock_k; | |||||
int warp_m; | |||||
int warp_n; | |||||
int warp_k; | |||||
}; | |||||
AlgoInt4Int4NCHW64IMMAImplicitGemm(AlgoParam algo_param) | |||||
: m_algo_param{algo_param} { | |||||
m_name = ConvBias::algo_name<ConvBias::DirectParam>( | |||||
ssprintf("INT4_INT4_NCHW64_IMMA_IMPLICIT_GEMM_%s", | |||||
to_string(m_algo_param).c_str()), | |||||
ConvBias::DirectParam{}); | |||||
} | |||||
bool is_available(const SizeArgs& args) const override; | |||||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||||
void exec(const ExecArgs& args) const override; | |||||
const char* name() const override { return m_name.c_str(); } | |||||
AlgoAttribute attribute() const override { | |||||
return AlgoAttribute::REPRODUCIBLE; | |||||
} | |||||
static std::string to_string(AlgoParam algo_param); | |||||
size_t get_preprocess_workspace_in_bytes( | |||||
const SizeArgs& args) const override; | |||||
SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | |||||
const SizeArgs& args) const override; | |||||
void exec_preprocess(const ExecArgs& args) const override; | |||||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_GEMM_IMMA_NCHW64_INT4_INT4) | |||||
std::string param() const override { | |||||
std::string ret; | |||||
serialize_write_pod(m_algo_param, ret); | |||||
return ret; | |||||
} | |||||
private: | |||||
WorkspaceBundle get_workspace_bundle(dt_byte* raw_ptr, | |||||
const SizeArgs& args) const; | |||||
AlgoParam m_algo_param; | |||||
std::string m_name; | |||||
}; | |||||
#endif | #endif | ||||
class ConvBiasForwardImpl::AlgoBFloat16 final : public AlgoBase { | class ConvBiasForwardImpl::AlgoBFloat16 final : public AlgoBase { | ||||
@@ -819,6 +867,7 @@ public: | |||||
#endif | #endif | ||||
#if CUDA_VERSION >= 10020 | #if CUDA_VERSION >= 10020 | ||||
std::vector<AlgoInt8NCHW32IMMAImplicitGemm> int8_nchw32_imma; | std::vector<AlgoInt8NCHW32IMMAImplicitGemm> int8_nchw32_imma; | ||||
std::vector<AlgoInt4Int4NCHW64IMMAImplicitGemm> int4_int4_nchw64_imma; | |||||
#endif | #endif | ||||
std::vector<std::unique_ptr<AlgoGroupConvGeneral>> gconv_refhold; | std::vector<std::unique_ptr<AlgoGroupConvGeneral>> gconv_refhold; | ||||
AlgoBFloat16 bfloat16; | AlgoBFloat16 bfloat16; | ||||
@@ -25,8 +25,8 @@ using namespace megdnn; | |||||
using namespace cuda; | using namespace cuda; | ||||
using namespace cutlass_wrapper; | using namespace cutlass_wrapper; | ||||
/* ================= cutlass kernel wrapper for nchw32 layout ================ | |||||
*/ | |||||
/* ====== cutlass kernel wrapper for int8 nchw32 layout ====== */ | |||||
#if MEGDNN_TEGRA_X1 | #if MEGDNN_TEGRA_X1 | ||||
template <bool NeedLoadFromConstMem> | template <bool NeedLoadFromConstMem> | ||||
void megdnn::cuda::cutlass_wrapper:: | void megdnn::cuda::cutlass_wrapper:: | ||||
@@ -149,7 +149,8 @@ INST(true); | |||||
INST(false); | INST(false); | ||||
#undef INST | #undef INST | ||||
/* ==== cutlass kernel wrapper for nchw32 layout and nchw4 output ===== */ | |||||
/* ===== cutlass kernel wrapper for int8 nchw32 layout and nchw4 output ===== */ | |||||
#if MEGDNN_TEGRA_X1 | #if MEGDNN_TEGRA_X1 | ||||
template <bool NeedLoadFromConstMem> | template <bool NeedLoadFromConstMem> | ||||
void megdnn::cuda::cutlass_wrapper:: | void megdnn::cuda::cutlass_wrapper:: | ||||
@@ -272,7 +273,8 @@ INST(true); | |||||
INST(false); | INST(false); | ||||
#undef INST | #undef INST | ||||
/* ================ cutlass kernel wrapper for nchw4 layout ================= */ | |||||
/* ====== cutlass kernel wrapper for int8 nchw4 layout ====== */ | |||||
#if MEGDNN_TEGRA_X1 | #if MEGDNN_TEGRA_X1 | ||||
template <bool NeedLoadFromConstMem> | template <bool NeedLoadFromConstMem> | ||||
void megdnn::cuda::cutlass_wrapper:: | void megdnn::cuda::cutlass_wrapper:: | ||||
@@ -401,7 +403,8 @@ INST(true); | |||||
INST(false); | INST(false); | ||||
#undef INST | #undef INST | ||||
/* ===== cutlass kernel wrapper for nchw4 layout and nchw output ===== */ | |||||
/* ====== cutlass kernel wrapper for int8 nchw4 layout and nchw output ====== */ | |||||
#if MEGDNN_TEGRA_X1 | #if MEGDNN_TEGRA_X1 | ||||
template <bool NeedLoadFromConstMem> | template <bool NeedLoadFromConstMem> | ||||
void megdnn::cuda::cutlass_wrapper:: | void megdnn::cuda::cutlass_wrapper:: | ||||
@@ -531,7 +534,8 @@ INST(true); | |||||
INST(false); | INST(false); | ||||
#undef INST | #undef INST | ||||
/* ====== cutlass kernel wrapper for nchw4 layout and nchw32 output ====== */ | |||||
/* ===== cutlass kernel wrapper for int8 nchw4 layout and nchw32 output ===== */ | |||||
#if MEGDNN_TEGRA_X1 | #if MEGDNN_TEGRA_X1 | ||||
template <bool NeedLoadFromConstMem> | template <bool NeedLoadFromConstMem> | ||||
void megdnn::cuda::cutlass_wrapper:: | void megdnn::cuda::cutlass_wrapper:: | ||||
@@ -658,4 +662,125 @@ INST(true); | |||||
INST(false); | INST(false); | ||||
#undef INST | #undef INST | ||||
/* ====== cutlass kernel wrapper for int4 nchw64 layout ====== */ | |||||
#if MEGDNN_TEGRA_X1 | |||||
template <bool NeedLoadFromConstMem> | |||||
void megdnn::cuda::cutlass_wrapper:: | |||||
do_conv_bias_int4_int4_implicit_gemm_imma_ncdiv64hw64( | |||||
const int8_t* /* d_src */, const int8_t* /* d_filter */, | |||||
const int32_t* /* d_bias */, const int8_t* /* d_z */, | |||||
int8_t* /* d_dst */, int* /* workspace */, | |||||
const convolution::ConvParam& /* param */, | |||||
uint32_t /* nonlinear_mode */, float /* alpha */, | |||||
float /* beta */, float /* gamma */, float /* scale */, | |||||
const GemmCoord& /* threadblock_shape */, | |||||
const GemmCoord& /* warp_shape */, cudaStream_t /* stream */) {} | |||||
#else | |||||
template <bool NeedLoadFromConstMem> | |||||
void megdnn::cuda::cutlass_wrapper:: | |||||
do_conv_bias_int4_int4_implicit_gemm_imma_ncdiv64hw64( | |||||
const int8_t* d_src, const int8_t* d_filter, | |||||
const int32_t* d_bias, const int8_t* d_z, int8_t* d_dst, | |||||
int* workspace, const convolution::ConvParam& param, | |||||
uint32_t nonlinear_mode, float alpha, float beta, float gamma, | |||||
float scale, const GemmCoord& threadblock_shape, | |||||
const GemmCoord& warp_shape, cudaStream_t stream) { | |||||
#define DISPATCH_KERNEL_WITH_TILE_SHAPE(threadblock_m_, threadblock_n_, \ | |||||
threadblock_k_, warp_m_, warp_n_, \ | |||||
warp_k_) \ | |||||
if (threadblock_shape.m() == threadblock_m_ && \ | |||||
threadblock_shape.n() == threadblock_n_ && \ | |||||
threadblock_shape.k() == threadblock_k_ && \ | |||||
warp_shape.m() == warp_m_ && warp_shape.n() == warp_n_ && \ | |||||
warp_shape.k() == warp_k_) { \ | |||||
using ThreadBlockShape = \ | |||||
cutlass::gemm::GemmShape<threadblock_m_, threadblock_n_, \ | |||||
threadblock_k_>; \ | |||||
using WarpShape = cutlass::gemm::GemmShape<warp_m_, warp_n_, warp_k_>; \ | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; \ | |||||
using Convolution = cutlass::conv::device::Convolution< \ | |||||
cutlass::int4b_t, cutlass::layout::TensorNCxHWx<64>, \ | |||||
cutlass::int4b_t, cutlass::layout::TensorCxRSKx<64>, \ | |||||
ElementOutput, cutlass::layout::TensorNCxHWx<64>, int32_t, \ | |||||
cutlass::layout::TensorNCxHWx<64>, int32_t, \ | |||||
cutlass::conv::ConvType::kConvolution, \ | |||||
cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, \ | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, \ | |||||
cutlass::conv::threadblock:: \ | |||||
ConvolutionFpropNCxHWxThreadblockSwizzle, \ | |||||
2, 32, 32, NeedLoadFromConstMem>; \ | |||||
typename Convolution::ConvolutionParameter conv_param( \ | |||||
param.n, param.hi, param.wi, param.ci, param.co, param.fh, \ | |||||
param.fw, param.ho, param.wo, param.ph, param.pw, param.sh, \ | |||||
param.sw, 1, 1, cutlass::conv::Mode::kCrossCorrelation); \ | |||||
return cutlass_convolution_wrapper<Convolution>( \ | |||||
reinterpret_cast<const cutlass::int4b_t*>(d_src), \ | |||||
reinterpret_cast<const cutlass::int4b_t*>(d_filter), d_bias, \ | |||||
reinterpret_cast<const cutlass::int4b_t*>(d_z), \ | |||||
reinterpret_cast<cutlass::int4b_t*>(d_dst), workspace, \ | |||||
conv_param, epilogue, stream); \ | |||||
} | |||||
#define DISPATCH_KERNEL \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 128, 128, 64, 64, 128); \ | |||||
DISPATCH_KERNEL_WITH_TILE_SHAPE(256, 128, 128, 64, 64, 128); \ | |||||
megdnn_assert(false, \ | |||||
"unsupported threadblock shape (%dx%dx%d) and warp shape " \ | |||||
"(%dx%dx%d)", \ | |||||
threadblock_shape.m(), threadblock_shape.n(), \ | |||||
threadblock_shape.k(), warp_shape.m(), warp_shape.n(), \ | |||||
warp_shape.k()); | |||||
using ElementOutput = cutlass::int4b_t; | |||||
using ElementAccumulator = int32_t; | |||||
using ElementBias = int32_t; | |||||
using ElementCompute = float; | |||||
using NonlineMode = megdnn::param_enumv::ConvBias::NonlineMode; | |||||
switch (nonlinear_mode) { | |||||
case NonlineMode::IDENTITY: { | |||||
using EpilogueOp = | |||||
cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
ElementOutput, 16, ElementAccumulator, ElementBias, | |||||
ElementCompute>; | |||||
typename EpilogueOp::Params epilogue{alpha, beta, gamma}; | |||||
DISPATCH_KERNEL; | |||||
} | |||||
case NonlineMode::RELU: { | |||||
using EpilogueOp = cutlass::epilogue::thread:: | |||||
BiasAddLinearCombinationReluClamp< | |||||
ElementOutput, 16, ElementAccumulator, ElementBias, | |||||
ElementCompute>; | |||||
typename EpilogueOp::Params epilogue{alpha, beta, gamma, 0}; | |||||
DISPATCH_KERNEL; | |||||
} | |||||
case NonlineMode::H_SWISH: { | |||||
using EpilogueOp = cutlass::epilogue::thread:: | |||||
BiasAddLinearCombinationHSwishClamp< | |||||
ElementOutput, 16, ElementAccumulator, ElementBias, | |||||
ElementCompute>; | |||||
typename EpilogueOp::Params epilogue{alpha, beta, gamma, scale}; | |||||
DISPATCH_KERNEL; | |||||
} | |||||
default: | |||||
megdnn_assert(false, | |||||
"unsupported nonlinear mode for conv bias operator"); | |||||
} | |||||
#undef DISPATCH_KERNEL_WITH_TILE_SHAPE | |||||
#undef DISPATCH_KERNEL | |||||
} | |||||
#endif | |||||
#define INST(need_load_from_const_mem) \ | |||||
template void megdnn::cuda::cutlass_wrapper:: \ | |||||
do_conv_bias_int4_int4_implicit_gemm_imma_ncdiv64hw64< \ | |||||
need_load_from_const_mem>( \ | |||||
const int8_t* d_src, const int8_t* d_filter, \ | |||||
const int32_t* d_bias, const int8_t* d_z, int8_t* d_dst, \ | |||||
int* workspace, const convolution::ConvParam& param, \ | |||||
uint32_t nonlinear_mode, float alpha, float beta, \ | |||||
float gamma, float scale, \ | |||||
const GemmCoord& threadblock_shape, \ | |||||
const GemmCoord& warp_shape, cudaStream_t stream); | |||||
INST(true); | |||||
#undef INST | |||||
// vim: syntax=cuda.doxygen | // vim: syntax=cuda.doxygen |
@@ -76,6 +76,15 @@ void do_conv_bias_int8_implicit_gemm_dp4a_ncdiv4hw4_ncdiv32hw32( | |||||
const GemmCoord& threadblock_shape, const GemmCoord& warp_shape, | const GemmCoord& threadblock_shape, const GemmCoord& warp_shape, | ||||
int stages, cudaStream_t stream); | int stages, cudaStream_t stream); | ||||
template <bool NeedLoadFromConstMem> | |||||
void do_conv_bias_int4_int4_implicit_gemm_imma_ncdiv64hw64( | |||||
const int8_t* d_src, const int8_t* d_filter, const int32_t* d_bias, | |||||
const int8_t* d_z, int8_t* d_dst, int* workspace, | |||||
const convolution::ConvParam& param, uint32_t nonlinear_mode, | |||||
float alpha, float beta, float gamma, float scale, | |||||
const GemmCoord& threadblock_shape, const GemmCoord& warp_shape, | |||||
cudaStream_t stream); | |||||
} // namespace cutlass_wrapper | } // namespace cutlass_wrapper | ||||
} // namespace cuda | } // namespace cuda | ||||
} // namespace megdnn | } // namespace megdnn | ||||
@@ -0,0 +1,209 @@ | |||||
/** | |||||
* \file dnn/src/cuda/conv_bias/implicit_gemm_int4_nchw64_imma.cpp | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include "./algo.h" | |||||
#include "src/common/conv_bias.h" | |||||
#include "src/cuda/conv_bias/cutlass_convolution_wrapper.cuh" | |||||
#include "src/cuda/convolution_helper/parameter.cuh" | |||||
#include "src/cuda/utils.h" | |||||
using namespace megdnn; | |||||
using namespace cuda; | |||||
using namespace convolution; | |||||
#if CUDA_VERSION >= 10020 | |||||
bool ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::is_available( | |||||
const SizeArgs& args) const { | |||||
if (args.bias_layout->ndim <= 0) | |||||
return false; | |||||
using Param = param::ConvBias; | |||||
using Format = Param::Format; | |||||
using Sparse = Param::Sparse; | |||||
using Mode = Param::Mode; | |||||
using NonlineMode = megdnn::param::ConvBias::NonlineMode; | |||||
auto&& param = args.opr->param(); | |||||
if (!check_bias_share_in_channel(*(args.bias_layout), param.format)) | |||||
return false; | |||||
if (param.format != Format::NCHW64 || param.sparse != Sparse::DENSE || | |||||
param.mode != Mode::CROSS_CORRELATION) | |||||
return false; | |||||
if (param.nonlineMode != NonlineMode::IDENTITY && | |||||
param.nonlineMode != NonlineMode::RELU && | |||||
param.nonlineMode != NonlineMode::H_SWISH) | |||||
return false; | |||||
if (args.src_layout->dtype.enumv() != DTypeEnum::QuantizedS4 || | |||||
args.filter_layout->dtype.enumv() != DTypeEnum::QuantizedS4 || | |||||
args.bias_layout->dtype.enumv() != DTypeEnum::QuantizedS32 || | |||||
args.dst_layout->dtype.enumv() != DTypeEnum::QuantizedS4) | |||||
return false; | |||||
if (!is_compute_capability_required(7, 5)) | |||||
return false; | |||||
return true; | |||||
} | |||||
WorkspaceBundle | |||||
ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::get_workspace_bundle( | |||||
dt_byte* raw_ptr, const SizeArgs& args) const { | |||||
if (args.preprocessed_filter) { | |||||
return WorkspaceBundle{raw_ptr, {}}; | |||||
} else { | |||||
size_t ws_filter = args.filter_layout->span().dist_byte(); | |||||
return WorkspaceBundle{raw_ptr, {ws_filter}}; | |||||
} | |||||
} | |||||
size_t | |||||
ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::get_workspace_in_bytes( | |||||
const SizeArgs& args) const { | |||||
return get_workspace_bundle(nullptr, args).total_size_in_bytes(); | |||||
} | |||||
void ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::exec( | |||||
const ExecArgs& args) const { | |||||
using Format = Param::Format; | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
size_t n = args.src_layout->operator[](0), | |||||
ci = args.src_layout->operator[](1) * 64, | |||||
hi = args.src_layout->operator[](2), | |||||
wi = args.src_layout->operator[](3); | |||||
size_t co = args.dst_layout->operator[](1) * 64, | |||||
ho = args.dst_layout->operator[](2), | |||||
wo = args.dst_layout->operator[](3); | |||||
UNPACK_CONV_PARAMETER(fm, param); | |||||
MARK_USED_VAR | |||||
auto&& stream = cuda_stream(args.opr->handle()); | |||||
int8_t* filter_ptr = nullptr; | |||||
if (args.preprocessed_filter == nullptr) { | |||||
filter_ptr = reinterpret_cast<int8_t*>(args.workspace.raw_ptr); | |||||
// reformat filter from nchw64 to chwn64 | |||||
TensorLayout src{{co, ci / 64, fh, fw, 64}, dtype::QuantizedS4()}; | |||||
src.init_contiguous_stride(); | |||||
TensorLayout dst = src; | |||||
dst.stride[0] = 64; | |||||
dst.stride[1] = co * fh * fw * 64; | |||||
dst.stride[2] = co * fw * 64; | |||||
dst.stride[3] = co * 64; | |||||
dst.stride[4] = 1; | |||||
TensorND ts_src, ts_dst; | |||||
ts_src.raw_ptr = args.filter_tensor->raw_ptr; | |||||
ts_src.layout = src; | |||||
ts_dst.raw_ptr = args.workspace.raw_ptr; | |||||
ts_dst.layout = dst; | |||||
auto&& transpose = | |||||
args.opr->handle()->create_operator<RelayoutForward>(); | |||||
transpose->exec(ts_src, ts_dst); | |||||
} else { | |||||
filter_ptr = reinterpret_cast<int8_t*>( | |||||
args.preprocessed_filter->tensors[0].raw_ptr); | |||||
} | |||||
ConvParam kern_param; | |||||
kern_param.n = n, kern_param.co = co, kern_param.ci = ci, | |||||
kern_param.hi = hi, kern_param.wi = wi, kern_param.ho = ho, | |||||
kern_param.wo = wo, kern_param.ph = ph, kern_param.pw = pw, | |||||
kern_param.sh = sh, kern_param.sw = sw, kern_param.fh = fh, | |||||
kern_param.fw = fw; | |||||
float src_scale = args.src_layout->dtype.param<dtype::QuantizedS4>().scale, | |||||
filter_scale = | |||||
args.filter_layout->dtype.param<dtype::QuantizedS4>().scale, | |||||
bias_scale = | |||||
args.bias_layout->dtype.param<dtype::QuantizedS32>().scale, | |||||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | |||||
float alpha = src_scale * filter_scale / dst_scale, | |||||
beta = bias_scale / dst_scale; | |||||
int8_t* z_dev_ptr = nullptr; | |||||
float gamma = 0.f; | |||||
if (args.z_layout->ndim > 0) { | |||||
z_dev_ptr = reinterpret_cast<int8_t*>(args.z_tensor->raw_ptr); | |||||
float z_scale = args.z_layout->dtype.param<dtype::QuantizedS4>().scale; | |||||
gamma = z_scale / dst_scale; | |||||
} | |||||
uint32_t nonlinear_mode = static_cast<uint32_t>(param.nonlineMode); | |||||
cutlass_wrapper::do_conv_bias_int4_int4_implicit_gemm_imma_ncdiv64hw64< | |||||
true>( | |||||
reinterpret_cast<int8_t*>(args.src_tensor->raw_ptr), filter_ptr, | |||||
args.bias_tensor->compatible_ptr<int32_t>(), z_dev_ptr, | |||||
reinterpret_cast<int8_t*>(args.dst_tensor->raw_ptr), nullptr, | |||||
kern_param, nonlinear_mode, alpha, beta, gamma, dst_scale, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, m_algo_param.warp_n, | |||||
m_algo_param.warp_k}, | |||||
stream); | |||||
} | |||||
std::string ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::to_string( | |||||
AlgoParam algo_param) { | |||||
return ssprintf("%uX%uX%u_%uX%uX%u", algo_param.threadblock_m, | |||||
algo_param.threadblock_n, algo_param.threadblock_k, | |||||
algo_param.warp_m, algo_param.warp_n, algo_param.warp_k); | |||||
} | |||||
size_t ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm:: | |||||
get_preprocess_workspace_in_bytes(const SizeArgs& args) const { | |||||
return 0_z; | |||||
} | |||||
SmallVector<TensorLayout> ConvBiasForwardImpl:: | |||||
AlgoInt4Int4NCHW64IMMAImplicitGemm::deduce_preprocessed_filter_layout( | |||||
const SizeArgs& args) const { | |||||
return {args.filter_layout->collapse_contiguous()}; | |||||
} | |||||
void ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::exec_preprocess( | |||||
const ExecArgs& args) const { | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
size_t n = args.src_layout->operator[](0), | |||||
ci = args.src_layout->operator[](1) * 64, | |||||
hi = args.src_layout->operator[](2), | |||||
wi = args.src_layout->operator[](3); | |||||
size_t co = args.dst_layout->operator[](1) * 64, | |||||
ho = args.dst_layout->operator[](2), | |||||
wo = args.dst_layout->operator[](3); | |||||
UNPACK_CONV_PARAMETER(fm, param); | |||||
MARK_USED_VAR | |||||
TensorLayout src{{co, ci / 64, fh, fw, 64}, dtype::QuantizedS4()}; | |||||
src.init_contiguous_stride(); | |||||
TensorLayout dst = src; | |||||
dst.stride[0] = 64; | |||||
dst.stride[1] = co * fh * fw * 64; | |||||
dst.stride[2] = co * fw * 64; | |||||
dst.stride[3] = co * 64; | |||||
dst.stride[4] = 1; | |||||
TensorND ts_src, ts_dst; | |||||
ts_src.raw_ptr = args.filter_tensor->raw_ptr; | |||||
ts_src.layout = src; | |||||
ts_dst.raw_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | |||||
ts_dst.layout = dst; | |||||
auto&& transpose = args.opr->handle()->create_operator<RelayoutForward>(); | |||||
transpose->exec(ts_src, ts_dst); | |||||
} | |||||
#endif | |||||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1 @@ | |||||
../int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl |
@@ -0,0 +1,36 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_int4_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int4/conv_bias_int4_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<64>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<64>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<64>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 128>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
cutlass::int4b_t, 16, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::conv::device::Convolution< | |||||
cutlass::int4b_t, LayoutSrc, cutlass::int4b_t, LayoutFilter, cutlass::int4b_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::conv::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::conv::threadblock::ConvolutionFpropNCxHWxThreadblockSwizzle, | |||||
2, 32, 32, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,36 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_int4_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int4/conv_bias_int4_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<64>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<64>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<64>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 128>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
cutlass::int4b_t, 16, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::conv::device::Convolution< | |||||
cutlass::int4b_t, LayoutSrc, cutlass::int4b_t, LayoutFilter, cutlass::int4b_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::conv::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::conv::threadblock::ConvolutionFpropNCxHWxThreadblockSwizzle, | |||||
2, 32, 32, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,36 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_int4_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int4/conv_bias_int4_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<64>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<64>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<64>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<128, 128, 128>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
cutlass::int4b_t, 16, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::conv::device::Convolution< | |||||
cutlass::int4b_t, LayoutSrc, cutlass::int4b_t, LayoutFilter, cutlass::int4b_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::conv::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::conv::threadblock::ConvolutionFpropNCxHWxThreadblockSwizzle, | |||||
2, 32, 32, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,36 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_int4_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int4/conv_bias_int4_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<64>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<64>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<64>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 128>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||||
cutlass::int4b_t, 16, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::conv::device::Convolution< | |||||
cutlass::int4b_t, LayoutSrc, cutlass::int4b_t, LayoutFilter, cutlass::int4b_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::conv::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::conv::threadblock::ConvolutionFpropNCxHWxThreadblockSwizzle, | |||||
2, 32, 32, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,36 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_int4_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int4/conv_bias_int4_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<64>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<64>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<64>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 128>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||||
cutlass::int4b_t, 16, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::conv::device::Convolution< | |||||
cutlass::int4b_t, LayoutSrc, cutlass::int4b_t, LayoutFilter, cutlass::int4b_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::conv::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::conv::threadblock::ConvolutionFpropNCxHWxThreadblockSwizzle, | |||||
2, 32, 32, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -0,0 +1,36 @@ | |||||
#if !MEGDNN_TEGRA_X1 | |||||
// generated by gen_cuda_conv_bias_int4_kern_impls.py | |||||
// ignore warning of cutlass | |||||
#pragma GCC diagnostic push | |||||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||||
#include "src/cuda/conv_bias/int4/conv_bias_int4_implicit_gemm_cutlass_wrapper.cuinl" | |||||
using LayoutSrc = cutlass::layout::TensorNCxHWx<64>; | |||||
using LayoutFilter = cutlass::layout::TensorCxRSKx<64>; | |||||
using LayoutDst = cutlass::layout::TensorNCxHWx<64>; | |||||
using ThreadBlockShape = cutlass::gemm::GemmShape<256, 128, 128>; | |||||
using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; | |||||
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; | |||||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||||
cutlass::int4b_t, 16, int32_t, int32_t, float>; | |||||
using Convolution = cutlass::conv::device::Convolution< | |||||
cutlass::int4b_t, LayoutSrc, cutlass::int4b_t, LayoutFilter, cutlass::int4b_t, | |||||
LayoutDst, int32_t, LayoutDst, int32_t, | |||||
cutlass::conv::ConvType::kConvolution, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, | |||||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||||
cutlass::conv::threadblock::ConvolutionFpropNCxHWxThreadblockSwizzle, | |||||
2, 32, 32, true, | |||||
cutlass::arch::OpMultiplyAddSaturate>; | |||||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||||
const typename Convolution::ElementSrc* d_src, | |||||
const typename Convolution::ElementFilter* d_filter, | |||||
const typename Convolution::ElementBias* d_bias, | |||||
const typename Convolution::ElementDst* d_z, | |||||
typename Convolution::ElementDst* d_dst, | |||||
int* workspace, | |||||
typename Convolution::ConvolutionParameter const& conv_param, | |||||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||||
cudaStream_t stream); | |||||
#pragma GCC diagnostic pop | |||||
#endif |
@@ -64,6 +64,7 @@ public: | |||||
class AlgoInt8CHWN4IMMAImplicitGemmReorderFilter; | class AlgoInt8CHWN4IMMAImplicitGemmReorderFilter; | ||||
class AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth; | class AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth; | ||||
class AlgoInt8NCHW32IMMAImplicitGemm; | class AlgoInt8NCHW32IMMAImplicitGemm; | ||||
class AlgoInt4Int4NCHW64IMMAImplicitGemm; | |||||
class AlgoBFloat16; | class AlgoBFloat16; | ||||
class AlgoPack; | class AlgoPack; | ||||
@@ -689,7 +689,7 @@ TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_1x1_ALGO_2) { | |||||
} | } | ||||
TEST_F(CUDA, CUTLASS_WEIGHT_PREPROCESS) { | |||||
TEST_F(CUDA, CUTLASS_INT8_WEIGHT_PREPROCESS) { | |||||
require_compute_capability(6, 1); | require_compute_capability(6, 1); | ||||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | ||||
handle_cuda()); | handle_cuda()); | ||||