@@ -1,40 +0,0 @@ | |||||
# -*- coding: utf-8 -*- | |||||
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
# | |||||
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||||
# | |||||
# Unless required by applicable law or agreed to in writing, | |||||
# software distributed under the License is distributed on an | |||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
import numpy as np | |||||
from .._imperative_rt import make_const | |||||
from .._imperative_rt.core2 import SymbolVar, Tensor | |||||
class Const: | |||||
def __init__(self, value=None, *, dtype=None, device=None): | |||||
self.value = np.asarray(value, dtype=dtype) | |||||
self.dtype = dtype | |||||
self.device = device | |||||
def __call__(self, *reference): | |||||
from ...tensor import Tensor | |||||
device = self.device | |||||
if len(reference) != 0: | |||||
reference = reference[0] | |||||
assert isinstance( | |||||
reference, (SymbolVar, Tensor) | |||||
), "Reference should be Tensor or VarNode" | |||||
if device is None: | |||||
device = reference.device | |||||
if isinstance(reference, SymbolVar): | |||||
cls = type(reference) | |||||
rst = cls(make_const(reference.graph, self.value, device, self.dtype)) | |||||
return (rst,) | |||||
return (Tensor(self.value, self.dtype, self.device, True),) |
@@ -14,6 +14,7 @@ import numpy as np | |||||
from .._imperative_rt import make_const | from .._imperative_rt import make_const | ||||
from .._imperative_rt.core2 import ( | from .._imperative_rt.core2 import ( | ||||
Const, | |||||
SymbolVar, | SymbolVar, | ||||
Tensor, | Tensor, | ||||
_get_convert_inputs, | _get_convert_inputs, | ||||
@@ -28,7 +29,6 @@ from .._imperative_rt.ops import jit_supported | |||||
from .._wrap import as_device | from .._wrap import as_device | ||||
from ..autodiff.grad import Function | from ..autodiff.grad import Function | ||||
from ..ops import builtin | from ..ops import builtin | ||||
from ..ops.special import Const | |||||
from .amp import _get_amp_high_prec_dtype, _get_amp_low_prec_dtype | from .amp import _get_amp_high_prec_dtype, _get_amp_low_prec_dtype | ||||
from .dtype import is_dtype_equal, is_quantize | from .dtype import is_dtype_equal, is_quantize | ||||
@@ -67,7 +67,7 @@ def convert_single_value(v, *, dtype=None, device=None): | |||||
if not is_quantize(v.dtype): | if not is_quantize(v.dtype): | ||||
v = astype(v, dtype) | v = astype(v, dtype) | ||||
else: | else: | ||||
(v,) = Const(v, dtype=dtype, device=device)() | |||||
v = Const(v, dtype, device, None) | |||||
return v | return v | ||||
@@ -155,7 +155,7 @@ def astensor1d(x, *reference, dtype=None, device=None): | |||||
if ndim != 0 and ndim != 1: | if ndim != 0 and ndim != 1: | ||||
raise ValueError("ndim != 1 or 0, get : %d" % ndim) | raise ValueError("ndim != 1 or 0, get : %d" % ndim) | ||||
if not isinstance(x, (Tensor, SymbolVar)): | if not isinstance(x, (Tensor, SymbolVar)): | ||||
(x,) = Const(x, dtype=dtype, device=device)(*reference) | |||||
x = Const(x, dtype, device, reference) | |||||
return x | return x | ||||
if not isinstance(x, collections.abc.Sequence): | if not isinstance(x, collections.abc.Sequence): | ||||
@@ -166,7 +166,7 @@ def astensor1d(x, *reference, dtype=None, device=None): | |||||
if dtype is not None: | if dtype is not None: | ||||
x = astype(x, dtype) | x = astype(x, dtype) | ||||
return x | return x | ||||
(x,) = Const(x, dtype=dtype, device=device)(*reference) | |||||
x = Const(x, dtype, device, reference) | |||||
return x | return x | ||||
@@ -337,7 +337,7 @@ def interpret_subgraph(func, dtype, device): | |||||
return results | return results | ||||
def apply_const(value, dtype=dtype, device=device): | def apply_const(value, dtype=dtype, device=device): | ||||
return Const(value, dtype=dtype, device=device)()[0] | |||||
return Const(value, dtype, device, None) | |||||
outputs, outputs_has_grad = func(args, apply_expr, apply_const) | outputs, outputs_has_grad = func(args, apply_expr, apply_const) | ||||
outputs = [ | outputs = [ | ||||
@@ -10,10 +10,9 @@ import collections | |||||
import math | import math | ||||
from typing import Iterable, Optional, Sequence, Tuple, Union | from typing import Iterable, Optional, Sequence, Tuple, Union | ||||
from ..core._imperative_rt.core2 import apply, dtype_promotion | |||||
from ..core._imperative_rt.core2 import Const, apply, dtype_promotion | |||||
from ..core._imperative_rt.ops import SubgraphBuilder as _SubgraphBuilder | from ..core._imperative_rt.ops import SubgraphBuilder as _SubgraphBuilder | ||||
from ..core.ops import builtin | from ..core.ops import builtin | ||||
from ..core.ops.special import Const | |||||
from ..core.tensor.array_method import _matmul | from ..core.tensor.array_method import _matmul | ||||
from ..core.tensor.utils import _normalize_axis | from ..core.tensor.utils import _normalize_axis | ||||
from ..tensor import Tensor | from ..tensor import Tensor | ||||
@@ -729,7 +728,7 @@ def topk( | |||||
op = builtin.TopK(mode=mode) | op = builtin.TopK(mode=mode) | ||||
if not isinstance(k, Tensor): | if not isinstance(k, Tensor): | ||||
(k,) = Const(k, dtype="int32", device=inp.device)() | |||||
k = Const(k, "int32", inp.device, None) | |||||
if len(inp.shape) == 1: | if len(inp.shape) == 1: | ||||
if kth_only: | if kth_only: | ||||
@@ -11,7 +11,7 @@ from functools import lru_cache | |||||
from typing import NamedTuple, Optional, Sequence, Tuple, Union | from typing import NamedTuple, Optional, Sequence, Tuple, Union | ||||
from ..core import _config | from ..core import _config | ||||
from ..core._imperative_rt.core2 import apply, dtype_promotion | |||||
from ..core._imperative_rt.core2 import Const, apply, dtype_promotion | |||||
from ..core._imperative_rt.ops import SubgraphBuilder as _SubgraphBuilder | from ..core._imperative_rt.ops import SubgraphBuilder as _SubgraphBuilder | ||||
from ..core._imperative_rt.ops import get_global_rng_seed as _get_global_rng_seed | from ..core._imperative_rt.ops import get_global_rng_seed as _get_global_rng_seed | ||||
from ..core.ops import builtin | from ..core.ops import builtin | ||||
@@ -26,7 +26,6 @@ from ..core.ops.builtin import ( | |||||
Reshape, | Reshape, | ||||
TypeCvt, | TypeCvt, | ||||
) | ) | ||||
from ..core.ops.special import Const | |||||
from ..core.tensor import amp, megbrain_graph | from ..core.tensor import amp, megbrain_graph | ||||
from ..core.tensor.array_method import _elwise_apply | from ..core.tensor.array_method import _elwise_apply | ||||
from ..core.tensor.utils import ( | from ..core.tensor.utils import ( | ||||
@@ -1317,7 +1316,7 @@ def batch_norm( | |||||
raise ValueError("Invalid param_dim {}".format(param_dim)) | raise ValueError("Invalid param_dim {}".format(param_dim)) | ||||
if x is None: | if x is None: | ||||
(x,) = Const(value, dtype=inp.dtype, device=inp.device)() | |||||
x = Const(value, inp.dtype, inp.device, None) | |||||
shape = astensor1d(pshape, inp, dtype="int32", device=inp.device) | shape = astensor1d(pshape, inp, dtype="int32", device=inp.device) | ||||
(result,) = apply(builtin.Broadcast(), x, shape) | (result,) = apply(builtin.Broadcast(), x, shape) | ||||
return result | return result | ||||
@@ -1541,7 +1540,7 @@ def sync_batch_norm( | |||||
def _make_full_if_none(x, value): | def _make_full_if_none(x, value): | ||||
if x is None: | if x is None: | ||||
(x,) = Const(value, dtype=inp.dtype, device=_device)() | |||||
x = Const(value, inp.dtype, _device, None) | |||||
(result,) = apply(builtin.Broadcast(), x, reduce_shape) | (result,) = apply(builtin.Broadcast(), x, reduce_shape) | ||||
return result | return result | ||||
elif x.ndim == 1: | elif x.ndim == 1: | ||||
@@ -13,6 +13,7 @@ import numpy as np | |||||
from ..core._imperative_rt import CompNode | from ..core._imperative_rt import CompNode | ||||
from ..core._imperative_rt.core2 import ( | from ..core._imperative_rt.core2 import ( | ||||
Const, | |||||
SymbolVar, | SymbolVar, | ||||
apply, | apply, | ||||
broadcast_cpp, | broadcast_cpp, | ||||
@@ -24,7 +25,6 @@ from ..core._imperative_rt.core2 import ( | |||||
from ..core._wrap import as_device | from ..core._wrap import as_device | ||||
from ..core.ops import builtin | from ..core.ops import builtin | ||||
from ..core.ops.builtin import Copy, Identity | from ..core.ops.builtin import Copy, Identity | ||||
from ..core.ops.special import Const | |||||
from ..core.tensor.utils import astensor1d, convert_inputs, get_device, subgraph_fn | from ..core.tensor.utils import astensor1d, convert_inputs, get_device, subgraph_fn | ||||
from ..device import get_default_device | from ..device import get_default_device | ||||
from ..tensor import Tensor | from ..tensor import Tensor | ||||
@@ -177,7 +177,7 @@ def full( | |||||
shape = (shape,) | shape = (shape,) | ||||
if device is None: | if device is None: | ||||
device = get_default_device() | device = get_default_device() | ||||
(x,) = Const(value, dtype=dtype, device=device)() | |||||
x = Const(value, dtype, device, None) | |||||
if type(shape) in (list, tuple) and len(shape) == 0: | if type(shape) in (list, tuple) and len(shape) == 0: | ||||
return x | return x | ||||
return broadcast_to(x, shape) | return broadcast_to(x, shape) | ||||
@@ -325,7 +325,7 @@ def full_like( | |||||
[2 2 2]] | [2 2 2]] | ||||
""" | """ | ||||
(x,) = Const(value, dtype=inp.dtype, device=inp.device)(inp) | |||||
x = Const(value, inp.dtype, inp.device, inp) | |||||
if inp.ndim == 0: | if inp.ndim == 0: | ||||
return x | return x | ||||
return broadcast_to(x, inp.shape) | return broadcast_to(x, inp.shape) | ||||
@@ -1,4 +1,4 @@ | |||||
from ..core.ops.special import Const | |||||
from ..core._imperative_rt.core2 import Const | |||||
from ..jit.tracing import is_tracing | from ..jit.tracing import is_tracing | ||||
small_tensor_cache = {} | small_tensor_cache = {} | ||||
@@ -7,11 +7,11 @@ small_tensor_cache = {} | |||||
def _get_scalar_tensor_with_value(value, dtype=None, device=None): | def _get_scalar_tensor_with_value(value, dtype=None, device=None): | ||||
global small_tensor_cache | global small_tensor_cache | ||||
if is_tracing(): | if is_tracing(): | ||||
(ret,) = Const(value, dtype=dtype, device=device)() | |||||
ret = Const(value, dtype, device, None) | |||||
else: | else: | ||||
cache_key = (value, dtype, device) | cache_key = (value, dtype, device) | ||||
if cache_key not in small_tensor_cache: | if cache_key not in small_tensor_cache: | ||||
(ret,) = Const(value, dtype=dtype, device=device)() | |||||
ret = Const(value, dtype, device, None) | |||||
small_tensor_cache[cache_key] = ret | small_tensor_cache[cache_key] = ret | ||||
else: | else: | ||||
ret = small_tensor_cache[cache_key] | ret = small_tensor_cache[cache_key] | ||||
@@ -16,6 +16,7 @@ from importlib import import_module | |||||
from typing import Callable, Dict, Iterable, List, Optional, Sequence, Union | from typing import Callable, Dict, Iterable, List, Optional, Sequence, Union | ||||
from ..core._imperative_rt import OpDef | from ..core._imperative_rt import OpDef | ||||
from ..core._imperative_rt.core2 import Const | |||||
from ..core._imperative_rt.core2 import Tensor as RawTensor | from ..core._imperative_rt.core2 import Tensor as RawTensor | ||||
from ..core._imperative_rt.core2 import ( | from ..core._imperative_rt.core2 import ( | ||||
apply, | apply, | ||||
@@ -25,7 +26,6 @@ from ..core._imperative_rt.core2 import ( | |||||
unset_module_tracing, | unset_module_tracing, | ||||
) | ) | ||||
from ..core.ops.builtin import FakeQuant | from ..core.ops.builtin import FakeQuant | ||||
from ..core.ops.special import Const | |||||
from ..module import Module | from ..module import Module | ||||
from ..tensor import Parameter, Tensor | from ..tensor import Parameter, Tensor | ||||
from ..version import __version__ | from ..version import __version__ | ||||
@@ -764,7 +764,7 @@ class Constant(Expr): | |||||
def interpret(self, *inputs): | def interpret(self, *inputs): | ||||
if isinstance(self.value, RawTensor): | if isinstance(self.value, RawTensor): | ||||
return Const(self.value.numpy())() | |||||
return (Const(self.value.numpy(), None, None, None),) | |||||
return (self.value,) | return (self.value,) | ||||
def __repr__(self): | def __repr__(self): | ||||
@@ -639,6 +639,7 @@ WRAP_FUNC_PY35(squeeze_cpp); | |||||
WRAP_FUNC_PY35(transpose_cpp); | WRAP_FUNC_PY35(transpose_cpp); | ||||
WRAP_FUNC_PY35(broadcast_cpp); | WRAP_FUNC_PY35(broadcast_cpp); | ||||
WRAP_FUNC_PY35(reshape_cpp); | WRAP_FUNC_PY35(reshape_cpp); | ||||
WRAP_FUNC_PY35(Const); | |||||
#undef WRAP_FUNC_PY35 | #undef WRAP_FUNC_PY35 | ||||
#define MGE_PY_INTERFACE(NAME, FUNC) \ | #define MGE_PY_INTERFACE(NAME, FUNC) \ | ||||
{ #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr } | { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr } | ||||
@@ -777,6 +778,7 @@ void init_tensor(py::module m) { | |||||
MGE_PY_INTERFACE(transpose_cpp, transpose_cpp), | MGE_PY_INTERFACE(transpose_cpp, transpose_cpp), | ||||
MGE_PY_INTERFACE(broadcast_cpp, broadcast_cpp), | MGE_PY_INTERFACE(broadcast_cpp, broadcast_cpp), | ||||
MGE_PY_INTERFACE(reshape_cpp, reshape_cpp), | MGE_PY_INTERFACE(reshape_cpp, reshape_cpp), | ||||
MGE_PY_INTERFACE(Const, Const), | |||||
{nullptr, nullptr, 0, nullptr}}; | {nullptr, nullptr, 0, nullptr}}; | ||||
for (auto&& def : method_defs) { | for (auto&& def : method_defs) { | ||||
if (def.ml_meth != nullptr) { | if (def.ml_meth != nullptr) { | ||||
@@ -94,7 +94,7 @@ bool is_bool_dtype(PyObject* args) { | |||||
} | } | ||||
py::object _Const( | py::object _Const( | ||||
py::handle value, py::handle dtype, py::handle device, py::handle ref) { | |||||
py::handle value, py::handle dtype, py::handle device, py::handle ref_hdl) { | |||||
py::object val = py::reinterpret_borrow<py::object>(value); | py::object val = py::reinterpret_borrow<py::object>(value); | ||||
if (PyArray_Check(value.ptr())) { | if (PyArray_Check(value.ptr())) { | ||||
py::tuple strides = | py::tuple strides = | ||||
@@ -107,21 +107,56 @@ py::object _Const( | |||||
} | } | ||||
if (need_squeeze) { | if (need_squeeze) { | ||||
val = py::reinterpret_borrow<py::array>(value); | val = py::reinterpret_borrow<py::array>(value); | ||||
py::object orig_shp = val.attr("shape"); | |||||
val = val.attr("squeeze")(); | val = val.attr("squeeze")(); | ||||
val = val.attr("reshape")(val.attr("shape")); | |||||
val = val.attr("reshape")(orig_shp); | |||||
} | } | ||||
} | } | ||||
py::object ref; | |||||
if (py::isinstance<py::tuple>(ref_hdl)) { | |||||
py::tuple tup = py::reinterpret_borrow<py::tuple>(ref_hdl); | |||||
if (tup.size()) { | |||||
ref = tup[0]; | |||||
} else { | |||||
ref = py::none(); | |||||
} | |||||
} else { | |||||
ref = py::reinterpret_borrow<py::object>(ref_hdl); | |||||
} | |||||
if (py::isinstance<PySymbolVar>(ref)) { | if (py::isinstance<PySymbolVar>(ref)) { | ||||
auto ref_var = ref.cast<PySymbolVar*>(); | auto ref_var = ref.cast<PySymbolVar*>(); | ||||
auto* graph = ref_var->m_node->owner_graph(); | auto* graph = ref_var->m_node->owner_graph(); | ||||
auto cn = device.cast<CompNode>(); | |||||
CompNode cn; | |||||
if (device.ptr() == Py_None) { | |||||
cn = ref_var->m_node->comp_node(); | |||||
} else { | |||||
cn = device.cast<CompNode>(); | |||||
} | |||||
OperatorNodeConfig config(cn); | OperatorNodeConfig config(cn); | ||||
auto hv = npy::np2tensor( | auto hv = npy::np2tensor( | ||||
val.ptr(), npy::Meth::borrow(cn), dtype.cast<mgb::DType>()); | val.ptr(), npy::Meth::borrow(cn), dtype.cast<mgb::DType>()); | ||||
auto typeobj = ref.get_type(); | auto typeobj = ref.get_type(); | ||||
return typeobj(opr::ImmutableTensor::make(*graph, hv, config).node()); | return typeobj(opr::ImmutableTensor::make(*graph, hv, config).node()); | ||||
} | } | ||||
py::tuple tup = py::make_tuple(val, dtype, device, true, false, py::none()); | |||||
py::object device_obj; | |||||
if (device.ptr() == Py_None) { | |||||
device_obj = py::cast(CompNode::load(get_default_device())); | |||||
} else if (py::isinstance<py::str>(device)) { | |||||
py::object dmap = | |||||
getattr(py::reinterpret_borrow<py::object>((PyObject*)py_tensor_type), | |||||
"dmap_callback"); | |||||
if (dmap.ptr() != Py_None) { | |||||
device_obj = dmap(device); | |||||
py::print(device_obj); | |||||
} else { | |||||
device_obj = py::cast(CompNode::load(device.cast<std::string>())); | |||||
} | |||||
} else if (py::isinstance<CompNode>(device)) { | |||||
device_obj = py::reinterpret_borrow<py::object>(device); | |||||
} else { | |||||
device_obj = getattr(device, "_cn"); | |||||
} | |||||
py::tuple tup = py::make_tuple(val, dtype, device_obj, true, false, py::none()); | |||||
return TensorWrapper::make(py_tensor_type, tup.ptr(), nullptr); | return TensorWrapper::make(py_tensor_type, tup.ptr(), nullptr); | ||||
} | } | ||||
@@ -1107,4 +1142,14 @@ PyObject* reshape_cpp(PyObject* self, PyObject* const* args, size_t nargs) { | |||||
PYEXT17_TRANSLATE_EXC_RET(nullptr) | PYEXT17_TRANSLATE_EXC_RET(nullptr) | ||||
} | } | ||||
PyObject* Const(PyObject* self, PyObject* const* args, size_t nargs) { | |||||
try { | |||||
return _Const(py::handle(args[0]), py::handle(args[1]), py::handle(args[2]), | |||||
py::handle(args[3])) | |||||
.release() | |||||
.ptr(); | |||||
} | |||||
PYEXT17_TRANSLATE_EXC_RET(nullptr) | |||||
} | |||||
} // namespace mgb::imperative::python | } // namespace mgb::imperative::python |
@@ -20,4 +20,6 @@ PyObject* broadcast_cpp(PyObject* self, PyObject* const* args, size_t nargs); | |||||
PyObject* reshape_cpp(PyObject* self, PyObject* const* args, size_t nargs); | PyObject* reshape_cpp(PyObject* self, PyObject* const* args, size_t nargs); | ||||
PyObject* Const(PyObject* self, PyObject* const* args, size_t nargs); | |||||
} // namespace mgb::imperative::python | } // namespace mgb::imperative::python |