GitOrigin-RevId: 2bf7980ac6
release-1.11.1
@@ -117,6 +117,9 @@ struct LITE_API Options { | |||
* | |||
* @param auto_optimize_inference lite will detect the device information add | |||
* set the options heuristically | |||
* | |||
* @param discrete_input_name configure which input is composed of discrete | |||
* multiple tensors | |||
*/ | |||
struct LITE_API Config { | |||
bool has_compression = false; | |||
@@ -126,6 +129,7 @@ struct LITE_API Config { | |||
std::string bare_model_cryption_name = {}; | |||
Options options = {}; | |||
bool auto_optimize_inference = false; | |||
std::string discrete_input_name = {}; | |||
}; | |||
/*! | |||
@@ -289,9 +293,22 @@ public: | |||
std::shared_ptr<Tensor> get_io_tensor( | |||
std::string io_name, LiteTensorPhase phase = LiteTensorPhase::LITE_IO); | |||
/** @brief get the network input tensors which input consists of discrete multiple | |||
* tensors, layout (1, c, h, w) | |||
* | |||
* @param io_name the name of the tensor | |||
* @param phase indicate the tensor is input tensor | |||
*/ | |||
std::vector<std::shared_ptr<Tensor>> get_io_tensors( | |||
std::string io_name, LiteTensorPhase phase = LiteTensorPhase::LITE_INPUT); | |||
//! get the network input tensor by index | |||
std::shared_ptr<Tensor> get_input_tensor(size_t index); | |||
//! get the network input tensors which input consists of discrete multiple tensors | |||
//! by index | |||
std::vector<std::shared_ptr<Tensor>> get_input_tensors(size_t index); | |||
//! get the network output tensor by index | |||
std::shared_ptr<Tensor> get_output_tensor(size_t index); | |||
@@ -103,6 +103,9 @@ extern LITE_API const LiteOptions default_option; | |||
*\param auto_optimize_inference lite will detect the device information add | |||
* set the options heuristically | |||
* | |||
* \param discrete_input_name configure which input is composed of discrete | |||
* multiple tensors | |||
*/ | |||
typedef struct LiteConfig { | |||
int has_compression; | |||
@@ -112,6 +115,7 @@ typedef struct LiteConfig { | |||
const char* bare_model_cryption_name; | |||
LiteOptions options; | |||
int auto_optimize_inference; | |||
const char* discrete_input_name; | |||
} LiteConfig; | |||
//! get default config | |||
@@ -299,6 +303,19 @@ LITE_API int LITE_get_io_tensor( | |||
LiteTensor* tensor); | |||
/** | |||
* \brief get the n'th tensor in the network input tensors whose input | |||
* consists of discrete multiple tensors and name is io_name, layout (1, c, h, w) | |||
* \param[in] network The loaded model | |||
* \param[in] io_name The input name | |||
* \param[in] n_idx The index of tensor | |||
* \param[in] phase The tensor phase | |||
* \param[out] tensor The IO tensor get from the network | |||
*/ | |||
LITE_API int LITE_get_io_tensors( | |||
LiteNetwork network, const char* io_name, size_t n_idx, LiteTensorPhase phase, | |||
LiteTensor* tensor); | |||
/** | |||
* \brief get the input tensor name in the order in loaded model | |||
* \param[in] network The loaded model | |||
* \param[in] index The index of input tensor | |||
@@ -43,7 +43,8 @@ LiteConfig default_config_t = { | |||
.backend = LiteBackend::LITE_DEFAULT, | |||
.bare_model_cryption_name = nullptr, | |||
.options = default_option, | |||
.auto_optimize_inference = false}; | |||
.auto_optimize_inference = false, | |||
.discrete_input_name = nullptr}; | |||
LiteConfig* default_config() { | |||
return &default_config_t; | |||
} | |||
@@ -135,6 +136,9 @@ lite::Config convert_to_lite_config(const LiteConfig c_config) { | |||
lite_config.options.enable_nchw64 = c_config.options.enable_nchw64; | |||
lite_config.auto_optimize_inference = c_config.auto_optimize_inference; | |||
if (c_config.discrete_input_name) { | |||
lite_config.discrete_input_name = c_config.discrete_input_name; | |||
} | |||
return lite_config; | |||
} | |||
@@ -274,6 +278,20 @@ int LITE_get_io_tensor( | |||
LITE_CAPI_END(); | |||
} | |||
int LITE_get_io_tensors( | |||
LiteNetwork network, const char* io_name, size_t n_idx, LiteTensorPhase phase, | |||
LiteTensor* tensor) { | |||
LITE_CAPI_BEGIN(); | |||
LITE_ASSERT(network, "The network pass to LITE api is null"); | |||
auto io_tensors = | |||
static_cast<lite::Network*>(network)->get_io_tensors(io_name, phase); | |||
LITE_ASSERT( | |||
n_idx < io_tensors.size(), "n_idx should be less than %zu", | |||
io_tensors.size()); | |||
*tensor = io_tensors[n_idx].get(); | |||
LITE_CAPI_END(); | |||
} | |||
int LITE_get_input_name(const LiteNetwork network, size_t index, const char** name) { | |||
LITE_CAPI_BEGIN(); | |||
LITE_ASSERT(network && name, "The network pass to LITE api is null"); | |||
@@ -173,6 +173,8 @@ class LiteConfig(Structure): | |||
auto_optimize_inference: lite will detect the device information add set the options heuristically | |||
discrete_input_name: configure which input is composed of discrete multiple tensors | |||
Examples: | |||
.. code-block:: | |||
@@ -193,6 +195,7 @@ class LiteConfig(Structure): | |||
("_bare_model_cryption_name", c_char_p), | |||
("options", LiteOptions), | |||
("auto_optimize_inference", c_int), | |||
("discrete_input_name", c_char_p), | |||
] | |||
def __init__(self, device_type=LiteDeviceType.LITE_CPU, option=None): | |||
@@ -207,6 +210,7 @@ class LiteConfig(Structure): | |||
self.has_compression = 0 | |||
self.backend = LiteBackend.LITE_DEFAULT | |||
self.auto_optimize_inference = 0 | |||
self.discrete_input_name = c_char_p(b"") | |||
@property | |||
def bare_model_cryption_name(self): | |||
@@ -229,6 +233,7 @@ class LiteConfig(Structure): | |||
"bare_model_cryption_name": self.bare_model_cryption_name, | |||
"options": self.options, | |||
"auto_optimize_inference": self.auto_optimize_inference, | |||
"discrete_input_name": self.discrete_input_name, | |||
} | |||
return data.__repr__() | |||
@@ -536,6 +541,10 @@ class _NetworkAPI(_LiteCObjBase): | |||
[c_char_p, c_size_t, LiteConfig, POINTER(_LiteNetworkIO)], | |||
), | |||
("LITE_extra_configure", [_Cnetwork, LiteExtraConfig]), | |||
( | |||
"LITE_get_io_tensors", | |||
[_Cnetwork, c_char_p, c_size_t, c_int, POINTER(_Ctensor)], | |||
), | |||
] | |||
@@ -736,6 +745,30 @@ class LiteNetwork(object): | |||
tensor.update() | |||
return tensor | |||
def get_io_tensors(self, name, n_idx, phase=LiteTensorPhase.LITE_INPUT): | |||
""" | |||
get the n_idx'th tensor in the network input tensors whose | |||
input consists of discrete multiple tensors and tensor name is name | |||
Args: | |||
name: the name of input tensor | |||
n_idx: the tensor index | |||
phase: the type of LiteTensor, this is useful to separate input tensor with the same name | |||
Returns: | |||
the tensors with given name and type | |||
""" | |||
if type(name) == str: | |||
c_name = c_char_p(name.encode("utf-8")) | |||
else: | |||
c_name = c_char_p(name) | |||
tensor = LiteTensor(physic_construct=False) | |||
self._api.LITE_get_io_tensors( | |||
self._network, c_name, n_idx, phase, byref(tensor._tensor) | |||
) | |||
tensor.update() | |||
return tensor | |||
def get_input_name(self, index): | |||
""" | |||
get the input name by the index in the network | |||
@@ -500,3 +500,45 @@ class TestNetwork(TestShuffleNet): | |||
os.remove(fast_run_cache) | |||
os.remove(global_layout_transform_model) | |||
class TestDiscreteInputNet(unittest.TestCase): | |||
source_dir = os.getenv("LITE_TEST_RESOURCE") | |||
data0_path = os.path.join(source_dir, "data0.npy") | |||
data1_path = os.path.join(source_dir, "data1.npy") | |||
data2_path = os.path.join(source_dir, "data2.npy") | |||
model_path = os.path.join(source_dir, "test_discrete_input.mge") | |||
data0 = np.load(data0_path) | |||
data1 = np.load(data1_path) | |||
data2 = np.load(data2_path) | |||
def do_forward(self, network, times=3): | |||
data_name = network.get_input_name(1) | |||
datas = [] | |||
datas.append(network.get_io_tensors(data_name, 0)) | |||
datas.append(network.get_io_tensors(data_name, 1)) | |||
datas.append(network.get_io_tensors(data_name, 2)) | |||
datas[0].set_data_by_copy(self.data0) | |||
datas[1].set_data_by_copy(self.data1) | |||
datas[2].set_data_by_copy(self.data2) | |||
for i in range(times): | |||
network.forward() | |||
network.wait() | |||
class TestDiscreteInput(TestDiscreteInputNet): | |||
def test_discrete_input(self): | |||
config = LiteConfig() | |||
config.discrete_input_name = "data".encode("utf-8") | |||
input_io = LiteIO( | |||
"data", | |||
is_host=True, | |||
io_type=LiteIOType.LITE_IO_VALUE, | |||
layout=LiteLayout([3, 3, 224, 224]), | |||
) | |||
ios = LiteNetworkIO() | |||
ios.add_input(input_io) | |||
network = LiteNetwork(config, ios) | |||
network.load(self.model_path) | |||
self.do_forward(network) |
@@ -13,6 +13,7 @@ | |||
#include "megbrain/comp_node_env.h" | |||
#include "megbrain/graph.h" | |||
#include "megbrain/graph/cg.h" | |||
#include "megbrain/opr/imgproc.h" | |||
#include "megbrain/opr/io.h" | |||
#include "megbrain/opr/tensor_manip.h" | |||
#include "megbrain/tensor.h" | |||
@@ -259,6 +260,88 @@ void NetworkImplDft::make_output_spec() { | |||
} | |||
} | |||
void NetworkImplDft::replace_src_discrete_input_opr_pass() { | |||
mgb::ThinHashMap<mgb::SymbolVar, mgb::SymbolVar> out_var_map; | |||
auto dest_with_extra_deps = | |||
get_dest_vars_with_extra_deps(m_load_result.output_var_list); | |||
gopt::SubGraph graph{dest_with_extra_deps}; | |||
auto rewriter = graph.make_rewriter(); | |||
auto on_opr = [&](mgb::cg::OperatorNodeBase* opr) { | |||
if (opr->same_type<mgb::opr::WarpPerspective>()) { | |||
bool is_h2d = true; | |||
if (opr->input(0)->owner_opr()->same_type<mgb::opr::Host2DeviceCopy>()) | |||
is_h2d = true; | |||
else if (opr->input(0) | |||
->owner_opr() | |||
->same_type<mgb::opr::VolatileSharedDeviceTensor>()) | |||
is_h2d = false; | |||
else | |||
return; | |||
SymbolVarArray srcs; | |||
if (is_h2d) { | |||
auto h2d = opr->input(0)->owner_opr(); | |||
for (auto&& inp : get_io_tensors(m_user_config->discrete_input_name)) { | |||
auto val = TensorHelper::implement(inp) | |||
->cast_final_safe<TensorImplDft>() | |||
.m_host_tensor; | |||
LITE_ASSERT(val); | |||
srcs.push_back(mgb::opr::Host2DeviceCopy::make( | |||
*m_load_result.graph, val, h2d->config())); | |||
} | |||
} else { | |||
auto volatiled = opr->input(0)->owner_opr(); | |||
for (auto&& inp : get_io_tensors(m_user_config->discrete_input_name)) { | |||
auto val = TensorHelper::implement(inp) | |||
->cast_final_safe<TensorImplDft>() | |||
.m_dev_tensor; | |||
LITE_ASSERT(val); | |||
srcs.push_back(mgb::opr::VolatileSharedDeviceTensor::make( | |||
*m_load_result.graph, val, volatiled->config())); | |||
} | |||
} | |||
auto& warp = opr->cast_final<mgb::opr::WarpPerspective>(); | |||
SymbolVar new_out; | |||
if (opr->input().size() == 3) { | |||
new_out = mgb::opr::WarpPerspective::make( | |||
srcs, warp.input(1), warp.input(2), warp.param(), | |||
warp.config()); | |||
} else { | |||
LITE_ASSERT(opr->input().size() == 4); | |||
new_out = mgb::opr::WarpPerspective::make( | |||
srcs, warp.input(1), warp.input(2), warp.input(3), warp.param(), | |||
warp.config()); | |||
} | |||
rewriter.replace_var( | |||
warp.output(0), new_out.node(), | |||
"replace WarpPerspective to WarpPerspective multi src version."); | |||
} else { | |||
rewriter.auto_replace_outputs(opr); | |||
} | |||
}; | |||
graph.iter(on_opr); | |||
rewriter.apply_inplace(); | |||
auto new_ovar = graph.endpoint_vars(); | |||
new_ovar.resize(m_load_result.output_var_list.size()); | |||
for (size_t i = 0; i < new_ovar.size(); ++i) { | |||
out_var_map[m_load_result.output_var_list[i]] = new_ovar[i]; | |||
} | |||
for (auto&& i : m_load_result.output_var_map) { | |||
i.second = out_var_map.at(i.second); | |||
} | |||
for (auto&& i : m_load_result.output_var_map_id) { | |||
i.second = out_var_map.at(i.second); | |||
} | |||
for (size_t i = 0; i < m_load_result.output_var_list.size(); i++) { | |||
new_ovar[i].rename(m_load_result.output_var_list[i].node()->name()); | |||
} | |||
m_load_result.output_var_list = std::move(new_ovar); | |||
} | |||
void NetworkImplDft::replace_dev_input_pass() { | |||
mgb::CompNode::Locator locator; | |||
m_load_config.comp_node_mapper(locator); | |||
@@ -528,6 +611,8 @@ void NetworkImplDft::configure_after_loaded() { | |||
void NetworkImplDft::compile_graph() { | |||
replace_dev_input_pass(); | |||
if (!m_user_config->discrete_input_name.empty()) | |||
replace_src_discrete_input_opr_pass(); | |||
make_output_spec(); | |||
m_execute_func = m_load_result.graph_compile(m_output_spec); | |||
} | |||
@@ -691,6 +776,11 @@ void NetworkImplDft::update_input() { | |||
m_network_io->inputs.push_back(io_in); | |||
} | |||
} | |||
if (!m_user_config->discrete_input_name.empty()) { | |||
update_input_lite_tensors(); | |||
} | |||
//! delete the IO that is not the network | |||
for (auto it = m_network_io->inputs.begin(); it != m_network_io->inputs.end();) { | |||
if (it->lite_tensor == nullptr) { | |||
@@ -702,6 +792,79 @@ void NetworkImplDft::update_input() { | |||
} | |||
} | |||
void NetworkImplDft::update_input_lite_tensors() { | |||
auto device_type = m_user_config->device_type; | |||
auto device_id = m_compnode_locator.device; | |||
auto stream_id = m_compnode_locator.stream; | |||
for (auto&& in_tensor_iter : m_load_result.tensor_map) { | |||
if (in_tensor_iter.first != m_user_config->discrete_input_name) { | |||
continue; | |||
} | |||
bool found = false; | |||
for (auto&& config_in : m_network_io->inputs) { | |||
if (in_tensor_iter.first == config_in.name) { | |||
found = true; | |||
size_t bs = in_tensor_iter.second->shape(0); | |||
auto shape = in_tensor_iter.second->shape(); | |||
shape.shape[0] = 1; | |||
if (config_in.config_layout.ndim) { | |||
bs = config_in.config_layout.shapes[0]; | |||
shape.shape[1] = config_in.config_layout.shapes[1]; | |||
shape.shape[2] = config_in.config_layout.shapes[2]; | |||
shape.shape[3] = config_in.config_layout.shapes[3]; | |||
} | |||
HostTensorND tensor( | |||
in_tensor_iter.second->comp_node(), shape, | |||
in_tensor_iter.second->dtype(), | |||
in_tensor_iter.second->format()); | |||
for (size_t i = 0; i < bs; ++i) { | |||
if (config_in.is_host) { | |||
config_in.lite_tensors.push_back(std::make_shared<Tensor>( | |||
device_id, stream_id, device_type, true)); | |||
TensorHelper::implement(config_in.lite_tensors[i]) | |||
->cast_final_safe<TensorImplDft>() | |||
.m_host_tensor = std::make_shared<HostTensorND>(tensor); | |||
config_in.lite_tensors[i]->update_from_implement(); | |||
} else { | |||
config_in.lite_tensors.push_back(std::make_shared<Tensor>( | |||
device_id, stream_id, device_type)); | |||
config_in.lite_tensors[i]->set_layout( | |||
to_lite_layout(tensor.layout())); | |||
} | |||
TensorHelper::implement(config_in.lite_tensors[i]) | |||
->cast_final_safe<TensorImplDft>() | |||
.m_record_reset = | |||
m_user_config->options.comp_node_seq_record_level > 0; | |||
} | |||
} | |||
} | |||
if (!found) { | |||
size_t bs = in_tensor_iter.second->shape(0); | |||
auto shape = in_tensor_iter.second->shape(); | |||
shape.shape[0] = 1; | |||
HostTensorND tensor( | |||
in_tensor_iter.second->comp_node(), shape, | |||
in_tensor_iter.second->dtype(), in_tensor_iter.second->format()); | |||
IOInner io_in; | |||
io_in.name = in_tensor_iter.first; | |||
for (size_t i = 0; i < bs; ++i) { | |||
io_in.lite_tensors.push_back(std::make_shared<Tensor>( | |||
device_id, stream_id, device_type, true)); | |||
TensorHelper::implement(io_in.lite_tensors[i]) | |||
->cast_final_safe<TensorImplDft>() | |||
.m_host_tensor = std::make_shared<HostTensorND>(tensor); | |||
TensorHelper::implement(io_in.lite_tensors[i]) | |||
->cast_final_safe<TensorImplDft>() | |||
.m_record_reset = | |||
m_user_config->options.comp_node_seq_record_level > 0; | |||
io_in.lite_tensors[i]->update_from_implement(); | |||
} | |||
m_network_io->inputs.push_back(io_in); | |||
} | |||
} | |||
} | |||
void NetworkImplDft::update_output() { | |||
auto device_type = m_user_config->device_type; | |||
auto device_id = m_compnode_locator.device; | |||
@@ -855,10 +1018,29 @@ std::shared_ptr<Tensor> NetworkImplDft::get_io_tensor( | |||
return nullptr; | |||
} | |||
std::vector<std::shared_ptr<Tensor>> NetworkImplDft::get_io_tensors( | |||
std::string io_name, LiteTensorPhase phase) { | |||
if (phase == LiteTensorPhase::LITE_INPUT) { | |||
for (auto&& config_in : m_network_io->inputs) { | |||
if (io_name == config_in.name && | |||
config_in.name == m_user_config->discrete_input_name) { | |||
return config_in.lite_tensors; | |||
} | |||
} | |||
} | |||
LITE_THROW(mgb::ssprintf( | |||
"tensor name must be %s input tensor name.", io_name.c_str())); | |||
return {}; | |||
} | |||
std::shared_ptr<Tensor> NetworkImplDft::get_input_tensor(size_t index) { | |||
return get_io_tensor(get_input_name(index)); | |||
} | |||
std::vector<std::shared_ptr<Tensor>> NetworkImplDft::get_input_tensors(size_t index) { | |||
return get_io_tensors(get_input_name(index)); | |||
} | |||
std::shared_ptr<Tensor> NetworkImplDft::get_output_tensor(size_t index) { | |||
return get_io_tensor(get_output_name(index)); | |||
} | |||
@@ -57,9 +57,19 @@ public: | |||
std::string io_name, | |||
LiteTensorPhase phase = LiteTensorPhase::LITE_IO) override; | |||
//! get the network input tensors which input consists of discrete multiple tensors, | |||
//! layout (1, c, h, w) | |||
std::vector<std::shared_ptr<Tensor>> get_io_tensors( | |||
std::string io_name, | |||
LiteTensorPhase phase = LiteTensorPhase::LITE_INPUT) override; | |||
//! get the input tensor by index in the load_result tensormap | |||
std::shared_ptr<Tensor> get_input_tensor(size_t index) override; | |||
//! get the network input tensors which input consists of discrete multiple tensors | |||
//! by index | |||
std::vector<std::shared_ptr<Tensor>> get_input_tensors(size_t index) override; | |||
//! get the output tensor by index in the load_result output_var_list | |||
std::shared_ptr<Tensor> get_output_tensor(size_t index) override; | |||
@@ -190,6 +200,11 @@ private: | |||
//! VolatileSharedDeviceTensor Opr | |||
void replace_dev_input_pass(); | |||
//! if the input to the network is a list of tensors, this pass will replace | |||
//! the opr that supports the input of a list of tensors with the corresponding | |||
//! version, current support WarpPerspective | |||
void replace_src_discrete_input_opr_pass(); | |||
//! check whether the model is cross compnode | |||
void cross_compnode_model_detect(); | |||
@@ -199,6 +214,8 @@ private: | |||
void update_input(); | |||
void update_output(); | |||
//! initialization lite_tensors when input is composed of discrete multiple tensors | |||
void update_input_lite_tensors(); | |||
//! when the model info have loaded, update the config according the model | |||
//! info, finaly use it in compute graph | |||
@@ -127,6 +127,15 @@ std::shared_ptr<Tensor> Network::get_io_tensor( | |||
LITE_ERROR_HANDLER_END | |||
} | |||
std::vector<std::shared_ptr<Tensor>> Network::get_io_tensors( | |||
std::string name, LiteTensorPhase phase) { | |||
LITE_ERROR_HANDLER_BEGIN | |||
LITE_ASSERT(m_loaded, "get_io_tensor should be used after model loaded."); | |||
LITE_CHECK_NON_NULL_POINTER(m_impl); | |||
return m_impl->get_io_tensors(name, phase); | |||
LITE_ERROR_HANDLER_END | |||
} | |||
std::shared_ptr<Tensor> Network::get_input_tensor(size_t index) { | |||
LITE_ERROR_HANDLER_BEGIN | |||
LITE_ASSERT(m_loaded, "get_input_tensor should be used after model loaded."); | |||
@@ -135,6 +144,14 @@ std::shared_ptr<Tensor> Network::get_input_tensor(size_t index) { | |||
LITE_ERROR_HANDLER_END | |||
} | |||
std::vector<std::shared_ptr<Tensor>> Network::get_input_tensors(size_t index) { | |||
LITE_ERROR_HANDLER_BEGIN | |||
LITE_ASSERT(m_loaded, "get_input_tensor should be used after model loaded."); | |||
LITE_CHECK_NON_NULL_POINTER(m_impl); | |||
return m_impl->get_input_tensors(index); | |||
LITE_ERROR_HANDLER_END | |||
} | |||
std::shared_ptr<Tensor> Network::get_output_tensor(size_t index) { | |||
LITE_ERROR_HANDLER_BEGIN | |||
LITE_ASSERT(m_loaded, "get_output_tensor should be used after model loaded."); | |||
@@ -42,6 +42,9 @@ public: | |||
bool have_sync = false; | |||
//! Real input and output data location | |||
std::shared_ptr<Tensor> lite_tensor = nullptr; | |||
//! If the input is consists of discrete multiple tensors, lite_tensors is real | |||
//! input data location | |||
std::vector<std::shared_ptr<Tensor>> lite_tensors; | |||
IOInner() = default; | |||
IOInner(const IO& io) { | |||
@@ -86,9 +89,22 @@ public: | |||
virtual std::shared_ptr<Tensor> get_io_tensor( | |||
std::string io_name, LiteTensorPhase phase = LiteTensorPhase::LITE_IO) = 0; | |||
//! get the network input tensors which input consists of discrete multiple tensors, | |||
//! layout (1, c, h, w) | |||
virtual std::vector<std::shared_ptr<Tensor>> get_io_tensors( | |||
std::string io_name, LiteTensorPhase phase = LiteTensorPhase::LITE_INPUT) { | |||
return {}; | |||
} | |||
//! get the input tensor by index in the load_result tensormap | |||
virtual std::shared_ptr<Tensor> get_input_tensor(size_t index) = 0; | |||
//! get the network input tensors which input consists of discrete multiple tensors | |||
//! by index | |||
virtual std::vector<std::shared_ptr<Tensor>> get_input_tensors(size_t index) { | |||
return {}; | |||
} | |||
//! get the output tensor by index in the load_result output_var_list | |||
virtual std::shared_ptr<Tensor> get_output_tensor(size_t index) = 0; | |||
@@ -1387,6 +1387,96 @@ TEST(TestNetWork, DeviceAsyncExec) { | |||
} | |||
#endif | |||
TEST(TestNetWork, Discrete_Input) { | |||
auto data = get_input_data("./data_b3.npy"); | |||
auto data_0 = get_input_data("./data0.npy"); | |||
auto data_1 = get_input_data("./data1.npy"); | |||
auto data_2 = get_input_data("./data2.npy"); | |||
std::string model_path = "./test_discrete_input.mge"; | |||
Config config; | |||
config.device_type = LiteDeviceType::LITE_CUDA; | |||
std::shared_ptr<Network> network0 = std::make_shared<Network>(config); | |||
network0->load_model(model_path); | |||
std::shared_ptr<Tensor> data_tensor = network0->get_io_tensor("data"); | |||
data_tensor->share_memory_with(*data); | |||
network0->forward(); | |||
network0->wait(); | |||
std::shared_ptr<Tensor> output_tensor0 = network0->get_output_tensor(0); | |||
config.discrete_input_name = "data"; | |||
NetworkIO ios; | |||
bool is_host = true; | |||
Layout d_ly{{3, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT}; | |||
ios.inputs.push_back({"data", is_host, LiteIOType::LITE_IO_VALUE, d_ly}); | |||
std::shared_ptr<Network> network1 = std::make_shared<Network>(config, ios); | |||
network1->load_model(model_path); | |||
std::vector<std::shared_ptr<Tensor>> data_tensors = | |||
network1->get_io_tensors("data"); | |||
data_tensors[0]->share_memory_with(*data_0); | |||
data_tensors[1]->share_memory_with(*data_1); | |||
data_tensors[2]->share_memory_with(*data_2); | |||
network1->forward(); | |||
network1->wait(); | |||
std::shared_ptr<Tensor> output_tensor1 = network1->get_output_tensor(0); | |||
compare_lite_tensor<float>(output_tensor0, output_tensor1); | |||
} | |||
TEST(TestNetWork, Discrete_Input_Device) { | |||
auto data = get_input_data("./data_b3.npy"); | |||
auto data_0 = get_input_data("./data0.npy"); | |||
auto data_1 = get_input_data("./data1.npy"); | |||
auto data_2 = get_input_data("./data2.npy"); | |||
std::string model_path = "./test_discrete_input.mge"; | |||
Config config; | |||
config.device_type = LiteDeviceType::LITE_CUDA; | |||
std::shared_ptr<Network> network0 = std::make_shared<Network>(config); | |||
network0->load_model(model_path); | |||
std::shared_ptr<Tensor> data_tensor = network0->get_io_tensor("data"); | |||
data_tensor->share_memory_with(*data); | |||
network0->forward(); | |||
network0->wait(); | |||
std::shared_ptr<Tensor> output_tensor0 = network0->get_output_tensor(0); | |||
config.discrete_input_name = "data"; | |||
NetworkIO ios; | |||
bool is_host = false; | |||
Layout d_ly{{3, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT}; | |||
ios.inputs.push_back({"data", is_host, LiteIOType::LITE_IO_VALUE, d_ly}); | |||
std::shared_ptr<Network> network1 = std::make_shared<Network>(config, ios); | |||
network1->load_model(model_path); | |||
std::vector<std::shared_ptr<Tensor>> data_tensors = | |||
network1->get_io_tensors("data"); | |||
auto d0_cuda = Tensor(LiteDeviceType::LITE_CUDA, d_ly); | |||
auto d1_cuda = Tensor(LiteDeviceType::LITE_CUDA, d_ly); | |||
auto d2_cuda = Tensor(LiteDeviceType::LITE_CUDA, d_ly); | |||
d0_cuda.copy_from(*data_0); | |||
d1_cuda.copy_from(*data_1); | |||
d2_cuda.copy_from(*data_2); | |||
data_tensors[0]->share_memory_with(d0_cuda); | |||
data_tensors[1]->share_memory_with(d1_cuda); | |||
data_tensors[2]->share_memory_with(d2_cuda); | |||
network1->forward(); | |||
network1->wait(); | |||
std::shared_ptr<Tensor> output_tensor1 = network1->get_output_tensor(0); | |||
compare_lite_tensor<float>(output_tensor0, output_tensor1); | |||
} | |||
#endif | |||
#if MGB_ATLAS || MGB_CAMBRICON | |||
@@ -290,6 +290,48 @@ TEST(TestCapiNetWork, GetAllNameAhead) { | |||
ASSERT_TRUE(ios_mem.outputs->config_layout.shapes[1] == 1000); | |||
} | |||
TEST(TestCapiNetWork, Discrete_Input) { | |||
std::vector<std::shared_ptr<lite::Tensor>> datas; | |||
datas.push_back(lite::get_input_data("./data0.npy")); | |||
datas.push_back(lite::get_input_data("./data1.npy")); | |||
datas.push_back(lite::get_input_data("./data2.npy")); | |||
size_t data_length_in_byte = datas[0]->get_tensor_total_size_in_byte(); | |||
LiteIO input_io = default_io; | |||
input_io.is_host = true; | |||
input_io.name = "data"; | |||
LiteLayout d_ly; | |||
d_ly.ndim = 4; | |||
d_ly.data_type = LiteDataType::LITE_FLOAT; | |||
std::vector<size_t> input_shape = {3, 3, 224, 224}; | |||
for (size_t i = 0; i < d_ly.ndim; i++) { | |||
d_ly.shapes[i] = input_shape[i]; | |||
} | |||
input_io.config_layout = d_ly; | |||
LiteNetworkIO network_io = *default_network_io(); | |||
network_io.inputs = &input_io; | |||
network_io.input_size = 1; | |||
LiteConfig c_config = *default_config(); | |||
c_config.discrete_input_name = "data"; | |||
LiteNetwork c_network; | |||
LITE_CAPI_CHECK(LITE_make_network(&c_network, c_config, network_io)); | |||
std::string model_path = "./test_discrete_input.mge"; | |||
LITE_CAPI_CHECK(LITE_load_model_from_path(c_network, model_path.c_str())); | |||
std::vector<LiteTensor> c_data_tensors(3, nullptr); | |||
for (size_t i = 0; i < 3; i++) { | |||
LITE_CAPI_CHECK(LITE_get_io_tensors( | |||
c_network, "data", i, LITE_INPUT, &c_data_tensors[i])); | |||
LITE_CAPI_CHECK(LITE_reset_tensor_memory( | |||
c_data_tensors[i], datas[i]->get_memory_ptr(), data_length_in_byte)); | |||
} | |||
ForwardNetwork; | |||
LITE_CAPI_CHECK(LITE_destroy_network(c_network)); | |||
} | |||
#if LITE_BUILD_WITH_RKNPU | |||
static int GetTop( | |||
@@ -381,7 +381,7 @@ public: | |||
}; | |||
//! shortcut for calling ExtraDependencyMerger | |||
SymbolVarArray get_dest_vars_with_extra_deps( | |||
MGE_WIN_DECLSPEC_FUC SymbolVarArray get_dest_vars_with_extra_deps( | |||
const SymbolVarArray& dest_vars, SpecialOprStat* sopr_stat = nullptr); | |||
} // namespace cg | |||
@@ -44,13 +44,14 @@ public: | |||
//! rewrite vars in a graph | |||
class Rewriter; | |||
SubGraph(const SymbolVarArray& endpoint_vars); | |||
MGE_WIN_DECLSPEC_FUC SubGraph(const SymbolVarArray& endpoint_vars); | |||
//! get the associated ComputingGraph | |||
ComputingGraph* comp_graph() const { return m_comp_graph; } | |||
//! iterate in topology order | |||
void iter(const Callback& cb, std::shared_ptr<ExtraDep> = nullptr) const; | |||
MGE_WIN_DECLSPEC_FUC void iter( | |||
const Callback& cb, std::shared_ptr<ExtraDep> = nullptr) const; | |||
//! make a Rewriter bound to this graph | |||
inline Rewriter make_rewriter(); | |||
@@ -99,7 +100,7 @@ public: | |||
* \return new operator that uses new inputs; it would be | |||
* opr if no input is changed | |||
*/ | |||
OperatorNodeBase* auto_replace_outputs(OperatorNodeBase* opr); | |||
MGE_WIN_DECLSPEC_FUC OperatorNodeBase* auto_replace_outputs(OperatorNodeBase* opr); | |||
//! get current var: if var has been replaced, return its | |||
//! new value; otherwise return var itself | |||
@@ -119,11 +120,11 @@ public: | |||
* | |||
* \param msg see OptState::on_var_replaced | |||
*/ | |||
void replace_var(VarNode* src, VarNode* dst, const char* msg); | |||
MGE_WIN_DECLSPEC_FUC void replace_var(VarNode* src, VarNode* dst, const char* msg); | |||
//! apply this rewriter to the owner graph and modify owner | |||
//! SubGraph inplace | |||
void apply_inplace() const; | |||
MGE_WIN_DECLSPEC_FUC void apply_inplace() const; | |||
}; | |||
SubGraph::Rewriter SubGraph::make_rewriter() { | |||
return {this}; | |||
@@ -160,18 +160,6 @@ void WarpPerspectiveForward::outshape_by_symvar_do_get_output_shape( | |||
"out2d=%s", | |||
imgshp.to_string().c_str(), matshp.to_string().c_str(), | |||
oshp2d.to_string().c_str()); | |||
if (input().size() - m_srcs_size == 2) { | |||
mgb_assert( | |||
m_srcs_size == matshp[0], "batchsize mismatch: img=%zu mat=%zu", | |||
m_srcs_size, matshp[0]); | |||
} else { | |||
mgb_assert(input().size() - m_srcs_size == 3); | |||
mat_idx_shp = shpinfo.shape_inp_shp.at(m_srcs_size + 1); | |||
mgb_assert( | |||
mat_idx_shp[0] == matshp[0] && mat_idx_shp.ndim == 1, | |||
"invalid mat_idx shape: mat=%zu mat_idx=%s", matshp[0], | |||
mat_idx_shp.to_string().c_str()); | |||
} | |||
size_t height_idx = 0; | |||
if (param().format == Param::Format::NCHW) { | |||
height_idx = 2; | |||
@@ -22,7 +22,7 @@ namespace opr { | |||
* Impl note: this operator might have 3 or 4 inputs depending on whether | |||
* \p mat_idx is given | |||
*/ | |||
MGB_DEFINE_OPR_CLASS( | |||
MGB_DEFINE_OPR_CLASS_WITH_EXPORT( | |||
WarpPerspectiveForward, | |||
intl::WorkspaceSizeInfer<intl::OutshapeBySymvarSCNOpr< | |||
mixin::MegDNNOprHolderImpl<megdnn::WarpPerspectiveForward>>>) // { | |||