This reverts commit d17cd60d3b
.
revert-211-master
@@ -15,7 +15,6 @@ from ..core._imperative_rt.ops import SubgraphBuilder as _SubgraphBuilder | |||||
from ..core.ops import builtin | from ..core.ops import builtin | ||||
from ..core.ops.builtin import ( | from ..core.ops.builtin import ( | ||||
BatchNorm, | BatchNorm, | ||||
Dimshuffle, | |||||
Elemwise, | Elemwise, | ||||
GetVarShape, | GetVarShape, | ||||
Identity, | Identity, | ||||
@@ -87,7 +86,6 @@ __all__ = [ | |||||
"sync_batch_norm", | "sync_batch_norm", | ||||
"warp_affine", | "warp_affine", | ||||
"warp_perspective", | "warp_perspective", | ||||
"pixel_shuffle", | |||||
] | ] | ||||
@@ -1735,69 +1733,6 @@ def pad( | |||||
return output | return output | ||||
@lru_cache(maxsize=None) | |||||
def _get_layerPixelShuffle(device, dtype, dim_order): | |||||
@subgraph("LayerPixelShuffle", dtype, device, 3) | |||||
def layerPixelShuffle(inputs, f, c): | |||||
inp, shape_0, shape_1 = inputs | |||||
inp = f(Reshape(), inp, shape_0) | |||||
inp = f(Dimshuffle(dim_order), inp) | |||||
oup = f(Reshape(), inp, shape_1) | |||||
return (oup,), (True,) | |||||
return layerPixelShuffle | |||||
def pixel_shuffle(inp: Tensor, upscale_factor: int) -> Tensor: | |||||
""" | |||||
Rearranges elements in a tensor of shape (*, C x r^2, H, W) to a tensor of | |||||
shape (*, C, H x r, W x r), where r is an upscale factor, where * is zero | |||||
or more batch dimensions. | |||||
:param inp: input tensor. | |||||
:param upscale_factor: upscale factor of pixel_shuffle. | |||||
:return: output tensor. | |||||
""" | |||||
assert upscale_factor > 0, "upscale_factor should larger than 0" | |||||
assert inp.ndim >= 3, "the input dimension of pixel_shuffle should be larger than 3" | |||||
assert ( | |||||
inp.shape[-3] % (upscale_factor ** 2) == 0 | |||||
), "the -3 dimension should be divided by (upscale_factor ** 2)" | |||||
_device = inp.device | |||||
_dtype = inp.dtype | |||||
shape_ori = inp.shape | |||||
high_dim = shape_ori[:-3] | |||||
square = upscale_factor ** 2 | |||||
n = 1 | |||||
for item in high_dim: | |||||
n *= item | |||||
shape_0 = ( | |||||
n, | |||||
int(shape_ori[-3] / square), | |||||
upscale_factor, | |||||
upscale_factor, | |||||
shape_ori[-2], | |||||
shape_ori[-1], | |||||
) | |||||
shape_1 = ( | |||||
*high_dim, | |||||
shape_ori[-3] / square, | |||||
shape_ori[-2] * upscale_factor, | |||||
shape_ori[-1] * upscale_factor, | |||||
) | |||||
dim_order = (0, 1, 4, 2, 5, 3) | |||||
layerPixelShuffle = _get_layerPixelShuffle(_device, _dtype, dim_order) | |||||
shape_0 = convert_single_value(shape_0, dtype=inp.dtype, device=inp.device) | |||||
shape_1 = convert_single_value(shape_1, dtype=inp.dtype, device=inp.device) | |||||
outvar, *_ = apply(layerPixelShuffle(), inp, shape_0, shape_1) | |||||
return outvar | |||||
from .quantized import conv_bias_activation # isort:skip | from .quantized import conv_bias_activation # isort:skip | ||||
from .loss import * # isort:skip | from .loss import * # isort:skip | ||||
from .metric import * # isort:skip | from .metric import * # isort:skip | ||||
@@ -1,24 +0,0 @@ | |||||
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
# | |||||
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||||
# | |||||
# Unless required by applicable law or agreed to in writing, | |||||
# software distributed under the License is distributed on an | |||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
from ..functional.nn import pixel_shuffle | |||||
from .module import Module | |||||
class PixelShuffle(Module): | |||||
r""" | |||||
Rearranges elements in a tensor of shape (*, C x r^2, H, W) to a tensor of | |||||
shape (*, C, H x r, W x r), where r is an upscale factor, where * is zero | |||||
or more batch dimensions. | |||||
""" | |||||
def __init__(self, upscale_factor: int, **kwargs): | |||||
super().__init__(**kwargs) | |||||
self.upscale_factor = upscale_factor | |||||
def forward(self, x): | |||||
return pixel_shuffle(x, self.upscale_factor) |
@@ -1177,74 +1177,3 @@ def test_pad(): | |||||
dst = np.pad(src, ((2, 2), (2, 2)), "reflect") | dst = np.pad(src, ((2, 2), (2, 2)), "reflect") | ||||
res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "REFLECT") | res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "REFLECT") | ||||
np.testing.assert_allclose(res, dst, atol=1e-5) | np.testing.assert_allclose(res, dst, atol=1e-5) | ||||
def pixel_shuffle(data, r): | |||||
high_dim = data.shape[:-3] | |||||
data = data.reshape(-1, data.shape[-3], data.shape[-2], data.shape[-1]) | |||||
inn, ic, ih, iw = data.shape | |||||
res = np.zeros((inn, int(ic / (r * r)), ih * r, iw * r)) | |||||
for n in range(inn): | |||||
for c in range(ic): | |||||
for h in range(ih): | |||||
for w in range(iw): | |||||
res[ | |||||
n, | |||||
int(c / r / r), | |||||
h * r + int((c % (r * r)) / r), | |||||
w * r + c % r, | |||||
] = data[n, c, h, w] | |||||
if len(high_dim) > 0: | |||||
res = res.reshape((*high_dim, int(ic / r / r), ih * r, iw * r)) | |||||
else: | |||||
res = res[0] | |||||
return res | |||||
def test_pixel_shuffle(): | |||||
# ndim = 3 | |||||
inp = np.arange(16 * 3 * 3).reshape(16, 3, 3) | |||||
out = F.pixel_shuffle(tensor(inp), upscale_factor=4) | |||||
golden = pixel_shuffle(inp, 4) | |||||
np.testing.assert_equal(out.numpy(), golden) | |||||
# ndim = 4 | |||||
inp = np.arange(3 * 18 * 3 * 3).reshape(3, 18, 3, 3) | |||||
out = F.pixel_shuffle(tensor(inp), upscale_factor=3) | |||||
golden = pixel_shuffle(inp, 3) | |||||
np.testing.assert_equal(out.numpy(), golden) | |||||
# ndim = 5 | |||||
inp = np.arange(5 * 3 * 20 * 3 * 4).reshape(5, 3, 20, 3, 4) | |||||
out = F.pixel_shuffle(tensor(inp), upscale_factor=2) | |||||
golden = pixel_shuffle(inp, 2) | |||||
np.testing.assert_equal(out.numpy(), golden) | |||||
# ndim = 6 | |||||
inp = np.arange(6 * 5 * 3 * 25 * 3 * 4).reshape(6, 5, 3, 25, 3, 4) | |||||
out = F.pixel_shuffle(tensor(inp), upscale_factor=5) | |||||
golden = pixel_shuffle(inp, 5) | |||||
np.testing.assert_equal(out.numpy(), golden) | |||||
# ndim = 7 | |||||
inp = np.arange(2 * 3 * 5 * 3 * 20 * 3 * 4).reshape(2, 3, 5, 3, 20, 3, 4) | |||||
out = F.pixel_shuffle(tensor(inp), upscale_factor=2) | |||||
golden = pixel_shuffle(inp, 2) | |||||
np.testing.assert_equal(out.numpy(), golden) | |||||
@pytest.mark.parametrize("is_symbolic", [False, True]) | |||||
def test_pixel_shuffle_symbolic(is_symbolic): | |||||
def fn(inp, upscale_factor): | |||||
return F.pixel_shuffle(inp, upscale_factor=upscale_factor) | |||||
if is_symbolic is not None: | |||||
fn = jit.trace(symbolic=is_symbolic)(fn) | |||||
inp = tensor(np.arange(3 * 4 * 5 * 5).reshape(3, 4, 5, 5)) | |||||
golden = pixel_shuffle(inp, 2) | |||||
for _ in range(3): | |||||
out = fn(inp, 2) | |||||
np.testing.assert_equal(out.numpy(), golden) | |||||
if is_symbolic is None: | |||||
break |