@@ -19,7 +19,7 @@ from megengine.device import get_default_device, get_device_count | |||
from ..core._imperative_rt.core2 import apply | |||
from ..core.ops.builtin import ParamPackConcat, ParamPackSplit | |||
from ..functional.utils import copy | |||
from ..functional.tensor import copy | |||
from ..tensor import Tensor | |||
from ..utils.future import Future | |||
from .functional import all_reduce_sum, broadcast | |||
@@ -7,12 +7,11 @@ | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# pylint: disable=redefined-builtin | |||
from . import metric, vision | |||
from .elemwise import * | |||
from .img_proc import * | |||
from .math import * | |||
from .nn import * | |||
from .tensor import * | |||
from .utils import * | |||
from . import distributed # isort:skip | |||
@@ -7,8 +7,6 @@ | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# pylint: disable=unused-argument,invalid-name,redefined-builtin,arguments-out-of-order | |||
import functools | |||
import numpy as np | |||
from ..core._imperative_rt.core2 import apply | |||
@@ -17,7 +15,7 @@ from ..core.ops import builtin | |||
from ..core.ops.builtin import Elemwise | |||
from ..core.tensor import utils | |||
from ..core.tensor.array_method import _elwise_apply | |||
from ..core.tensor.utils import astype, isscalar, setscalar | |||
from ..core.tensor.utils import astype | |||
from ..device import get_default_device | |||
from ..jit.tracing import is_tracing | |||
from ..tensor import Tensor | |||
@@ -44,8 +42,6 @@ __all__ = [ | |||
"floor_div", | |||
"greater", | |||
"greater_equal", | |||
"hswish", | |||
"hsigmoid", | |||
"left_shift", | |||
"less", | |||
"less_equal", | |||
@@ -62,11 +58,8 @@ __all__ = [ | |||
"neg", | |||
"not_equal", | |||
"pow", | |||
"relu", | |||
"relu6", | |||
"right_shift", | |||
"round", | |||
"sigmoid", | |||
"sin", | |||
"sinh", | |||
"sqrt", | |||
@@ -523,53 +516,6 @@ def greater_equal(x, y): | |||
# other functions | |||
def hswish(x): | |||
""" | |||
Element-wise `x * relu6(x + 3) / 6`. | |||
:param x: input tensor. | |||
:return: computed tensor. | |||
Example: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = tensor(np.arange(5).astype(np.float32)) | |||
out = F.hswish(x) | |||
print(out.numpy().round(decimals=4)) | |||
.. testoutput:: | |||
[0. 0.6667 1.6667 3. 4. ] | |||
""" | |||
return _elwise(x, mode=Elemwise.Mode.H_SWISH) | |||
def hsigmoid(x): | |||
"""Element-wise `relu6(x + 3) / 6`.""" | |||
return relu6(x + 3) / 6 | |||
def relu(x): | |||
"""Element-wise `max(x, 0)`.""" | |||
return _elwise(x, mode=Elemwise.Mode.RELU) | |||
def relu6(x): | |||
"""Element-wise `min(max(x, 0), 6)`.""" | |||
return minimum(maximum(x, 0), 6) | |||
def sigmoid(x): | |||
"""Element-wise `1 / ( 1 + exp( -x ) )`.""" | |||
return _elwise(x, mode=Elemwise.Mode.SIGMOID) | |||
def clip(x: Tensor, lower=None, upper=None) -> Tensor: | |||
r""" | |||
Clamps all elements in input tensor into the range `[` :attr:`lower`, :attr:`upper` `]` and returns | |||
@@ -1,50 +0,0 @@ | |||
# -*- coding: utf-8 -*- | |||
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
# | |||
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
# | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
from ..core._imperative_rt.core2 import apply | |||
from ..core.ops import builtin | |||
from ..tensor import Tensor | |||
__all__ = [ | |||
"cvt_color", | |||
] | |||
def cvt_color(inp: Tensor, mode: str = ""): | |||
r""" | |||
Convert images from one format to another | |||
:param inp: input images. | |||
:param mode: format mode. | |||
:return: convert result. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
import megengine as mge | |||
import megengine.functional as F | |||
x = mge.tensor(np.array([[[[-0.58675045, 1.7526233, 0.10702174]]]]).astype(np.float32)) | |||
y = F.img_proc.cvt_color(x, mode="RGB2GRAY") | |||
print(y.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[[[[0.86555195]]]] | |||
""" | |||
assert mode in builtin.CvtColor.Mode.__dict__, "unspport mode for cvt_color" | |||
mode = getattr(builtin.CvtColor.Mode, mode) | |||
assert isinstance(mode, builtin.CvtColor.Mode) | |||
op = builtin.CvtColor(mode=mode) | |||
(out,) = apply(op, inp) | |||
return out |
@@ -8,10 +8,9 @@ | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import numpy as np | |||
from ..core.tensor.utils import make_shape_tuple | |||
from ..tensor import Tensor | |||
from .elemwise import abs, equal, exp, log, maximum, pow, relu | |||
from .nn import indexing_one_hot, logsigmoid, logsumexp | |||
from .elemwise import abs, log | |||
from .nn import indexing_one_hot, logsigmoid, logsumexp, relu | |||
from .tensor import where | |||
__all__ = [ | |||
@@ -7,9 +7,7 @@ | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import collections | |||
import functools | |||
import math | |||
import numbers | |||
from typing import Optional, Sequence, Tuple, Union | |||
from ..core._imperative_rt.core2 import apply | |||
@@ -6,23 +6,14 @@ | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import collections | |||
from typing import Iterable, Union | |||
import numpy as np | |||
from ..core._imperative_rt.core2 import apply | |||
from ..core._wrap import device as as_device | |||
from ..core.ops.builtin import Copy, Identity | |||
from ..tensor import Tensor | |||
from .math import topk as _topk | |||
from .tensor import broadcast_to, transpose | |||
__all__ = [ | |||
"topk_accuracy", | |||
"copy", | |||
] | |||
def topk_accuracy( | |||
logits: Tensor, target: Tensor, topk: Union[int, Iterable[int]] = 1 | |||
@@ -46,7 +37,7 @@ def topk_accuracy( | |||
logits = tensor(np.arange(80, dtype=np.int32).reshape(8,10)) | |||
target = tensor(np.arange(8, dtype=np.int32)) | |||
top1, top5 = F.topk_accuracy(logits, target, (1, 5)) | |||
top1, top5 = F.metric.topk_accuracy(logits, target, (1, 5)) | |||
print(top1.numpy(), top5.numpy()) | |||
Outputs: | |||
@@ -67,33 +58,3 @@ def topk_accuracy( | |||
if len(topk) == 1: # type: ignore[arg-type] | |||
accs = accs[0] | |||
return accs | |||
def copy(inp, device=None): | |||
r""" | |||
Copies tensor to another device. | |||
:param inp: input tensor. | |||
:param device: destination device. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = tensor([1, 2, 3], np.int32) | |||
y = F.copy(x, "xpu1") | |||
print(y.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[1 2 3] | |||
""" | |||
if device is None: | |||
return apply(Identity(), inp)[0] | |||
return apply(Copy(comp_node=as_device(device).to_c()), inp)[0] |
@@ -7,24 +7,25 @@ | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# pylint: disable=too-many-lines | |||
from typing import Iterable, Optional, Sequence, Tuple, Union | |||
from typing import Optional, Sequence, Tuple, Union | |||
from ..core._imperative_rt import CompNode | |||
from ..core._imperative_rt.core2 import apply | |||
from ..core._imperative_rt.graph import VarNode | |||
from ..core._trace_option import use_symbolic_shape | |||
from ..core.ops import builtin | |||
from ..core.ops.builtin import BatchNorm | |||
from ..core.ops.builtin import BatchNorm, Elemwise | |||
from ..core.ops.special import Const | |||
from ..core.tensor import utils | |||
from ..core.tensor.utils import astensor1d, setscalar | |||
from ..core.tensor import megbrain_graph, utils | |||
from ..core.tensor.array_method import _elwise_apply | |||
from ..core.tensor.utils import astensor1d, astype, setscalar | |||
from ..device import get_default_device | |||
from ..distributed import WORLD, is_distributed | |||
from ..jit.tracing import is_tracing | |||
from ..random import uniform | |||
from ..tensor import Tensor | |||
from ..utils.tuple_function import _pair, _pair_nonzero | |||
from .debug_param import get_execution_strategy | |||
from .debug_param import get_conv_execution_strategy, get_execution_strategy | |||
from .distributed import all_reduce_sum | |||
from .elemwise import exp, floor, log, log1p, maximum, minimum, relu | |||
from .elemwise import exp, floor, log, log1p, maximum, minimum | |||
from .math import argsort, matmul, max, prod, sum | |||
from .tensor import ( | |||
broadcast_to, | |||
@@ -47,8 +48,10 @@ __all__ = [ | |||
"deformable_conv2d", | |||
"deformable_psroi_pooling", | |||
"dropout", | |||
"embedding", | |||
"indexing_one_hot", | |||
"leaky_relu", | |||
"linear", | |||
"local_conv2d", | |||
"logsigmoid", | |||
"logsumexp", | |||
@@ -56,12 +59,16 @@ __all__ = [ | |||
"max_pool2d", | |||
"one_hot", | |||
"prelu", | |||
"remap", | |||
"softmax", | |||
"softplus", | |||
"warp_affine", | |||
"warp_perspective", | |||
"svd", | |||
"sync_batch_norm", | |||
"conv1d", | |||
"sigmoid", | |||
"hsigmoid", | |||
"relu", | |||
"relu6", | |||
"hswish", | |||
] | |||
@@ -983,79 +990,32 @@ def one_hot(inp: Tensor, num_classes: int) -> Tensor: | |||
return result | |||
def warp_affine( | |||
inp: Tensor, | |||
weight: Tensor, | |||
out_shape, | |||
border_mode="REPLICATE", | |||
border_val=0, | |||
format="NHWC", | |||
imode="LINEAR", | |||
): | |||
""" | |||
Batched affine transform on 2D images. | |||
:param inp: input image. | |||
:param weight: weight tensor. | |||
:param out_shape: output tensor shape. | |||
:param border_mode: pixel extrapolation method. | |||
Default: "WRAP". Currently "CONSTANT", "REFLECT", | |||
"REFLECT_101", "ISOLATED", "WRAP", "REPLICATE", "TRANSPARENT" are supported. | |||
:param border_val: value used in case of a constant border. Default: 0 | |||
:param format: "NHWC" as default based on historical concerns, | |||
"NCHW" is also supported. Default: "NCHW". | |||
:param imode: interpolation methods. Could be "LINEAR", "NEAREST", "CUBIC", "AREA". | |||
Default: "LINEAR". | |||
:return: output tensor. | |||
.. note:: | |||
Here all available options for params are listed, | |||
however it does not mean that you can use all the combinations. | |||
On different platforms, different combinations are supported. | |||
def matmul( | |||
inp1: Tensor, | |||
inp2: Tensor, | |||
transpose_a=False, | |||
transpose_b=False, | |||
compute_mode="DEFAULT", | |||
format="DEFAULT", | |||
) -> Tensor: | |||
""" | |||
op = builtin.WarpAffine( | |||
border_mode=border_mode, border_val=border_val, format=format, imode=imode | |||
) | |||
out_shape = utils.astensor1d(out_shape, inp, dtype="int32", device=inp.device) | |||
(result,) = apply(op, inp, weight, out_shape) | |||
return result | |||
Performs a matrix multiplication of the matrices ``inp1`` and ``inp2``. | |||
With different inputs dim, this function behaves differently: | |||
def warp_perspective( | |||
inp: Tensor, | |||
M: Tensor, | |||
dsize: Union[Tuple[int, int], int, Tensor], | |||
border_mode: str = "REPLICATE", | |||
border_val: float = 0.0, | |||
interp_mode: str = "LINEAR", | |||
) -> Tensor: | |||
r""" | |||
Applies perspective transformation to batched 2D images. | |||
- Both 1-D tensor, simply forward to ``dot``. | |||
- Both 2-D tensor, normal matrix multiplication. | |||
- If one input tensor is 1-D, matrix vector multiplication. | |||
- If at least one tensor are 3-dimensional or >3-dimensional, the other tensor should have dim >= 2, the batched matrix-matrix is returned, and the tensor with smaller dimension will | |||
be broadcasted. For example: | |||
- inp1: `(n, k, m)`, inp2: `(n, m, p)`, return: `(n, k, p)` | |||
- inp1: `(n, k, m)`, inp2: `(m, p)`, return: `(n, k, p)` | |||
- inp1: `(n, j, k, m)`, inp2: `(n, j, m, p)`, return: `(n, j, k, p)` | |||
The input images are transformed to the output images by the transformation matrix: | |||
.. math:: | |||
\text{output}(n, c, h, w) = \text{input} \left( n, c, | |||
\frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, | |||
\frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} | |||
\right) | |||
:param inp: input image. | |||
:param M: `(batch, 3, 3)` transformation matrix. | |||
:param dsize: `(h, w)` size of the output image. | |||
:param border_mode: pixel extrapolation method. | |||
Default: "REPLICATE". Currently also support "CONSTANT", "REFLECT", | |||
"REFLECT_101", "WRAP". | |||
:param border_val: value used in case of a constant border. Default: 0 | |||
:param interp_mode: interpolation methods. | |||
Default: "LINEAR". Currently only support "LINEAR" mode. | |||
:param inp1: first matrix to be multiplied. | |||
:param inp2: second matrix to be multiplied. | |||
:return: output tensor. | |||
.. note:: | |||
The transformation matrix is the inverse of that used by `cv2.warpPerspective`. | |||
Examples: | |||
.. testcode:: | |||
@@ -1064,55 +1024,111 @@ def warp_perspective( | |||
from megengine import tensor | |||
import megengine.functional as F | |||
inp_shape = (1, 1, 4, 4) | |||
x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) | |||
M_shape = (1, 3, 3) | |||
# M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) | |||
M = tensor(np.array([[1., 0., 1.], | |||
[0., 1., 1.], | |||
[0., 0., 1.]], dtype=np.float32).reshape(M_shape)) | |||
out = F.warp_perspective(x, M, (2, 2)) | |||
data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) | |||
data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) | |||
out = F.matmul(data1, data2) | |||
print(out.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[[[[ 5. 6.] | |||
[ 9. 10.]]]] | |||
[[10. 13.] | |||
[28. 40.]] | |||
""" | |||
op = builtin.WarpPerspective( | |||
imode=interp_mode, bmode=border_mode, format="NCHW", border_val=border_val | |||
) | |||
inp, M = utils.convert_inputs(inp, M) | |||
dsize = astensor1d(dsize, inp, dtype="int32", device=inp.device) | |||
(result,) = apply(op, inp, M, dsize) | |||
remove_row, remove_col = False, False | |||
inp1, inp2 = utils.convert_inputs(inp1, inp2) | |||
dim1, dim2 = inp1.ndim, inp2.ndim | |||
# handle dim=1 cases, dot and matrix-vector multiplication | |||
if dim1 == 1 and dim2 == 1: | |||
return dot(inp1, inp2) | |||
# the underlying matmul op requires input dims to be at least 2 | |||
if dim1 == 1: | |||
inp1 = expand_dims(inp1, 0) | |||
dim1 = 2 | |||
remove_row = True | |||
if dim2 == 1: | |||
inp2 = expand_dims(inp2, 1) | |||
dim2 = 2 | |||
remove_col = True | |||
batch_shape = None | |||
shape1 = inp1.shape | |||
shape2 = inp2.shape | |||
maxdim = dim1 if dim1 > dim2 else dim2 | |||
if dim1 >= 3 or dim2 >= 3: | |||
if use_symbolic_shape(): | |||
if dim1 > dim2: | |||
shape2 = concat([shape1[:-2], shape2[-2:]]) | |||
inp2 = broadcast_to(inp2, shape2) | |||
if dim1 < dim2: | |||
shape1 = concat([shape2[:-2], shape1[-2:]]) | |||
inp1 = broadcast_to(inp1, shape1) | |||
if maxdim > 3: | |||
batch_shape = shape1[:-2] | |||
# compress inputs to 3d | |||
(inp1,) = apply( | |||
builtin.Reshape(), inp1, concat([prod(shape1[:-2]), shape1[-2:]]) | |||
) | |||
(inp2,) = apply( | |||
builtin.Reshape(), inp2, concat([prod(shape2[:-2]), shape2[-2:]]) | |||
) | |||
else: | |||
if dim1 > dim2: | |||
shape2 = shape1[:-2] + shape2[-2:] | |||
inp2 = broadcast_to(inp2, shape2) | |||
if dim1 < dim2: | |||
shape1 = shape2[:-2] + shape1[-2:] | |||
inp1 = broadcast_to(inp1, shape1) | |||
if maxdim > 3: | |||
batch_shape = shape1[:-2] | |||
# compress inputs to 3d | |||
inp1 = inp1.reshape((-1, shape1[-2], shape1[-1])) | |||
inp2 = inp2.reshape((-1, shape2[-2], shape2[-1])) | |||
op = builtin.BatchedMatrixMul( | |||
transposeA=transpose_a, | |||
transposeB=transpose_b, | |||
compute_mode=compute_mode, | |||
format=format, | |||
strategy=get_conv_execution_strategy(), | |||
) | |||
else: | |||
op = builtin.MatrixMul( | |||
transposeA=transpose_a, | |||
transposeB=transpose_b, | |||
compute_mode=compute_mode, | |||
format=format, | |||
strategy=get_conv_execution_strategy(), | |||
) | |||
(result,) = apply(op, inp1, inp2) | |||
if maxdim > 3: | |||
if use_symbolic_shape(): | |||
(result,) = apply( | |||
builtin.Reshape(), result, concat([batch_shape, result.shape[-2:]]) | |||
) | |||
else: | |||
result = result.reshape(batch_shape + result.shape[-2:]) | |||
if remove_row: | |||
result = squeeze(result, axis=-2) | |||
if remove_col: | |||
result = squeeze(result, axis=-1) | |||
return result | |||
def remap( | |||
inp: Tensor, | |||
map_xy: Tensor, | |||
border_mode: str = "REPLICATE", | |||
scalar: float = 0.0, | |||
interp_mode: str = "LINEAR", | |||
) -> Tensor: | |||
r""" | |||
Applies remap transformation to batched 2D images. | |||
The input images are transformed to the output images by the tensor map_xy. | |||
The output's H and W are same as map_xy's H and W. | |||
:param inp: input image | |||
:param map_xy: (batch, oh, ow, 2) transformation matrix | |||
:param border_mode: pixel extrapolation method. | |||
Default: "REPLICATE". Currently also support "CONSTANT", "REFLECT", | |||
"REFLECT_101", "WRAP". | |||
:param scalar: value used in case of a constant border. Default: 0 | |||
:param interp_mode: interpolation methods. | |||
Default: "LINEAR". Currently only support "LINEAR" mode. | |||
:return: output tensor. | |||
def dot(inp1: Tensor, inp2: Tensor) -> Tensor: | |||
""" | |||
Computes dot-product of two vectors ``inp1`` and ``inp2``. | |||
inputs must be 1-dimensional or scalar. A scalar input is automatically broadcasted. | |||
Refer to :func:`~.matmul` for more general usage. | |||
:param inp1: first vector. | |||
:param inp2: second vector. | |||
:return: output value. | |||
Examples: | |||
@@ -1121,56 +1137,35 @@ def remap( | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
inp_shape = (1, 1, 4, 4) | |||
inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) | |||
map_xy_shape = (1, 2, 2, 2) | |||
map_xy = tensor(np.array([[[1., 0.],[0., 1.]], | |||
[[0., 1.],[0., 1.]]], | |||
dtype=np.float32).reshape(map_xy_shape)) | |||
out = F.remap(inp, map_xy) | |||
data1 = tensor(np.arange(0, 6, dtype=np.float32)) | |||
data2 = tensor(np.arange(0, 6, dtype=np.float32)) | |||
out = F.dot(data1, data2) | |||
print(out.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[[[[1. 4.] | |||
[4. 4.]]]] | |||
55. | |||
""" | |||
op = builtin.Remap( | |||
imode=interp_mode, border_type=border_mode, format="NCHW", scalar=scalar | |||
) | |||
(result,) = apply(op, inp, map_xy) | |||
op = builtin.Dot() | |||
inp1, inp2 = utils.convert_inputs(inp1, inp2) | |||
assert ( | |||
inp1.ndim <= 1 and inp2.ndim <= 1 | |||
), "Input tensors for dot must be 1-dimensional or scalar" | |||
(result,) = apply(op, inp1, inp2) | |||
setscalar(result) | |||
return result | |||
def interpolate( | |||
inp: Tensor, | |||
size: Optional[Union[int, Tuple[int, int]]] = None, | |||
scale_factor: Optional[Union[float, Tuple[float, float]]] = None, | |||
mode: str = "BILINEAR", | |||
align_corners: Optional[bool] = None, | |||
) -> Tensor: | |||
r""" | |||
Down/up samples the input tensor to either the given size or with the given scale_factor. ``size`` can not coexist with ``scale_factor``. | |||
def svd(inp: Tensor, full_matrices=False, compute_uv=True) -> Tensor: | |||
""" | |||
Computes the singular value decompositions of input matrix. | |||
:param inp: input tensor. | |||
:param size: size of the output tensor. Default: None | |||
:param scale_factor: scaling factor of the output tensor. Default: None | |||
:param mode: interpolation methods, acceptable values are: | |||
"BILINEAR", "LINEAR". Default: "BILINEAR" | |||
:param align_corners: This only has an effect when `mode` | |||
is "BILINEAR" or "LINEAR". Geometrically, we consider the pixels of the input | |||
and output as squares rather than points. If set to ``True``, the input | |||
and output tensors are aligned by the center points of their corner | |||
pixels, preserving the values at the corner pixels. If set to ``False``, | |||
the input and output tensors are aligned by the corner points of their | |||
corner pixels, and the interpolation uses edge value padding for | |||
out-of-boundary values, making this operation *independent* of input size | |||
when `scale_factor` is kept the same. Default: None | |||
:return: output tensor. | |||
:param inp: input matrix, must has shape `[..., M, N]`. | |||
:return: output matrices, `(U, sigma, V)`. | |||
Examples: | |||
@@ -1180,141 +1175,20 @@ def interpolate( | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) | |||
out = F.nn.interpolate(x, [4, 4], align_corners=False) | |||
print(out.numpy()) | |||
out2 = F.nn.interpolate(x, scale_factor=2.) | |||
np.testing.assert_allclose(out.numpy(), out2.numpy()) | |||
x = tensor(np.arange(0, 6, dtype=np.float32).reshape(2,3)) | |||
_, y, _ = F.svd(x) | |||
print(y.numpy().round(decimals=3)) | |||
Outputs: | |||
.. testoutput:: | |||
[[[[1. 1.25 1.75 2. ] | |||
[1.5 1.75 2.25 2.5 ] | |||
[2.5 2.75 3.25 3.5 ] | |||
[3. 3.25 3.75 4. ]]]] | |||
[7.348 1. ] | |||
""" | |||
mode = mode.upper() | |||
if mode not in ["BILINEAR", "LINEAR"]: | |||
raise ValueError("interpolate only support linear or bilinear mode") | |||
if mode not in ["BILINEAR", "LINEAR"]: | |||
if align_corners is not None: | |||
raise ValueError( | |||
"align_corners option can only be set in the bilinear/linear interpolating mode" | |||
) | |||
else: | |||
if align_corners is None: | |||
align_corners = False | |||
if ( | |||
size is not None | |||
and scale_factor is None | |||
and not align_corners | |||
and mode == "BILINEAR" | |||
and inp.ndim in [4, 5] | |||
): | |||
# fastpath for interpolate | |||
op = builtin.Resize(imode="LINEAR", format="NCHW") | |||
shape = astensor1d(size, inp, dtype="int32", device=inp.device) | |||
(result,) = apply(op, inp, shape) | |||
return result | |||
if mode == "LINEAR": | |||
inp = expand_dims(inp, 3) | |||
if inp.ndim != 4: | |||
raise ValueError("shape of input tensor must correspond to the operartion mode") | |||
if size is None: | |||
if scale_factor is None: | |||
raise ValueError("scale_factor must not be None when size is None") | |||
if isinstance(scale_factor, (float, int)): | |||
scale_factor = float(scale_factor) | |||
if mode == "LINEAR": | |||
scale_factor = (scale_factor, float(1)) | |||
else: | |||
scale_factor = (scale_factor, scale_factor) | |||
else: | |||
if mode == "LINEAR": | |||
raise ValueError( | |||
"under LINEAR mode, scale_factor can only be single value" | |||
) | |||
assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" | |||
assert isinstance(scale_factor[0], float) and isinstance( | |||
scale_factor[1], float | |||
), "scale_factor must be float type" | |||
dsize = tuple( | |||
floor( | |||
Tensor( | |||
inp.shape[i + 2] * scale_factor[i], | |||
dtype="float32", | |||
device=inp.device, | |||
) | |||
) | |||
for i in range(2) | |||
) | |||
dsize = concat([dsize[0], dsize[1]], axis=0) | |||
else: | |||
if scale_factor is not None: | |||
raise ValueError("scale_factor must be None when size is provided") | |||
if isinstance(size, int): | |||
size = (size, 1) | |||
else: | |||
if mode == "LINEAR": | |||
raise ValueError("under LINEAR mode, size can only be single value") | |||
dsize = size | |||
oh, ow = dsize[0], dsize[1] | |||
ih, iw = inp.shape[2], inp.shape[3] | |||
if align_corners: | |||
hscale = (ih - 1.0) / (oh - 1.0) | |||
wscale = 1.0 * iw / ow | |||
if mode != "LINEAR": | |||
wscale = (iw - 1.0) / (ow - 1.0) | |||
row0 = concat( | |||
[wscale, Tensor([0, 0], dtype="float32", device=inp.device)], axis=0 | |||
).reshape(1, 3) | |||
row1 = concat( | |||
[ | |||
Tensor(0, dtype="float32", device=inp.device), | |||
hscale, | |||
Tensor(0, dtype="float32", device=inp.device), | |||
], | |||
axis=0, | |||
).reshape(1, 3) | |||
weight = concat( | |||
[row0, row1, Tensor([[0, 0, 1]], dtype="float32", device=inp.device)], | |||
axis=0, | |||
).reshape(1, 3, 3) | |||
weight = broadcast_to(weight, (inp.shape[0], 3, 3)) | |||
else: | |||
hscale = 1.0 * ih / oh | |||
wscale = 1.0 * iw / ow | |||
row0 = concat( | |||
[wscale, Tensor(0, dtype="float32", device=inp.device), 0.5 * wscale - 0.5], | |||
axis=0, | |||
).reshape(1, 3) | |||
row1 = concat( | |||
[Tensor(0, dtype="float32", device=inp.device), hscale, 0.5 * hscale - 0.5], | |||
axis=0, | |||
).reshape(1, 3) | |||
weight = concat( | |||
[row0, row1, Tensor([[0, 0, 1]], dtype="float32", device=inp.device)], | |||
axis=0, | |||
).reshape(1, 3, 3) | |||
weight = broadcast_to(weight, (inp.shape[0], 3, 3)) | |||
weight = weight.astype("float32") | |||
ret = warp_perspective(inp, weight, dsize, interp_mode="LINEAR") | |||
if mode == "LINEAR": | |||
ret = reshape(ret, ret.shape[0:3]) | |||
return ret | |||
op = builtin.SVD(full_matrices=full_matrices, compute_uv=compute_uv) | |||
U, sigma, V = apply(op, inp) | |||
return U, sigma, V | |||
def dropout(inp: Tensor, drop_prob: float, training: bool = True) -> Tensor: | |||
@@ -1385,127 +1259,6 @@ def embedding( | |||
return weight[inp.reshape(-1)].reshape(dest_shp) | |||
def roi_pooling( | |||
inp: Tensor, | |||
rois: Tensor, | |||
output_shape: Union[int, tuple, list], | |||
mode: str = "max", | |||
scale: float = 1.0, | |||
) -> Tensor: | |||
""" | |||
Applies roi pooling on input feature. | |||
:param inp: tensor that represents the input feature, `(N, C, H, W)` images. | |||
:param rois: `(K, 5)` boxes. First column is the index into N. The other 4 columns are xyxy. | |||
:param output_shape: `(height, width)` of output rois feature. | |||
:param mode: "max" or "average", use max/average align just like max/average pooling. Default: "max" | |||
:param scale: scale the input boxes by this number. Default: 1.0 | |||
:return: `(K, C, output_shape[0], output_shape[1])` feature of rois. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
np.random.seed(42) | |||
inp = tensor(np.random.randn(1, 1, 128, 128)) | |||
rois = tensor(np.random.random((4, 5))) | |||
y = F.nn.roi_pooling(inp, rois, (2, 2)) | |||
print(y.numpy()[0].round(decimals=4)) | |||
Outputs: | |||
.. testoutput:: | |||
[[[-0.1383 -0.1383] | |||
[-0.5035 -0.5035]]] | |||
""" | |||
assert mode in ["max", "average"], "only max/average mode is supported" | |||
if isinstance(output_shape, int): | |||
output_shape = (output_shape, output_shape) | |||
op = builtin.ROIPooling(mode=mode, scale=scale) | |||
inp, rois = utils.convert_inputs(inp, rois) | |||
result, _ = apply( | |||
op, inp, rois, Tensor(output_shape, dtype="int32", device=inp.device) | |||
) | |||
return result | |||
def roi_align( | |||
inp: Tensor, | |||
rois: Tensor, | |||
output_shape: Union[int, tuple, list], | |||
mode: str = "average", | |||
spatial_scale: float = 1.0, | |||
sample_points: Union[int, tuple, list] = 2, | |||
aligned: bool = True, | |||
) -> Tensor: | |||
""" | |||
Applies roi align on input feature. | |||
:param inp: tensor that represents the input feature, shape is `(N, C, H, W)`. | |||
:param rois: `(N, 5)` boxes. First column is the box index. The other 4 columns are ``xyxy``. | |||
:param output_shape: `(height, width)` shape of output rois feature. | |||
:param mode: "max" or "average", use max/average align just like max/average pooling. Default: "average" | |||
:param spatial_scale: scale the input boxes by this number. Default: 1.0 | |||
:param sample_points: number of inputs samples to take for each output sample. | |||
0 to take samples densely. Default: 2 | |||
:param aligned: wheather to align the input feature, with `aligned=True`, | |||
we first appropriately scale the ROI and then shift it by -0.5. Default: True | |||
:return: output tensor. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
np.random.seed(42) | |||
inp = tensor(np.random.randn(1, 1, 128, 128)) | |||
rois = tensor(np.random.random((4, 5))) | |||
y = F.nn.roi_align(inp, rois, (2, 2)) | |||
print(y.numpy()[0].round(decimals=4)) | |||
Outputs: | |||
.. testoutput:: | |||
[[[0.175 0.175 ] | |||
[0.1359 0.1359]]] | |||
""" | |||
assert mode in ["max", "average"], "only max/average mode is supported" | |||
if isinstance(output_shape, int): | |||
output_shape = (output_shape, output_shape) | |||
pooled_height, pooled_width = output_shape | |||
if isinstance(sample_points, int): | |||
sample_points = (sample_points, sample_points) | |||
sample_height, sample_width = sample_points | |||
offset = 0.5 if aligned else 0.0 | |||
op = builtin.ROIAlign( | |||
mode=mode, | |||
format="NCHW", | |||
spatial_scale=spatial_scale, | |||
offset=offset, | |||
pooled_height=pooled_height, | |||
pooled_width=pooled_width, | |||
sample_height=sample_height, | |||
sample_width=sample_width, | |||
) | |||
inp, rois = utils.convert_inputs(inp, rois) | |||
result, *_ = apply(op, inp, rois) | |||
return result | |||
def indexing_one_hot( | |||
src: Tensor, index: Tensor, axis: int = 1, keepdims=False | |||
) -> Tensor: | |||
@@ -1621,72 +1374,6 @@ def conv1d( | |||
return output | |||
def nms( | |||
boxes: Tensor, scores: Tensor, iou_thresh: float, max_output: Optional[int] = None | |||
) -> Tensor: | |||
r""" | |||
Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union(IoU). | |||
:param boxes: tensor of shape `(N, 4)`; the boxes to perform nms on; each box is expected to be in `(x1, y1, x2, y2)` format. | |||
:param iou_thresh: IoU threshold for overlapping. | |||
:param scores: tensor of shape `(N,)`, the score of boxes. | |||
:param max_output: the maximum number of boxes to keep; it is optional if this operator is not traced | |||
otherwise it required to be specified; if it is not specified, all boxes are kept. | |||
:return: indices of the elements that have been kept by NMS. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = np.zeros((100,4)) | |||
np.random.seed(42) | |||
x[:,:2] = np.random.rand(100,2)*20 | |||
x[:,2:] = np.random.rand(100,2)*20 + 100 | |||
scores = tensor(np.random.rand(100)) | |||
inp = tensor(x) | |||
result = F.nn.nms(inp, scores, iou_thresh=0.7) | |||
print(result.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[75 69] | |||
""" | |||
assert ( | |||
boxes.ndim == 2 and boxes.shape[1] == 4 | |||
), "the expected shape of boxes is (N, 4)" | |||
assert scores.ndim == 1, "the expected shape of scores is (N,)" | |||
assert ( | |||
boxes.shape[0] == scores.shape[0] | |||
), "number of boxes and scores are not matched" | |||
boxes = boxes.detach() | |||
scores = scores.detach() | |||
sorted_idx = argsort(scores, descending=True) | |||
boxes = boxes[sorted_idx] | |||
if is_tracing(): | |||
assert ( | |||
max_output is not None and max_output > 0 | |||
), "max_output should be specified under tracing" | |||
if max_output is None: | |||
max_output = boxes.shape[0] | |||
op = builtin.NMSKeep(iou_thresh, max_output) | |||
inp = utils.convert_inputs(boxes.reshape(1, -1, 4)) | |||
indices, count = apply(op, *inp) | |||
indices = indices[0][: count[0]] | |||
keep_inds = sorted_idx[indices] | |||
return keep_inds | |||
def nvof(src: Tensor, precision: int = 1) -> Tensor: | |||
r""" | |||
Implements NVIDIA Optical Flow SDK. | |||
@@ -1717,5 +1404,89 @@ def nvof(src: Tensor, precision: int = 1) -> Tensor: | |||
return apply(op, src)[0] | |||
def _elwise(*args, mode): | |||
tensor_args = list(filter(lambda x: isinstance(x, (Tensor, VarNode)), args)) | |||
if len(tensor_args) == 0: | |||
dtype = utils.dtype_promotion(args) | |||
first_arg = Tensor(args[0], dtype=dtype, device=get_default_device()) | |||
args = utils.convert_inputs(first_arg, *args[1:]) | |||
else: | |||
args = utils.convert_inputs(*args) | |||
if mode in ( | |||
Elemwise.Mode.TRUE_DIV, | |||
Elemwise.Mode.EXP, | |||
Elemwise.Mode.POW, | |||
Elemwise.Mode.LOG, | |||
Elemwise.Mode.EXPM1, | |||
Elemwise.Mode.LOG1P, | |||
Elemwise.Mode.TANH, | |||
Elemwise.Mode.ACOS, | |||
Elemwise.Mode.ASIN, | |||
Elemwise.Mode.ATAN2, | |||
Elemwise.Mode.CEIL, | |||
Elemwise.Mode.COS, | |||
Elemwise.Mode.FLOOR, | |||
Elemwise.Mode.H_SWISH, | |||
Elemwise.Mode.ROUND, | |||
Elemwise.Mode.SIGMOID, | |||
Elemwise.Mode.SIN, | |||
): | |||
if mode in ( | |||
Elemwise.Mode.CEIL, | |||
Elemwise.Mode.FLOOR, | |||
Elemwise.Mode.ROUND, | |||
) and np.issubdtype(args[0].dtype, np.integer): | |||
return args[0] | |||
args = tuple(map(lambda x: astype(x, "float32"), args)) | |||
return _elwise_apply(args, mode) | |||
def hswish(x): | |||
""" | |||
Element-wise `x * relu6(x + 3) / 6`. | |||
:param x: input tensor. | |||
:return: computed tensor. | |||
Example: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = tensor(np.arange(5).astype(np.float32)) | |||
out = F.hswish(x) | |||
print(out.numpy().round(decimals=4)) | |||
.. testoutput:: | |||
[0. 0.6667 1.6667 3. 4. ] | |||
""" | |||
return _elwise(x, mode=Elemwise.Mode.H_SWISH) | |||
def sigmoid(x): | |||
"""Element-wise `1 / ( 1 + exp( -x ) )`.""" | |||
return _elwise(x, mode=Elemwise.Mode.SIGMOID) | |||
def hsigmoid(x): | |||
"""Element-wise `relu6(x + 3) / 6`.""" | |||
return relu6(x + 3) / 6 | |||
def relu(x): | |||
"""Element-wise `max(x, 0)`.""" | |||
return _elwise(x, mode=Elemwise.Mode.RELU) | |||
def relu6(x): | |||
"""Element-wise `min(max(x, 0), 6)`.""" | |||
return minimum(maximum(x, 0), 6) | |||
from .loss import * # isort:skip | |||
from .quantized import conv_bias_activation # isort:skip |
@@ -6,10 +6,8 @@ | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import functools | |||
import math | |||
from itertools import accumulate | |||
from typing import Iterable, List, Optional, Sequence, Tuple, Union | |||
from typing import Iterable, Optional, Sequence, Union | |||
import numpy as np | |||
@@ -17,6 +15,7 @@ from ..core._imperative_rt import CompNode | |||
from ..core._imperative_rt.core2 import apply | |||
from ..core._wrap import device as as_device | |||
from ..core.ops import builtin | |||
from ..core.ops.builtin import Copy, Identity | |||
from ..core.ops.special import Const | |||
from ..core.tensor.array_method import _broadcast, _remove_axis | |||
from ..core.tensor.utils import ( | |||
@@ -51,6 +50,7 @@ __all__ = [ | |||
"stack", | |||
"scatter", | |||
"tile", | |||
"copy", | |||
"transpose", | |||
"where", | |||
"zeros", | |||
@@ -1130,3 +1130,33 @@ def tile(inp: Tensor, reps: Iterable[int]): | |||
inp = broadcast_to(inp.reshape(base_shape), bcast_shape).reshape(target_shape) | |||
return inp | |||
def copy(inp, device=None): | |||
r""" | |||
Copies tensor to another device. | |||
:param inp: input tensor. | |||
:param device: destination device. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = tensor([1, 2, 3], np.int32) | |||
y = F.copy(x, "xpu1") | |||
print(y.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[1 2 3] | |||
""" | |||
if device is None: | |||
return apply(Identity(), inp)[0] | |||
return apply(Copy(comp_node=as_device(device).to_c()), inp)[0] |
@@ -0,0 +1,576 @@ | |||
# -*- coding: utf-8 -*- | |||
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
# | |||
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
# | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
from typing import Iterable, Optional, Tuple, Union | |||
from ..core._imperative_rt.core2 import apply | |||
from ..core.ops import builtin | |||
from ..core.tensor import megbrain_graph, utils | |||
from ..core.tensor.utils import astensor1d | |||
from ..jit.tracing import is_tracing | |||
from ..tensor import Tensor | |||
from .elemwise import floor | |||
from .math import argsort | |||
from .tensor import broadcast_to, concat, expand_dims, reshape | |||
def cvt_color(inp: Tensor, mode: str = ""): | |||
r""" | |||
Convert images from one format to another | |||
:param inp: input images. | |||
:param mode: format mode. | |||
:return: convert result. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
import megengine as mge | |||
import megengine.functional as F | |||
x = mge.tensor(np.array([[[[-0.58675045, 1.7526233, 0.10702174]]]]).astype(np.float32)) | |||
y = F.vision.cvt_color(x, mode="RGB2GRAY") | |||
print(y.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[[[[0.86555195]]]] | |||
""" | |||
assert mode in builtin.CvtColor.Mode.__dict__, "unspport mode for cvt_color" | |||
mode = getattr(builtin.CvtColor.Mode, mode) | |||
assert isinstance(mode, builtin.CvtColor.Mode) | |||
op = builtin.CvtColor(mode=mode) | |||
(out,) = apply(op, inp) | |||
return out | |||
def roi_pooling( | |||
inp: Tensor, | |||
rois: Tensor, | |||
output_shape: Union[int, tuple, list], | |||
mode: str = "max", | |||
scale: float = 1.0, | |||
) -> Tensor: | |||
""" | |||
Applies roi pooling on input feature. | |||
:param inp: tensor that represents the input feature, `(N, C, H, W)` images. | |||
:param rois: `(K, 5)` boxes. First column is the index into N. The other 4 columns are xyxy. | |||
:param output_shape: `(height, width)` of output rois feature. | |||
:param mode: "max" or "average", use max/average align just like max/average pooling. Default: "max" | |||
:param scale: scale the input boxes by this number. Default: 1.0 | |||
:return: `(K, C, output_shape[0], output_shape[1])` feature of rois. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
np.random.seed(42) | |||
inp = tensor(np.random.randn(1, 1, 128, 128)) | |||
rois = tensor(np.random.random((4, 5))) | |||
y = F.vision.roi_pooling(inp, rois, (2, 2)) | |||
print(y.numpy()[0].round(decimals=4)) | |||
Outputs: | |||
.. testoutput:: | |||
[[[-0.1383 -0.1383] | |||
[-0.5035 -0.5035]]] | |||
""" | |||
assert mode in ["max", "average"], "only max/average mode is supported" | |||
if isinstance(output_shape, int): | |||
output_shape = (output_shape, output_shape) | |||
op = builtin.ROIPooling(mode=mode, scale=scale) | |||
inp, rois = utils.convert_inputs(inp, rois) | |||
result, _ = apply( | |||
op, inp, rois, Tensor(output_shape, dtype="int32", device=inp.device) | |||
) | |||
return result | |||
def roi_align( | |||
inp: Tensor, | |||
rois: Tensor, | |||
output_shape: Union[int, tuple, list], | |||
mode: str = "average", | |||
spatial_scale: float = 1.0, | |||
sample_points: Union[int, tuple, list] = 2, | |||
aligned: bool = True, | |||
) -> Tensor: | |||
""" | |||
Applies roi align on input feature. | |||
:param inp: tensor that represents the input feature, shape is `(N, C, H, W)`. | |||
:param rois: `(N, 5)` boxes. First column is the box index. The other 4 columns are ``xyxy``. | |||
:param output_shape: `(height, width)` shape of output rois feature. | |||
:param mode: "max" or "average", use max/average align just like max/average pooling. Default: "average" | |||
:param spatial_scale: scale the input boxes by this number. Default: 1.0 | |||
:param sample_points: number of inputs samples to take for each output sample. | |||
0 to take samples densely. Default: 2 | |||
:param aligned: wheather to align the input feature, with `aligned=True`, | |||
we first appropriately scale the ROI and then shift it by -0.5. Default: True | |||
:return: output tensor. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
np.random.seed(42) | |||
inp = tensor(np.random.randn(1, 1, 128, 128)) | |||
rois = tensor(np.random.random((4, 5))) | |||
y = F.vision.roi_align(inp, rois, (2, 2)) | |||
print(y.numpy()[0].round(decimals=4)) | |||
Outputs: | |||
.. testoutput:: | |||
[[[0.175 0.175 ] | |||
[0.1359 0.1359]]] | |||
""" | |||
assert mode in ["max", "average"], "only max/average mode is supported" | |||
if isinstance(output_shape, int): | |||
output_shape = (output_shape, output_shape) | |||
pooled_height, pooled_width = output_shape | |||
if isinstance(sample_points, int): | |||
sample_points = (sample_points, sample_points) | |||
sample_height, sample_width = sample_points | |||
offset = 0.5 if aligned else 0.0 | |||
op = builtin.ROIAlign( | |||
mode=mode, | |||
format="NCHW", | |||
spatial_scale=spatial_scale, | |||
offset=offset, | |||
pooled_height=pooled_height, | |||
pooled_width=pooled_width, | |||
sample_height=sample_height, | |||
sample_width=sample_width, | |||
) | |||
inp, rois = utils.convert_inputs(inp, rois) | |||
result, *_ = apply(op, inp, rois) | |||
return result | |||
def nms( | |||
boxes: Tensor, scores: Tensor, iou_thresh: float, max_output: Optional[int] = None | |||
) -> Tensor: | |||
r""" | |||
Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union(IoU). | |||
:param boxes: tensor of shape `(N, 4)`; the boxes to perform nms on; each box is expected to be in `(x1, y1, x2, y2)` format. | |||
:param iou_thresh: IoU threshold for overlapping. | |||
:param scores: tensor of shape `(N,)`, the score of boxes. | |||
:param max_output: the maximum number of boxes to keep; it is optional if this operator is not traced | |||
otherwise it required to be specified; if it is not specified, all boxes are kept. | |||
:return: indices of the elements that have been kept by NMS. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = np.zeros((100,4)) | |||
np.random.seed(42) | |||
x[:,:2] = np.random.rand(100,2)*20 | |||
x[:,2:] = np.random.rand(100,2)*20 + 100 | |||
scores = tensor(np.random.rand(100)) | |||
inp = tensor(x) | |||
result = F.vision.nms(inp, scores, iou_thresh=0.7) | |||
print(result.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[75 69] | |||
""" | |||
assert ( | |||
boxes.ndim == 2 and boxes.shape[1] == 4 | |||
), "the expected shape of boxes is (N, 4)" | |||
assert scores.ndim == 1, "the expected shape of scores is (N,)" | |||
assert ( | |||
boxes.shape[0] == scores.shape[0] | |||
), "number of boxes and scores are not matched" | |||
boxes = boxes.detach() | |||
scores = scores.detach() | |||
sorted_idx = argsort(scores, descending=True) | |||
boxes = boxes[sorted_idx] | |||
if is_tracing(): | |||
assert ( | |||
max_output is not None and max_output > 0 | |||
), "max_output should be specified under tracing" | |||
if max_output is None: | |||
max_output = boxes.shape[0] | |||
op = builtin.NMSKeep(iou_thresh, max_output) | |||
inp = utils.convert_inputs(boxes.reshape(1, -1, 4)) | |||
indices, count = apply(op, *inp) | |||
indices = indices[0][: count[0]] | |||
keep_inds = sorted_idx[indices] | |||
return keep_inds | |||
def remap( | |||
inp: Tensor, | |||
map_xy: Tensor, | |||
border_mode: str = "REPLICATE", | |||
scalar: float = 0.0, | |||
interp_mode: str = "LINEAR", | |||
) -> Tensor: | |||
r""" | |||
Applies remap transformation to batched 2D images. | |||
The input images are transformed to the output images by the tensor map_xy. | |||
The output's H and W are same as map_xy's H and W. | |||
:param inp: input image | |||
:param map_xy: (batch, oh, ow, 2) transformation matrix | |||
:param border_mode: pixel extrapolation method. | |||
Default: "REPLICATE". Currently also support "CONSTANT", "REFLECT", | |||
"REFLECT_101", "WRAP". | |||
:param scalar: value used in case of a constant border. Default: 0 | |||
:param interp_mode: interpolation methods. | |||
Default: "LINEAR". Currently only support "LINEAR" mode. | |||
:return: output tensor. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
inp_shape = (1, 1, 4, 4) | |||
inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) | |||
map_xy_shape = (1, 2, 2, 2) | |||
map_xy = tensor(np.array([[[1., 0.],[0., 1.]], | |||
[[0., 1.],[0., 1.]]], | |||
dtype=np.float32).reshape(map_xy_shape)) | |||
out = F.vision.remap(inp, map_xy) | |||
print(out.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[[[[1. 4.] | |||
[4. 4.]]]] | |||
""" | |||
op = builtin.Remap( | |||
imode=interp_mode, border_type=border_mode, format="NCHW", scalar=scalar | |||
) | |||
assert isinstance(inp, (Tensor, megbrain_graph.VarNode)), "inp must be Tensor type" | |||
(result,) = apply(op, inp, map_xy) | |||
return result | |||
def warp_affine( | |||
inp: Tensor, | |||
weight: Tensor, | |||
out_shape, | |||
border_mode="REPLICATE", | |||
border_val=0, | |||
format="NHWC", | |||
imode="LINEAR", | |||
): | |||
""" | |||
Batched affine transform on 2D images. | |||
:param inp: input image. | |||
:param weight: weight tensor. | |||
:param out_shape: output tensor shape. | |||
:param border_mode: pixel extrapolation method. | |||
Default: "WRAP". Currently "CONSTANT", "REFLECT", | |||
"REFLECT_101", "ISOLATED", "WRAP", "REPLICATE", "TRANSPARENT" are supported. | |||
:param border_val: value used in case of a constant border. Default: 0 | |||
:param format: "NHWC" as default based on historical concerns, | |||
"NCHW" is also supported. Default: "NCHW". | |||
:param imode: interpolation methods. Could be "LINEAR", "NEAREST", "CUBIC", "AREA". | |||
Default: "LINEAR". | |||
:return: output tensor. | |||
.. note:: | |||
Here all available options for params are listed, | |||
however it does not mean that you can use all the combinations. | |||
On different platforms, different combinations are supported. | |||
""" | |||
op = builtin.WarpAffine( | |||
border_mode=border_mode, border_val=border_val, format=format, imode=imode | |||
) | |||
out_shape = utils.astensor1d(out_shape, inp, dtype="int32", device=inp.device) | |||
(result,) = apply(op, inp, weight, out_shape) | |||
return result | |||
def warp_perspective( | |||
inp: Tensor, | |||
M: Tensor, | |||
dsize: Union[Tuple[int, int], int, Tensor], | |||
border_mode: str = "REPLICATE", | |||
border_val: float = 0.0, | |||
interp_mode: str = "LINEAR", | |||
) -> Tensor: | |||
r""" | |||
Applies perspective transformation to batched 2D images. | |||
The input images are transformed to the output images by the transformation matrix: | |||
.. math:: | |||
\text{output}(n, c, h, w) = \text{input} \left( n, c, | |||
\frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, | |||
\frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} | |||
\right) | |||
:param inp: input image. | |||
:param M: `(batch, 3, 3)` transformation matrix. | |||
:param dsize: `(h, w)` size of the output image. | |||
:param border_mode: pixel extrapolation method. | |||
Default: "REPLICATE". Currently also support "CONSTANT", "REFLECT", | |||
"REFLECT_101", "WRAP". | |||
:param border_val: value used in case of a constant border. Default: 0 | |||
:param interp_mode: interpolation methods. | |||
Default: "LINEAR". Currently only support "LINEAR" mode. | |||
:return: output tensor. | |||
Note: | |||
The transformation matrix is the inverse of that used by `cv2.warpPerspective`. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
inp_shape = (1, 1, 4, 4) | |||
x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) | |||
M_shape = (1, 3, 3) | |||
# M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) | |||
M = tensor(np.array([[1., 0., 1.], | |||
[0., 1., 1.], | |||
[0., 0., 1.]], dtype=np.float32).reshape(M_shape)) | |||
out = F.vision.warp_perspective(x, M, (2, 2)) | |||
print(out.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[[[[ 5. 6.] | |||
[ 9. 10.]]]] | |||
""" | |||
op = builtin.WarpPerspective( | |||
imode=interp_mode, bmode=border_mode, format="NCHW", border_val=border_val | |||
) | |||
inp, M = utils.convert_inputs(inp, M) | |||
dsize = astensor1d(dsize, inp, dtype="int32", device=inp.device) | |||
(result,) = apply(op, inp, M, dsize) | |||
return result | |||
def interpolate( | |||
inp: Tensor, | |||
size: Optional[Union[int, Tuple[int, int]]] = None, | |||
scale_factor: Optional[Union[float, Tuple[float, float]]] = None, | |||
mode: str = "BILINEAR", | |||
align_corners: Optional[bool] = None, | |||
) -> Tensor: | |||
r""" | |||
Down/up samples the input tensor to either the given size or with the given scale_factor. ``size`` can not coexist with ``scale_factor``. | |||
:param inp: input tensor. | |||
:param size: size of the output tensor. Default: None | |||
:param scale_factor: scaling factor of the output tensor. Default: None | |||
:param mode: interpolation methods, acceptable values are: | |||
"BILINEAR", "LINEAR". Default: "BILINEAR" | |||
:param align_corners: This only has an effect when `mode` | |||
is "BILINEAR" or "LINEAR". Geometrically, we consider the pixels of the input | |||
and output as squares rather than points. If set to ``True``, the input | |||
and output tensors are aligned by the center points of their corner | |||
pixels, preserving the values at the corner pixels. If set to ``False``, | |||
the input and output tensors are aligned by the corner points of their | |||
corner pixels, and the interpolation uses edge value padding for | |||
out-of-boundary values, making this operation *independent* of input size | |||
:return: output tensor. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) | |||
out = F.vision.interpolate(x, [4, 4], align_corners=False) | |||
print(out.numpy()) | |||
out2 = F.vision.interpolate(x, scale_factor=2.) | |||
np.testing.assert_allclose(out.numpy(), out2.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[[[[1. 1.25 1.75 2. ] | |||
[1.5 1.75 2.25 2.5 ] | |||
[2.5 2.75 3.25 3.5 ] | |||
[3. 3.25 3.75 4. ]]]] | |||
""" | |||
mode = mode.upper() | |||
if mode not in ["BILINEAR", "LINEAR"]: | |||
raise ValueError("interpolate only support linear or bilinear mode") | |||
if mode not in ["BILINEAR", "LINEAR"]: | |||
if align_corners is not None: | |||
raise ValueError( | |||
"align_corners option can only be set in the bilinear/linear interpolating mode" | |||
) | |||
else: | |||
if align_corners is None: | |||
align_corners = False | |||
if ( | |||
size is not None | |||
and scale_factor is None | |||
and not align_corners | |||
and mode == "BILINEAR" | |||
and inp.ndim in [4, 5] | |||
): | |||
# fastpath for interpolate | |||
op = builtin.Resize(imode="LINEAR", format="NCHW") | |||
shape = astensor1d(size, inp, dtype="int32", device=inp.device) | |||
(result,) = apply(op, inp, shape) | |||
return result | |||
if mode == "LINEAR": | |||
inp = expand_dims(inp, 3) | |||
if inp.ndim != 4: | |||
raise ValueError("shape of input tensor must correspond to the operartion mode") | |||
if size is None: | |||
if scale_factor is None: | |||
raise ValueError("scale_factor must not be None when size is None") | |||
if isinstance(scale_factor, (float, int)): | |||
scale_factor = float(scale_factor) | |||
if mode == "LINEAR": | |||
scale_factor = (scale_factor, float(1)) | |||
else: | |||
scale_factor = (scale_factor, scale_factor) | |||
else: | |||
if mode == "LINEAR": | |||
raise ValueError( | |||
"under LINEAR mode, scale_factor can only be single value" | |||
) | |||
assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" | |||
assert isinstance(scale_factor[0], float) and isinstance( | |||
scale_factor[1], float | |||
), "scale_factor must be float type" | |||
dsize = tuple( | |||
floor( | |||
Tensor( | |||
inp.shape[i + 2] * scale_factor[i], | |||
dtype="float32", | |||
device=inp.device, | |||
) | |||
) | |||
for i in range(2) | |||
) | |||
dsize = concat([dsize[0], dsize[1]], axis=0) | |||
else: | |||
if scale_factor is not None: | |||
raise ValueError("scale_factor must be None when size is provided") | |||
if isinstance(size, int): | |||
size = (size, 1) | |||
else: | |||
if mode == "LINEAR": | |||
raise ValueError("under LINEAR mode, size can only be single value") | |||
dsize = size | |||
oh, ow = dsize[0], dsize[1] | |||
ih, iw = inp.shape[2], inp.shape[3] | |||
if align_corners: | |||
hscale = (ih - 1.0) / (oh - 1.0) | |||
wscale = 1.0 * iw / ow | |||
if mode != "LINEAR": | |||
wscale = (iw - 1.0) / (ow - 1.0) | |||
row0 = concat( | |||
[wscale, Tensor([0, 0], dtype="float32", device=inp.device)], axis=0 | |||
).reshape(1, 3) | |||
row1 = concat( | |||
[ | |||
Tensor(0, dtype="float32", device=inp.device), | |||
hscale, | |||
Tensor(0, dtype="float32", device=inp.device), | |||
], | |||
axis=0, | |||
).reshape(1, 3) | |||
weight = concat( | |||
[row0, row1, Tensor([[0, 0, 1]], dtype="float32", device=inp.device)], | |||
axis=0, | |||
).reshape(1, 3, 3) | |||
weight = broadcast_to(weight, (inp.shape[0], 3, 3)) | |||
else: | |||
hscale = 1.0 * ih / oh | |||
wscale = 1.0 * iw / ow | |||
row0 = concat( | |||
[wscale, Tensor(0, dtype="float32", device=inp.device), 0.5 * wscale - 0.5], | |||
axis=0, | |||
).reshape(1, 3) | |||
row1 = concat( | |||
[Tensor(0, dtype="float32", device=inp.device), hscale, 0.5 * hscale - 0.5], | |||
axis=0, | |||
).reshape(1, 3) | |||
weight = concat( | |||
[row0, row1, Tensor([[0, 0, 1]], dtype="float32", device=inp.device)], | |||
axis=0, | |||
).reshape(1, 3, 3) | |||
weight = broadcast_to(weight, (inp.shape[0], 3, 3)) | |||
weight = weight.astype("float32") | |||
ret = warp_perspective(inp, weight, dsize, interp_mode="LINEAR") | |||
if mode == "LINEAR": | |||
ret = reshape(ret, ret.shape[0:3]) | |||
return ret |
@@ -6,7 +6,7 @@ | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
from ..functional import copy | |||
from ..functional.tensor import copy | |||
from .module import Module | |||
@@ -372,7 +372,7 @@ def test_interpolate_fastpath(): | |||
x = mge.Tensor(x_np) | |||
grad = Grad().wrt(x, callback=save_to(x)) | |||
y = F.nn.interpolate(x, size=(16, 16), mode="BILINEAR") | |||
y = F.vision.interpolate(x, size=(16, 16), mode="BILINEAR") | |||
grad(y, F.ones_like(y)) | |||
np.testing.assert_equal(np.ones(x_np.shape, dtype=np.float32) / 4, x.grad.numpy()) | |||
@@ -136,8 +136,8 @@ def test_interpolate(): | |||
def linear_interpolate(): | |||
inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) | |||
out = F.nn.interpolate(inp, scale_factor=2.0, mode="LINEAR") | |||
out2 = F.nn.interpolate(inp, 4, mode="LINEAR") | |||
out = F.vision.interpolate(inp, scale_factor=2.0, mode="LINEAR") | |||
out2 = F.vision.interpolate(inp, 4, mode="LINEAR") | |||
np.testing.assert_allclose( | |||
out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32) | |||
@@ -149,16 +149,16 @@ def test_interpolate(): | |||
def many_batch_interpolate(): | |||
inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2)) | |||
out = F.nn.interpolate(inp, [4, 4]) | |||
out2 = F.nn.interpolate(inp, scale_factor=2.0) | |||
out = F.vision.interpolate(inp, [4, 4]) | |||
out2 = F.vision.interpolate(inp, scale_factor=2.0) | |||
np.testing.assert_allclose(out.numpy(), out2.numpy()) | |||
def assign_corner_interpolate(): | |||
inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) | |||
out = F.nn.interpolate(inp, [4, 4], align_corners=True) | |||
out2 = F.nn.interpolate(inp, scale_factor=2.0, align_corners=True) | |||
out = F.vision.interpolate(inp, [4, 4], align_corners=True) | |||
out2 = F.vision.interpolate(inp, scale_factor=2.0, align_corners=True) | |||
np.testing.assert_allclose(out.numpy(), out2.numpy()) | |||
@@ -166,13 +166,13 @@ def test_interpolate(): | |||
inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) | |||
with pytest.raises(ValueError): | |||
F.nn.interpolate(inp, scale_factor=2.0, mode="LINEAR") | |||
F.vision.interpolate(inp, scale_factor=2.0, mode="LINEAR") | |||
def inappropriate_scale_linear_interpolate(): | |||
inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) | |||
with pytest.raises(ValueError): | |||
F.nn.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR") | |||
F.vision.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR") | |||
linear_interpolate() | |||
many_batch_interpolate() | |||
@@ -205,7 +205,7 @@ def test_roi_align(): | |||
grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat)) | |||
output_shape = (7, 7) | |||
out_feat = F.nn.roi_align( | |||
out_feat = F.vision.roi_align( | |||
inp_feat, | |||
rois, | |||
output_shape=output_shape, | |||
@@ -228,7 +228,7 @@ def test_roi_pooling(): | |||
inp_feat, rois = _gen_roi_inp() | |||
grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat)) | |||
output_shape = (7, 7) | |||
out_feat = F.nn.roi_pooling( | |||
out_feat = F.vision.roi_pooling( | |||
inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4, | |||
) | |||
assert make_shape_tuple(out_feat.shape) == ( | |||
@@ -335,18 +335,18 @@ def test_interpolate_fastpath(): | |||
] | |||
for inp_shape, target_shape in test_cases: | |||
x = tensor(np.random.randn(*inp_shape), dtype=np.float32) | |||
out = F.nn.interpolate(x, target_shape, mode="BILINEAR") | |||
out = F.vision.interpolate(x, target_shape, mode="BILINEAR") | |||
assert out.shape[0] == x.shape[0] and out.shape[1] == x.shape[1] | |||
assert out.shape[2] == target_shape[0] and out.shape[3] == target_shape[1] | |||
# check value | |||
x = tensor(np.ones((3, 3, 10, 10)), dtype=np.float32) | |||
out = F.nn.interpolate(x, (15, 5), mode="BILINEAR") | |||
out = F.vision.interpolate(x, (15, 5), mode="BILINEAR") | |||
np.testing.assert_equal(out.numpy(), np.ones((3, 3, 15, 5)).astype(np.float32)) | |||
np_x = np.arange(32) | |||
x = tensor(np_x).astype(np.float32).reshape(1, 1, 32, 1) | |||
out = F.nn.interpolate(x, (1, 1), mode="BILINEAR") | |||
out = F.vision.interpolate(x, (1, 1), mode="BILINEAR") | |||
np.testing.assert_equal(out.item(), np_x.mean()) | |||
@@ -360,7 +360,7 @@ def test_warp_perspective(): | |||
[[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32 | |||
).reshape(M_shape) | |||
) | |||
outp = F.warp_perspective(x, M, (2, 2)) | |||
outp = F.vision.warp_perspective(x, M, (2, 2)) | |||
np.testing.assert_equal( | |||
outp.numpy(), np.array([[[[5.0, 6.0], [9.0, 10.0]]]], dtype=np.float32) | |||
) | |||
@@ -370,7 +370,7 @@ def test_warp_affine(): | |||
inp_shape = (1, 3, 3, 3) | |||
x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape)) | |||
weightv = [[[1.26666667, 0.6, -83.33333333], [-0.33333333, 1, 66.66666667]]] | |||
outp = F.warp_affine(x, tensor(weightv), (2, 2), border_mode="WRAP") | |||
outp = F.vision.warp_affine(x, tensor(weightv), (2, 2), border_mode="WRAP") | |||
res = np.array( | |||
[ | |||
[ | |||
@@ -393,7 +393,7 @@ def test_remap(): | |||
[[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32 | |||
).reshape(map_xy_shape) | |||
) | |||
outp = F.remap(inp, map_xy) | |||
outp = F.vision.remap(inp, map_xy) | |||
np.testing.assert_equal( | |||
outp.numpy(), np.array([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32) | |||
) | |||
@@ -476,7 +476,7 @@ def test_nms(): | |||
) | |||
inp = tensor(x) | |||
scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32) | |||
result = F.nn.nms(inp, scores=scores, iou_thresh=0.5) | |||
result = F.vision.nms(inp, scores=scores, iou_thresh=0.5) | |||
np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32)) | |||
@@ -737,7 +737,7 @@ def test_cvt_color(): | |||
inp = np.random.randn(3, 3, 3, 3).astype(np.float32) | |||
out = np.expand_dims(rgb2gray(inp), 3).astype(np.float32) | |||
x = tensor(inp) | |||
y = F.img_proc.cvt_color(x, mode="RGB2GRAY") | |||
y = F.vision.cvt_color(x, mode="RGB2GRAY") | |||
np.testing.assert_allclose(y.numpy(), out, atol=1e-5) | |||
@@ -360,7 +360,7 @@ def test_trace_warp_perspective(): | |||
@trace(symbolic=True) | |||
def f(x, M): | |||
out = F.warp_perspective(x, M, (2, 2)) | |||
out = F.vision.warp_perspective(x, M, (2, 2)) | |||
np.testing.assert_equal(out.shape.numpy(), np.array([1, 1, 2, 2])) | |||
return out | |||
@@ -429,10 +429,10 @@ def test_trace_nms(): | |||
@trace(symbolic=False) | |||
def f(boxes, scores): | |||
# with tracing, max_output must be specified | |||
results = F.nn.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20) | |||
results = F.vision.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20) | |||
# without tracing, max output can be inferred inside nms | |||
with exclude_from_trace(): | |||
_ = F.nn.nms(boxes, scores=scores, iou_thresh=0.5) | |||
_ = F.vision.nms(boxes, scores=scores, iou_thresh=0.5) | |||
return results | |||
f(*make_inputs(10)) | |||
@@ -226,7 +226,7 @@ def test_roipooling(): | |||
@trace(symbolic=True, capture_as_const=True) | |||
def fwd(inp, rois): | |||
return F.nn.roi_pooling(inp, rois, (2, 2), scale=2.0) | |||
return F.vision.roi_pooling(inp, rois, (2, 2), scale=2.0) | |||
output = fwd(inp, rois) | |||
check_pygraph_dump(fwd, [inp, rois], [output]) | |||
@@ -315,7 +315,7 @@ def test_roialign(): | |||
@trace(symbolic=True, capture_as_const=True) | |||
def fwd(inp, rois): | |||
return F.nn.roi_align(inp, rois, (2, 2)) | |||
return F.vision.roi_align(inp, rois, (2, 2)) | |||
output = fwd(inp, rois) | |||
check_pygraph_dump(fwd, [inp, rois], [output]) | |||
@@ -334,7 +334,7 @@ def test_warpperspective(): | |||
@trace(symbolic=True, capture_as_const=True) | |||
def fwd(x, M): | |||
return F.warp_perspective(x, M, (2, 2)) | |||
return F.vision.warp_perspective(x, M, (2, 2)) | |||
result = fwd(x, M) | |||
check_pygraph_dump(fwd, [x, M], [result]) | |||
@@ -347,7 +347,7 @@ def test_warpaffine(): | |||
@trace(symbolic=True, capture_as_const=True) | |||
def fwd(x, weightv): | |||
return F.warp_affine(x, weightv, (2, 2), border_mode="WRAP") | |||
return F.vision.warp_affine(x, weightv, (2, 2), border_mode="WRAP") | |||
outp = fwd(x, weightv) | |||
check_pygraph_dump(fwd, [x, weightv], [outp]) | |||
@@ -365,7 +365,7 @@ def test_remap(): | |||
@trace(symbolic=True, capture_as_const=True) | |||
def fwd(inp, map_xy): | |||
return F.remap(inp, map_xy) | |||
return F.vision.remap(inp, map_xy) | |||
out = fwd(inp, map_xy) | |||
check_pygraph_dump(fwd, [inp, map_xy], [out]) | |||
@@ -376,7 +376,7 @@ def test_resize(): | |||
@trace(symbolic=True, capture_as_const=True) | |||
def fwd(x): | |||
return F.nn.interpolate(x, size=(16, 16), mode="BILINEAR") | |||
return F.vision.interpolate(x, size=(16, 16), mode="BILINEAR") | |||
out = fwd(x) | |||
check_pygraph_dump(fwd, [x], [out]) | |||
@@ -706,7 +706,7 @@ def test_cvtcolor(): | |||
@trace(symbolic=True, capture_as_const=True) | |||
def fwd(inp): | |||
return F.img_proc.cvt_color(inp, mode="RGB2GRAY") | |||
return F.vision.cvt_color(inp, mode="RGB2GRAY") | |||
result = fwd(x) | |||
check_pygraph_dump(fwd, [x], [result]) |
@@ -1,5 +1,5 @@ | |||
/** | |||
* \file imperative/src/impl/ops/img_proc.cpp | |||
* \file imperative/src/impl/ops/vision.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
@@ -31,4 +31,4 @@ OP_TRAIT_REG(CvtColor, CvtColor) | |||
.fallback(); | |||
} | |||
} | |||
} | |||
} |