Browse Source

fix(ci): replace old lar with new lar

GitOrigin-RevId: e4117ff53b
release-1.7
Megvii Engine Team 3 years ago
parent
commit
e02f1e07de
15 changed files with 1 additions and 3386 deletions
  1. +1
    -1
      imperative/python/megengine/tools/load_network_and_run.py
  2. +0
    -4
      sdk/load-and-run/.gitignore
  3. +0
    -74
      sdk/load-and-run/BUILD
  4. +0
    -24
      sdk/load-and-run/CMakeLists.txt
  5. +0
    -29
      sdk/load-and-run/Makefile
  6. +0
    -144
      sdk/load-and-run/README.md
  7. +0
    -25
      sdk/load-and-run/main.cpp
  8. +0
    -299
      sdk/load-and-run/src/json_loader.cpp
  9. +0
    -184
      sdk/load-and-run/src/json_loader.h
  10. +0
    -1639
      sdk/load-and-run/src/mgblar.cpp
  11. +0
    -22
      sdk/load-and-run/src/mgblar.h
  12. +0
    -627
      sdk/load-and-run/src/npy.h
  13. +0
    -108
      sdk/load-and-run/src/text_table.cpp
  14. +0
    -132
      sdk/load-and-run/src/text_table.h
  15. +0
    -74
      sdk/load-and-run/test/json_loader_test.cpp

+ 1
- 1
imperative/python/megengine/tools/load_network_and_run.py View File

@@ -384,7 +384,7 @@ def main():
parser.add_argument( parser.add_argument(
"--dump-cpp-model", "--dump-cpp-model",
help="write a C++ model that can be loaded by " help="write a C++ model that can be loaded by "
"megbrain/sdk/load-and-run; "
"megbrain/lite/load_and_run; "
"this implies --embed-input", "this implies --embed-input",
) )
parser.add_argument( parser.add_argument(


+ 0
- 4
sdk/load-and-run/.gitignore View File

@@ -1,4 +0,0 @@
/load_and_run
/data
/*.gcda
/*.gcno

+ 0
- 74
sdk/load-and-run/BUILD View File

@@ -1,74 +0,0 @@
cc_library(
name = "mgblar",
copts = ["-std=c++14"],
srcs = [
"src/mgblar.cpp",
"src/json_loader.cpp",
"src/text_table.cpp",
],
hdrs = [
"src/mgblar.h",
"src/json_loader.h",
"src/text_table.h",
"src/npy.h",
],
features = if_opt([
"no_exceptions",
"no_rtti",
]),
includes = ["src"],
defines = ["MGB_ENABLE_FASTRUN=1"],
deps = ["//brain/megbrain:sdk-test"],
)

cc_megvii_binary(
name = "load_and_run",
copts = ["-std=c++14"],
srcs = ["main.cpp"],
features = if_opt([
"no_exceptions",
"no_rtti",
]),
internal_deps = [":mgblar"],
visibility = ["//visibility:public"],
)

cc_megvii_shared_object(
name = "load_and_run_shared",
copts = ["-std=c++14"],
srcs = ["main.cpp"],
features = if_opt([
"no_exceptions",
"no_rtti",
]),
internal_deps = [":mgblar"],
syms = ["main"],
)

cc_megvii_binary(
name = "json_loader_test",
copts = ["-std=c++14"],
srcs = ["test/json_loader_test.cpp"],
internal_deps = [":mgblar"],
)

cc_library(
name = "megbrain_ios_lar_lib",
srcs = [
"src/mgblar.cpp",
],
hdrs = [
"src/mgblar.h",
],
copts = ["-DMGB_NO_MAIN=1"],
features = if_opt([
"no_exceptions",
"no_rtti",
]),
deps = ["//brain/megbrain:sdk-test"],
)

cc_megvii_static_library(
name = "megbrain_ios_lar",
deps = [":megbrain_ios_lar_lib"],
)

+ 0
- 24
sdk/load-and-run/CMakeLists.txt View File

@@ -1,24 +0,0 @@
include_directories(src)
file(GLOB_RECURSE SOURCES src/*.cpp main.cpp)

add_executable(load_and_run ${SOURCES})
target_link_libraries(load_and_run megbrain megdnn ${MGE_CUDA_LIBS})

# load_and_run_depends_shared always for CI check, please do not delete
if(BUILD_SHARED_LIBS)
add_executable(load_and_run_depends_shared ${SOURCES})
target_link_libraries(load_and_run_depends_shared megengine)
if(WIN32 OR MSVC)
target_compile_definitions(load_and_run_depends_shared PRIVATE MGE_DLL_IMPORT_DATA)
endif()
endif()

install(TARGETS load_and_run EXPORT ${MGE_EXPORT_TARGETS} RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR})
if(BUILD_SHARED_LIBS)
install(TARGETS load_and_run_depends_shared EXPORT ${MGE_EXPORT_TARGETS} RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR})
endif()

if(MGE_WITH_TEST)
add_executable(json_loader_test test/json_loader_test.cpp src/json_loader.h src/json_loader.cpp)
target_link_libraries(json_loader_test megbrain megdnn ${MGE_CUDA_LIBS})
endif()

+ 0
- 29
sdk/load-and-run/Makefile View File

@@ -1,29 +0,0 @@
include ../../Makefile

MACHINE := $(shell $(MGB_CXX) -dumpmachine)

ifneq (, $(findstring android, $(MACHINE)))
DEPS := $(MGB_LIB) ${MEGDNN_LIB}
CXXFLAGS := $(MGB_CXXFLAGS) -fuse-ld=gold -Isrc
LDFLAGS := -ldl -llog ${DEPS}
else
DEPS := $(MGB_LIB) ${MEGDNN_LIB}
CXXFLAGS := $(MGB_CXXFLAGS) -fuse-ld=gold -Isrc
LDFLAGS := -ldl ${DEPS} ${MGB_LDFLAGS}
endif

TARGETS := load_and_run

all: $(TARGETS)

ifneq (,$(findstring gcov,$(MGB_LDFLAGS)))
LDFLAGS += --coverage
endif

load_and_run: main.cpp src/* $(DEPS)
$(MGB_CXX) -o $@ main.cpp src/*.cpp $(CXXFLAGS) $(LDFLAGS)

clean:
rm -f $(TARGETS)

.PHONY: all clean

+ 0
- 144
sdk/load-and-run/README.md View File

@@ -1,144 +0,0 @@
# Load and Run

Load a model and run, for testing/debugging/profiling.

## Build

<!--
-->

### Build with cmake

Build MegEngine from source following [README.md](../../README.md). It will also produce the executable, `load_and_run`, which loads a model and runs the test cases attached to the model.


<!--
-->

## Dump Model with Test Cases Using [dump_with_testcase_mge.py](dump_with_testcase_mge.py)

### Step 1

Dump the model by calling the python API `megengine.jit.trace.dump()`.

### Step 2

Append the test cases to the dumped model using [dump_with_testcase_mge.py](dump_with_testcase_mge.py).

The basic usage of [dump_with_testcase_mge.py](dump_with_testcase_mge.py) is

```
python3 dump_with_testcase_mge.py model -d input_description -o model_with_testcases

```

where `model` is the file dumped at step 1, `input_description` describes the input data of the test cases, and `model_with_testcases` is the saved model with test cases.

`input_description` can be provided in the following ways:

1. In the format `var0:file0;var1:file1...` meaning that `var0` should use
image file `file0`, `var1` should use image `file1` and so on. If there
is only one input var, the var name can be omitted. This can be combined
with `--resize-input` option.
2. In the format `var0:#rand(min, max, shape...);var1:#rand(min, max)...`
meaning to fill the corresponding input vars with uniform random numbers
in the range `[min, max)`, optionally overriding its shape.

For more usages, run

```
python3 dump_with_testcase_mge.py --help
```

### Example

1. Obtain the model file by running [xornet.py](../xor-deploy/xornet.py).

2. Dump the file with test cases attached to the model.

```
python3 dump_with_testcase_mge.py xornet_deploy.mge -o xornet.mge -d "#rand(0.1, 0.8, 4, 2)"
```

3. Verify the correctness by running `load_and_run` at the target platform.

```
load_and_run xornet.mge
```

## `load_and_run --input` the dumped mge file

You can also use `--input` to set mge file's input, this argument support these 4 formats:

1. PPM/PGM image file.
PPM/PGM is supported by OpenCV and simple to parse, you can easily use `cv::imwrite` to generate one.

```
load_and_run model.mge --input "data:image.ppm"
```
`data` is blob name and `image.ppm` is file path, we use `:` to seperate key and value. Please note that `"` is necessary in terminal.

2. npy file.

npy is `Numpy` file format, here is a Python example

```
import numpy as np
import cv2
mat = cv2.imread('file.jpg')
np.save('image.npy', mat)
arr = np.array([[[1.1, 1.2],[100, 200.0]]], dtype=np.float32)
np.save('bbox.npy', arr)
```

then `load_and_run` the model

```
load_and_run model.mge --input data:image.npy;bbox.npy
```

3. json format.

For json format, you have to identify data type and blob shape. Here is a Python example

```
import numpy as np
import json
import cv2
bbox = np.array([[[1.1, 1.2],[100, 200.0]]], dtype=np.float32)
obj = dict()
obj['shape'] = bbox.shape
obj['raw'] = bbox.flatten().tolist()
obj['type'] = str(bbox.dtype)
json_object = dict()
json_object['bbox'] = obj
json_str = json.dumps(json_object)
with open('bbox.json', 'w') as f:
f.write(json_str)
f.flush()
f.close()
```
The json loader in `load_and_run` is not fully implement [RFC7159](https://tools.ietf.org/html/rfc7159), it does not support `boolean` and `utf` string format which is useless during inference.

Now let's `load-and-run` the model with json file
```
load_and_run model.mge --input data:image.npy:bbox:bbox.json
```

Mutiple key-value pair could be seperated with `;`.

4. plain string format.

Also, you can give the value directly
```
load_and_run model.mge --input data:image.ppm --input "bbox:[0,0],[200.0,200.0]" --input "batchid:0"
```

1. `bbox` shape is `[1,2,2]` for `[0,0],[200.0,200.0]`. In order to facilitate user experience, the string parser would add an extra axis for input, thus `bbox:0` is correspond to `[1]` and `bbox:[0]` means that the shape is `[1,1]`

2. Since we can only identify `int32` and `float32` from this format, don't forget `.` for float number.

+ 0
- 25
sdk/load-and-run/main.cpp View File

@@ -1,25 +0,0 @@
/**
* \file sdk/load-and-run/main.cpp
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/

#include "mgblar.h"
#include "megbrain/common.h"

int main(int argc, char **argv) {
MGB_TRY {
return mgb_load_and_run_main(argc, argv);
} MGB_CATCH (std::exception &exc, {
fprintf(stderr, "caught exception: %s\n", exc.what());
return -2;
})
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}


+ 0
- 299
sdk/load-and-run/src/json_loader.cpp View File

@@ -1,299 +0,0 @@
/**
* \file sdk/load-and-run/src/json_loader.cpp
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/

#include "json_loader.h"

using namespace mgb;

template <typename T>
T* JsonLoader::Value::safe_cast() {
T* ptr = (T*)(this);
if (nullptr == ptr) {
fprintf(stderr, "cast ptr is null\n");
}
return ptr;
}

std::unique_ptr<JsonLoader::Value>& JsonLoader::Value::operator[](
const std::string& key) {
mgb_assert(Type::OBJECT == m_type);
auto t = safe_cast<JsonLoader::ObjectValue>();
return t->m_obj.at(key);
}

std::unique_ptr<JsonLoader::Value>& JsonLoader::Value::operator[](
const size_t index) {
mgb_assert(Type::ARRAY == m_type);
auto t = safe_cast<JsonLoader::ArrayValue>();
return t->m_obj[index];
}

std::map<std::string, std::unique_ptr<JsonLoader::Value>>&
JsonLoader::Value::objects() {
mgb_assert(Type::OBJECT == m_type);
auto t = safe_cast<JsonLoader::ObjectValue>();
return t->m_obj;
}

size_t JsonLoader::Value::len() {
if (Type::ARRAY == m_type) {
auto t = safe_cast<JsonLoader::ArrayValue>();
return t->m_obj.size();
} else if (Type::OBJECT == m_type) {
auto t = safe_cast<JsonLoader::ObjectValue>();
return t->m_obj.size();
}
return 0;
}

megdnn::SmallVector<std::unique_ptr<JsonLoader::Value>>&
JsonLoader::Value::array() {
mgb_assert(Type::ARRAY == m_type);
auto t = safe_cast<JsonLoader::ArrayValue>();
return t->m_obj;
}

double JsonLoader::Value::number() {
mgb_assert(Type::NUMBER == m_type);
auto t = safe_cast<JsonLoader::NumberValue>();
return t->value();
}

std::string JsonLoader::Value::str() {
if (Type::STRING == m_type) {
auto t = safe_cast<StringValue>();
return t->value();
}
return std::string();
}

void JsonLoader::expect(char c) {
mgb_assert(c == (*m_buf));
m_buf++;
}

void JsonLoader::skip_whitespace() {
const char* p = m_buf;
while (*p == ' ' || *p == '\t' || *p == '\n' || *p == '\r') {
++p;
}
m_buf = p;
}

std::unique_ptr<JsonLoader::Value> JsonLoader::parse_object() {
expect('{');
skip_whitespace();

std::unique_ptr<JsonLoader::Value> ret;
JsonLoader::ObjectValue* pObject = new JsonLoader::ObjectValue();

if ('}' == *m_buf) {
m_buf = m_buf + 1;
ret.reset((JsonLoader::Value*)(pObject));
return ret;
}

while (true) {
std::unique_ptr<JsonLoader::Value> key = parse_string();
if (m_state != State::OK) {
return ret;
}

skip_whitespace();
if (':' != (*m_buf)) {
m_state = State::MISS_COLON;
return ret;
}
m_buf++;
skip_whitespace();

std::unique_ptr<JsonLoader::Value> pVal = parse_value();
if (m_state != State::OK) {
return ret;
}

if (pObject->m_obj.find(pVal->str()) != pObject->m_obj.end()) {
m_state = State::KEY_NOT_UNIQUE;
return ret;
}

pObject->m_obj.insert(std::make_pair(key->str(), std::move(pVal)));

skip_whitespace();
if (',' == (*m_buf)) {
m_buf++;
skip_whitespace();
} else if ('}' == (*m_buf)) {
m_buf++;
break;
} else {
m_state = State::MISS_BRACE;
break;
}
}

ret.reset((JsonLoader::Value*)(pObject));
return ret;
}

std::unique_ptr<JsonLoader::Value> JsonLoader::parse_array() {
expect('[');
skip_whitespace();

std::unique_ptr<JsonLoader::Value> ret;
JsonLoader::ArrayValue* pArray = new JsonLoader::ArrayValue();

if (']' == *m_buf) {
m_buf = m_buf + 1;

ret.reset((JsonLoader::Value*)(pArray));
return ret;
}

while (true) {
std::unique_ptr<JsonLoader::Value> pVal = parse_value();
if (m_state != State::OK) {
mgb_assert(0, "parse value failed during pase array");
return ret;
}

pArray->m_obj.emplace_back(pVal.get());
pVal.release();

skip_whitespace();
if (',' == *m_buf) {
m_buf++;
skip_whitespace();
} else if (']' == *m_buf) {
m_buf++;
break;
} else {
m_state = State::BAD_ARRAY;
return ret;
}
}

ret.reset((JsonLoader::Value*)(pArray));
return ret;
}

std::unique_ptr<JsonLoader::Value> JsonLoader::parse_string() {
expect('\"');

std::unique_ptr<JsonLoader::Value> ret;
JsonLoader::StringValue* pStr = new JsonLoader::StringValue();

const char* p = m_buf;
while (true) {
if (*p == '\"') {
p++;
break;
} else {
pStr->m_value += (*p);
p++;
}
}
m_buf = p;
ret.reset((JsonLoader::Value*)(pStr));
return ret;
}

std::unique_ptr<JsonLoader::Value> JsonLoader::parse_number() {
const char* p = m_buf;

auto loop_digit = [this](const char*& p) {
if (not std::isdigit(*p)) {
m_state = State::BAD_DIGIT;
return;
}
while (std::isdigit(*p)) {
p++;
}
return;
};

if (*p == '-')
p++;
if (*p == '0')
p++;
else {
loop_digit(std::ref(p));
}
if (*p == '.') {
p++;
loop_digit(std::ref(p));
}

if (*p == 'e' || *p == 'E') {
p++;
if (*p == '+' || *p == '-')
p++;
loop_digit(std::ref(p));
}
JsonLoader::NumberValue* pNum = new JsonLoader::NumberValue();
pNum->m_value = strtod(m_buf, nullptr);

m_buf = p;

std::unique_ptr<JsonLoader::Value> ret;
ret.reset((JsonLoader::Value*)(pNum));
return ret;
}

std::unique_ptr<JsonLoader::Value> JsonLoader::parse_value() {
switch (*m_buf) {
case '[':
return parse_array();
case '{':
return parse_object();
case '\"':
return parse_string();
case '\0':
m_state = State::BAD_TYPE;
break;
default:
return parse_number();
}
return nullptr;
}

std::unique_ptr<JsonLoader::Value> JsonLoader::load(const char* content,
const size_t size) {
m_buf = content;
skip_whitespace();
std::unique_ptr<JsonLoader::Value> value = parse_value();
skip_whitespace();

if (m_state != State::OK) {
return nullptr;
}
mgb_assert(size == static_cast<size_t>(m_buf - content));

return value;
}

std::unique_ptr<JsonLoader::Value> JsonLoader::load(const char* path) {
std::unique_ptr<std::FILE, void (*)(std::FILE*)> fin(
std::fopen(path, "rb"), [](std::FILE* fp) { std::fclose(fp); });

mgb_assert(fin.get(), "failed to open %s: %s", path, strerror(errno));
std::fseek(fin.get(), 0, SEEK_END);
const size_t size = ftell(fin.get());
std::fseek(fin.get(), 0, SEEK_SET);

std::unique_ptr<char> buf(static_cast<char*>(malloc(size)));

auto nr = std::fread(buf.get(), 1, size, fin.get());
mgb_assert(nr == size);

return load(buf.get(), size);
}

+ 0
- 184
sdk/load-and-run/src/json_loader.h View File

@@ -1,184 +0,0 @@
/**
* \file sdk/load-and-run/src/json_loader.h
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/

#pragma once

#include <cctype>
#include <fstream>
#include <functional>
#include <iostream>
#include <map>
#include <memory>
#include "megbrain/common.h"
#include "megdnn/thin/small_vector.h"

namespace mgb {

class JsonLoader {
public:
class Value {
protected:
enum struct Type : uint8_t { UNKNOWN, NUMBER, STRING, OBJECT, ARRAY };
Type m_type;

public:
template <typename T>
T* safe_cast();

Value() { m_type = Type::UNKNOWN; }

Value(Type type) : m_type(type) {}

virtual ~Value() {}

bool is_array() { return Type::ARRAY == m_type; }

bool is_object() { return Type::OBJECT == m_type; }

bool is_number() { return Type::NUMBER == m_type; }

bool is_str() { return Type::STRING == m_type; }

std::unique_ptr<Value>& operator[](const std::string& key);

std::unique_ptr<Value>& operator[](const size_t index);

std::map<std::string, std::unique_ptr<Value>>& objects();

size_t len();

megdnn::SmallVector<std::unique_ptr<Value>>& array();

double number();

std::string str();
};

void expect(char c);

void skip_whitespace();

std::unique_ptr<Value> parse_object();

std::unique_ptr<Value> parse_array();

std::unique_ptr<Value> parse_string();

std::unique_ptr<Value> parse_number();

std::unique_ptr<Value> parse_value();

enum struct State : uint8_t {
OK = 0,
BAD_TYPE,
BAD_DIGIT,
BAD_ARRAY,
MISS_COLON,
MISS_BRACE,
KEY_NOT_UNIQUE
};

JsonLoader() { m_state = State::OK; }

std::unique_ptr<Value> load(const char* content, const size_t size);

std::unique_ptr<Value> load(const char* path);

class NumberValue final : public Value {
friend std::unique_ptr<Value> JsonLoader::parse_number();
double m_value;

public:
NumberValue() : Value(Type::NUMBER) {}

double value() { return m_value; }
};

class StringValue final : public Value {
std::string m_value;

public:
StringValue() : Value(Type::STRING) {}

std::string value() { return m_value; }

friend std::unique_ptr<Value> JsonLoader::parse_string();
};

class ArrayValue final : public Value {
megdnn::SmallVector<std::unique_ptr<Value>> m_obj;

public:
ArrayValue() : Value(Type::ARRAY) {}

ArrayValue(ArrayValue& arr) : Value(arr) {
m_obj.clear();
for (auto& item : arr.m_obj) {
m_obj.emplace_back(item.get());
item.release();
}
}

ArrayValue(ArrayValue&& arr) : Value(arr) {
m_obj.clear();
for (auto& item : arr.m_obj) {
m_obj.emplace_back(item.get());
item.release();
}
}

friend std::unique_ptr<Value> JsonLoader::parse_array();
friend std::unique_ptr<JsonLoader::Value>& JsonLoader::Value::
operator[](const size_t index);
friend megdnn::SmallVector<std::unique_ptr<JsonLoader::Value>>&
JsonLoader::Value::array();
friend size_t JsonLoader::Value::len();
};

class ObjectValue final : public Value {
std::map<std::string, std::unique_ptr<Value>> m_obj;

public:
ObjectValue() : Value(Type::OBJECT) {}

ObjectValue(ObjectValue& arr) : Value(arr) {
m_obj.clear();
for (auto itra = arr.m_obj.begin(); itra != arr.m_obj.end();
++itra) {
m_obj.emplace(
std::make_pair(itra->first, std::move(itra->second)));
}
}

ObjectValue(ObjectValue&& arr) : Value(arr) {
m_obj.clear();
for (auto itra = arr.m_obj.begin(); itra != arr.m_obj.end();
++itra) {
m_obj.emplace(
std::make_pair(itra->first, std::move(itra->second)));
}
}

friend std::unique_ptr<Value> JsonLoader::parse_object();
friend std::unique_ptr<JsonLoader::Value>& JsonLoader::Value::
operator[](const std::string&);
friend std::map<std::string, std::unique_ptr<JsonLoader::Value>>&
JsonLoader::Value::objects();
friend size_t JsonLoader::Value::len();
};

private:
const char* m_buf;
State m_state;
};

} // namespace mgb

+ 0
- 1639
sdk/load-and-run/src/mgblar.cpp
File diff suppressed because it is too large
View File


+ 0
- 22
sdk/load-and-run/src/mgblar.h View File

@@ -1,22 +0,0 @@
/**
* \file sdk/load-and-run/src/mgblar.h
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/

#pragma once

#ifdef __cplusplus
extern "C" {
#endif
int mgb_load_and_run_main(int argc, char **argv);
#ifdef __cplusplus
}
#endif

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}

+ 0
- 627
sdk/load-and-run/src/npy.h View File

@@ -1,627 +0,0 @@
/*
Copyright 2017 Leon Merten Lohse

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/

#ifndef NPY_H
#define NPY_H

#include <algorithm>
#include <complex>
#include <cstdint>
#include <cstring>
#include <fstream>
#include <iostream>
#include <regex>
#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>

namespace npy {

/* Compile-time test for byte order.
If your compiler does not define these per default, you may want to define
one of these constants manually.
Defaults to little endian order. */
#if defined(__BYTE_ORDER) && __BYTE_ORDER == __BIG_ENDIAN || \
defined(__BIG_ENDIAN__) || defined(__ARMEB__) || \
defined(__THUMBEB__) || defined(__AARCH64EB__) || defined(_MIBSEB) || \
defined(__MIBSEB) || defined(__MIBSEB__)
const bool big_endian = true;
#else
const bool big_endian = false;
#endif

const char magic_string[] = "\x93NUMPY";
const size_t magic_string_length = 6;

const char little_endian_char = '<';
const char big_endian_char = '>';
const char no_endian_char = '|';

constexpr char host_endian_char =
(big_endian ? big_endian_char : little_endian_char);

/* npy array length */
typedef unsigned long int ndarray_len_t;

inline void write_magic(std::ostream& ostream, unsigned char v_major = 1,
unsigned char v_minor = 0) {
ostream.write(magic_string, magic_string_length);
ostream.put(v_major);
ostream.put(v_minor);
}

inline void read_magic(std::istream& istream, unsigned char& v_major,
unsigned char& v_minor) {
char buf[magic_string_length + 2];
istream.read(buf, magic_string_length + 2);

if (!istream) {
fprintf(stderr, "io error: failed reading file");
}

if (0 != std::memcmp(buf, magic_string, magic_string_length)) {
fprintf(stderr, "this file does not have a valid npy format.");
}

v_major = buf[magic_string_length];
v_minor = buf[magic_string_length + 1];
}

// typestring magic
struct Typestring {
private:
char c_endian;
char c_type;
int len;

public:
inline std::string str() {
const size_t max_buflen = 16;
char buf[max_buflen];
std::sprintf(buf, "%c%c%u", c_endian, c_type, len);
return std::string(buf);
}

Typestring(const std::vector<float>&)
: c_endian{host_endian_char}, c_type{'f'}, len{sizeof(float)} {}
Typestring(const std::vector<double>&)
: c_endian{host_endian_char}, c_type{'f'}, len{sizeof(double)} {}
Typestring(const std::vector<long double>&)
: c_endian{host_endian_char},
c_type{'f'},
len{sizeof(long double)} {}

Typestring(const std::vector<char>&)
: c_endian{no_endian_char}, c_type{'i'}, len{sizeof(char)} {}
Typestring(const std::vector<short>&)
: c_endian{host_endian_char}, c_type{'i'}, len{sizeof(short)} {}
Typestring(const std::vector<int>&)
: c_endian{host_endian_char}, c_type{'i'}, len{sizeof(int)} {}
Typestring(const std::vector<long>&)
: c_endian{host_endian_char}, c_type{'i'}, len{sizeof(long)} {}
Typestring(const std::vector<long long>&)
: c_endian{host_endian_char}, c_type{'i'}, len{sizeof(long long)} {}

Typestring(const std::vector<unsigned char>&)
: c_endian{no_endian_char},
c_type{'u'},
len{sizeof(unsigned char)} {}
Typestring(const std::vector<unsigned short>&)
: c_endian{host_endian_char},
c_type{'u'},
len{sizeof(unsigned short)} {}
Typestring(const std::vector<unsigned int>&)
: c_endian{host_endian_char},
c_type{'u'},
len{sizeof(unsigned int)} {}
Typestring(const std::vector<unsigned long>&)
: c_endian{host_endian_char},
c_type{'u'},
len{sizeof(unsigned long)} {}
Typestring(const std::vector<unsigned long long>&)
: c_endian{host_endian_char},
c_type{'u'},
len{sizeof(unsigned long long)} {}

Typestring(const std::vector<std::complex<float>>&)
: c_endian{host_endian_char},
c_type{'c'},
len{sizeof(std::complex<float>)} {}
Typestring(const std::vector<std::complex<double>>&)
: c_endian{host_endian_char},
c_type{'c'},
len{sizeof(std::complex<double>)} {}
Typestring(const std::vector<std::complex<long double>>&)
: c_endian{host_endian_char},
c_type{'c'},
len{sizeof(std::complex<long double>)} {}
};

inline void parse_typestring(std::string typestring) {
std::regex re("'([<>|])([ifuc])(\\d+)'");
std::smatch sm;

std::regex_match(typestring, sm, re);

if (sm.size() != 4) {
fprintf(stderr, "invalid typestring");
}
}

namespace pyparse {

/**
Removes leading and trailing whitespaces
*/
inline std::string trim(const std::string& str) {
const std::string whitespace = " \t";
auto begin = str.find_first_not_of(whitespace);

if (begin == std::string::npos)
return "";

auto end = str.find_last_not_of(whitespace);

return str.substr(begin, end - begin + 1);
}

inline std::string get_value_from_map(const std::string& mapstr) {
size_t sep_pos = mapstr.find_first_of(":");
if (sep_pos == std::string::npos)
return "";

std::string tmp = mapstr.substr(sep_pos + 1);
return trim(tmp);
}

/**
Parses the string representation of a Python dict

The keys need to be known and may not appear anywhere else in the data.
*/
inline std::unordered_map<std::string, std::string> parse_dict(
std::string in, std::vector<std::string>& keys) {
std::unordered_map<std::string, std::string> map;

if (keys.size() == 0)
return map;

in = trim(in);

// unwrap dictionary
if ((in.front() == '{') && (in.back() == '}'))
in = in.substr(1, in.length() - 2);
else {
fprintf(stderr, "Not a Python dictionary.");
}

std::vector<std::pair<size_t, std::string>> positions;

for (auto const& value : keys) {
size_t pos = in.find("'" + value + "'");

if (pos == std::string::npos) {
fprintf(stderr, "Missing %s key.", value.c_str());
}

std::pair<size_t, std::string> position_pair{pos, value};
positions.push_back(position_pair);
}

// sort by position in dict
std::sort(positions.begin(), positions.end());

for (size_t i = 0; i < positions.size(); ++i) {
std::string raw_value;
size_t begin{positions[i].first};
size_t end{std::string::npos};

std::string key = positions[i].second;

if (i + 1 < positions.size())
end = positions[i + 1].first;

raw_value = in.substr(begin, end - begin);

raw_value = trim(raw_value);

if (raw_value.back() == ',')
raw_value.pop_back();

map[key] = get_value_from_map(raw_value);
}

return map;
}

/**
Parses the string representation of a Python boolean
*/
inline bool parse_bool(const std::string& in) {
if (in == "True")
return true;
if (in == "False")
return false;

fprintf(stderr, "Invalid python boolan.");
return false;
}

/**
Parses the string representation of a Python str
*/
inline std::string parse_str(const std::string& in) {
if ((in.front() == '\'') && (in.back() == '\''))
return in.substr(1, in.length() - 2);

fprintf(stderr, "Invalid python string.");
return "";
}

/**
Parses the string represenatation of a Python tuple into a vector of its items
*/
inline std::vector<std::string> parse_tuple(std::string in) {
std::vector<std::string> v;
const char seperator = ',';

in = trim(in);

if ((in.front() == '(') && (in.back() == ')'))
in = in.substr(1, in.length() - 2);
else {
fprintf(stderr, "Invalid Python tuple.");
}

std::istringstream iss(in);

for (std::string token; std::getline(iss, token, seperator);) {
v.push_back(token);
}

return v;
}

template <typename T>
inline std::string write_tuple(const std::vector<T>& v) {
if (v.size() == 0)
return "";

std::ostringstream ss;

if (v.size() == 1) {
ss << "(" << v.front() << ",)";
} else {
const std::string delimiter = ", ";
// v.size() > 1
ss << "(";
std::copy(v.begin(), v.end() - 1,
std::ostream_iterator<T>(ss, delimiter.c_str()));
ss << v.back();
ss << ")";
}

return ss.str();
}

inline std::string write_boolean(bool b) {
if (b)
return "True";
else
return "False";
}

} // namespace pyparse

inline void parse_header(std::string header, std::string& descr) {
/*
The first 6 bytes are a magic string: exactly "x93NUMPY".
The next 1 byte is an unsigned byte: the major version number of the file
format, e.g. x01. The next 1 byte is an unsigned byte: the minor version
number of the file format, e.g. x00. Note: the version of the file format
is not tied to the version of the numpy package. The next 2 bytes form a
little-endian unsigned short int: the length of the header data
HEADER_LEN. The next HEADER_LEN bytes form the header data describing the
array's format. It is an ASCII string which contains a Python literal
expression of a dictionary. It is terminated by a newline ('n') and
padded with spaces
('x20') to make the total length of the magic string + 4 + HEADER_LEN be
evenly divisible by 16 for alignment purposes. The dictionary contains
three keys:

"descr" : dtype.descr
An object that can be passed as an argument to the numpy.dtype()
constructor to create the array's dtype. For repeatability and
readability, this dictionary is formatted using pprint.pformat() so the
keys are in alphabetic order.
*/

// remove trailing newline
if (header.back() != '\n')
fprintf(stderr, "invalid header");
header.pop_back();

// parse the dictionary
std::vector<std::string> keys{"descr"};
auto dict_map = npy::pyparse::parse_dict(header, keys);

if (dict_map.size() == 0)
fprintf(stderr, "invalid dictionary in header");

std::string descr_s = dict_map["descr"];
parse_typestring(descr_s);
// remove
descr = npy::pyparse::parse_str(descr_s);
return;
}

inline void parse_header(std::string header, std::string& descr,
bool& fortran_order,
std::vector<ndarray_len_t>& shape) {
/*
The first 6 bytes are a magic string: exactly "x93NUMPY".
The next 1 byte is an unsigned byte: the major version number of the file
format, e.g. x01. The next 1 byte is an unsigned byte: the minor version
number of the file format, e.g. x00. Note: the version of the file format
is not tied to the version of the numpy package. The next 2 bytes form a
little-endian unsigned short int: the length of the header data
HEADER_LEN. The next HEADER_LEN bytes form the header data describing the
array's format. It is an ASCII string which contains a Python literal
expression of a dictionary. It is terminated by a newline ('n') and
padded with spaces
('x20') to make the total length of the magic string + 4 + HEADER_LEN be
evenly divisible by 16 for alignment purposes. The dictionary contains
three keys:

"descr" : dtype.descr
An object that can be passed as an argument to the numpy.dtype()
constructor to create the array's dtype. "fortran_order" : bool Whether
the array data is Fortran-contiguous or not. Since Fortran-contiguous
arrays are a common form of non-C-contiguity, we allow them to be written
directly to disk for efficiency. "shape" : tuple of int The shape of the
array. For repeatability and readability, this dictionary is formatted
using pprint.pformat() so the keys are in alphabetic order.
*/

// remove trailing newline
if (header.back() != '\n')
fprintf(stderr, "invalid header");
header.pop_back();

// parse the dictionary
std::vector<std::string> keys{"descr", "fortran_order", "shape"};
auto dict_map = npy::pyparse::parse_dict(header, keys);

if (dict_map.size() == 0)
fprintf(stderr, "invalid dictionary in header");

std::string descr_s = dict_map["descr"];
std::string fortran_s = dict_map["fortran_order"];
std::string shape_s = dict_map["shape"];

// TODO: extract info from typestring
parse_typestring(descr_s);
// remove
descr = npy::pyparse::parse_str(descr_s);

// convert literal Python bool to C++ bool
fortran_order = npy::pyparse::parse_bool(fortran_s);

// parse the shape tuple
auto shape_v = npy::pyparse::parse_tuple(shape_s);
if (shape_v.size() == 0)
fprintf(stderr, "invalid shape tuple in header");

for (auto item : shape_v) {
ndarray_len_t dim = static_cast<ndarray_len_t>(std::stoul(item));
shape.push_back(dim);
}
}

inline std::string write_header_dict(const std::string& descr,
bool fortran_order,
const std::vector<ndarray_len_t>& shape) {
std::string s_fortran_order = npy::pyparse::write_boolean(fortran_order);
std::string shape_s = npy::pyparse::write_tuple(shape);

return "{'descr': '" + descr + "', 'fortran_order': " + s_fortran_order +
", 'shape': " + shape_s + ", }";
}

inline void write_header(std::ostream& out, const std::string& descr,
bool fortran_order,
const std::vector<ndarray_len_t>& shape_v) {
std::string header_dict = write_header_dict(descr, fortran_order, shape_v);

size_t length = magic_string_length + 2 + 2 + header_dict.length() + 1;

unsigned char version[2] = {1, 0};
if (length >= 255 * 255) {
length = magic_string_length + 2 + 4 + header_dict.length() + 1;
version[0] = 2;
version[1] = 0;
}
size_t padding_len = 16 - length % 16;
std::string padding(padding_len, ' ');

// write magic
write_magic(out, version[0], version[1]);

// write header length
if (version[0] == 1 && version[1] == 0) {
char header_len_le16[2];
uint16_t header_len = static_cast<uint16_t>(header_dict.length() +
padding.length() + 1);

header_len_le16[0] = (header_len >> 0) & 0xff;
header_len_le16[1] = (header_len >> 8) & 0xff;
out.write(reinterpret_cast<char*>(header_len_le16), 2);
} else {
char header_len_le32[4];
uint32_t header_len = static_cast<uint32_t>(header_dict.length() +
padding.length() + 1);

header_len_le32[0] = (header_len >> 0) & 0xff;
header_len_le32[1] = (header_len >> 8) & 0xff;
header_len_le32[2] = (header_len >> 16) & 0xff;
header_len_le32[3] = (header_len >> 24) & 0xff;
out.write(reinterpret_cast<char*>(header_len_le32), 4);
}

out << header_dict << padding << '\n';
}

inline std::string read_header(std::istream& istream) {
// check magic bytes an version number
unsigned char v_major, v_minor;
read_magic(istream, v_major, v_minor);

uint32_t header_length = 0;
if (v_major == 1 && v_minor == 0) {
char header_len_le16[2];
istream.read(header_len_le16, 2);
header_length = (header_len_le16[0] << 0) | (header_len_le16[1] << 8);

if ((magic_string_length + 2 + 2 + header_length) % 16 != 0) {
// TODO: display warning
}
} else if (v_major == 2 && v_minor == 0) {
char header_len_le32[4];
istream.read(header_len_le32, 4);

header_length = (header_len_le32[0] << 0) | (header_len_le32[1] << 8) |
(header_len_le32[2] << 16) | (header_len_le32[3] << 24);

if ((magic_string_length + 2 + 4 + header_length) % 16 != 0) {
// TODO: display warning
}
} else {
fprintf(stderr, "unsupported file format version");
}

auto buf_v = std::vector<char>();
buf_v.reserve(header_length);
istream.read(buf_v.data(), header_length);
std::string header(buf_v.data(), header_length);

return header;
}

inline ndarray_len_t comp_size(const std::vector<ndarray_len_t>& shape) {
ndarray_len_t size = 1;
for (ndarray_len_t i : shape)
size *= i;

return size;
}

template <typename Scalar>
inline void SaveArrayAsNumpy(const std::string& filename, bool fortran_order,
unsigned int n_dims, const unsigned long shape[],
const std::vector<Scalar>& data) {
Typestring typestring_o(data);
std::string typestring = typestring_o.str();

std::ofstream stream(filename, std::ofstream::binary);
if (!stream) {
fprintf(stderr, "io error: failed to open a file.");
}

std::vector<ndarray_len_t> shape_v(shape, shape + n_dims);
write_header(stream, typestring, fortran_order, shape_v);

auto size = static_cast<size_t>(comp_size(shape_v));

stream.write(reinterpret_cast<const char*>(data.data()),
sizeof(Scalar) * size);
}

template <typename Scalar>
inline void LoadArrayFromNumpy(const std::string& filename,
std::vector<unsigned long>& shape,
std::vector<Scalar>& data) {
bool fortran_order;
LoadArrayFromNumpy<Scalar>(filename, shape, fortran_order, data);
}

template <typename Scalar>
inline void LoadArrayFromNumpy(const std::string& filename,
std::vector<unsigned long>& shape,
bool& fortran_order, std::vector<Scalar>& data) {
std::ifstream stream(filename, std::ifstream::binary);
if (!stream) {
fprintf(stderr, "io error: failed to open a file.");
}

std::string header = read_header(stream);

// parse header
std::string typestr;

parse_header(header, typestr, fortran_order, shape);

// check if the typestring matches the given one
Typestring typestring_o{data};
std::string expect_typestr = typestring_o.str();
if (typestr != expect_typestr) {
fprintf(stderr, "formatting error: typestrings not matching");
}

// compute the data size based on the shape
auto size = static_cast<size_t>(comp_size(shape));
data.resize(size);

// read the data
stream.read(reinterpret_cast<char*>(data.data()), sizeof(Scalar) * size);
}

inline void LoadArrayFromNumpy(const std::string& filename,
std::string& type_str,
std::vector<ndarray_len_t>& shape,
std::vector<int8_t>& data) {
std::ifstream stream(filename, std::ifstream::binary);
if (!stream) {
fprintf(stderr, "io error: failed to open a file.");
}

std::string header = read_header(stream);
bool fortran_order;
// parse header
parse_header(header, type_str, fortran_order, shape);

// check if the typestring matches the given one
std::string size_str = type_str.substr(type_str.size() - 1);
size_t elem_size = atoi(size_str.c_str());

// compute the data size based on the shape
auto byte_size = elem_size * static_cast<size_t>(comp_size(shape));
data.resize(byte_size);

// read the data
stream.read(reinterpret_cast<char*>(data.data()), byte_size);
}

} // namespace npy

#endif // NPY_H

+ 0
- 108
sdk/load-and-run/src/text_table.cpp View File

@@ -1,108 +0,0 @@
/**
* \file sdk/load-and-run/src/text_table.cpp
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/

#include "text_table.h"

using namespace mgb;

namespace {
inline void mid(std::ostream& os, const std::string& str, size_t max_w) {
size_t l = (max_w - str.length()) / 2 + str.length();
size_t r = max_w - l;
os << std::setw(l) << std::right << str;
if (r > 0) os << std::setw(r) << ' ';
}
inline size_t char_length(char c) { return c ? 1 : 0; }
} // namespace

void TextTable::adjuster_last_row() {
if (m_rows.empty()) return;
auto& row = m_rows.back();
if (row.params.horizontal == 0 or row.params.vertical == 0) {
row.params.corner = 0;
}
if (row.params.horizontal != 0 && row.params.vertical != 0 &&
row.params.corner == 0) {
row.params.corner = row.params.horizontal;
}
}

void TextTable::show(std::ostream& os) {
if (m_rows.empty()) return;
auto& last_row = m_rows.front();
bool first = true;
for (auto& row : m_rows) {
auto& lrow =
(last_row.values.size() * char_length(last_row.params.horizontal)) >
(row.values.size() * char_length(row.params.horizontal))
? last_row
: row;
// line before row
if (lrow.params.horizontal) {
if (not first) os << std::endl;
os << m_prefix;
if (lrow.params.corner) os << lrow.params.corner;
size_t skip_size = 0;
// table name
if (first) {
os << m_name;
skip_size = m_name.length();
}
for (size_t i = 0; i < lrow.values.size(); ++i) {
auto max_w = m_cols_max_w.at(i) + m_padding * 2;
if (max_w + char_length(lrow.params.corner) <= skip_size) {
skip_size =
skip_size - max_w - char_length(lrow.params.corner);
continue;
}
size_t rest =
max_w + char_length(lrow.params.corner) - skip_size;
skip_size = 0;
if (rest > char_length(lrow.params.corner)) {
os << std::string(rest - char_length(lrow.params.corner),
lrow.params.horizontal);
rest = char_length(lrow.params.corner);
}
if (rest > 0 && lrow.params.corner) os << lrow.params.corner;
}
} else if (first) {
os << m_prefix << ' ' << m_name;
}
first = false;
os << std::endl << m_prefix;
if (row.params.vertical) os << row.params.vertical;
// row
for (size_t i = 0; i < row.values.size(); ++i) {
auto& str = row.values.at(i);
auto max_w = m_cols_max_w.at(i) + 2 * m_padding;
if (row.params.align == Align::Mid) {
mid(os, str, max_w);
} else if (row.params.align == Align::Left) {
os << std::setw(max_w) << std::left << str;
} else {
os << std::setw(max_w) << std::right << str;
}
if (row.params.vertical) os << row.params.vertical;
}
last_row = row;
}
if (last_row.params.horizontal) {
os << std::endl << m_prefix;
if (last_row.params.corner) os << last_row.params.corner;
for (size_t i = 0; i < last_row.values.size(); ++i) {
auto max_w = m_cols_max_w.at(i);
std::string tmp(max_w + m_padding * 2, last_row.params.horizontal);
os << tmp;
if (last_row.params.corner) os << last_row.params.corner;
}
}
}

+ 0
- 132
sdk/load-and-run/src/text_table.h View File

@@ -1,132 +0,0 @@
/**
* \file sdk/load-and-run/src/text_table.h
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
*/

#pragma once

#include <array>
#include <iomanip>
#include <ostream>
#include <sstream>
#include <string>
#include <tuple>
#include <type_traits>
#include <vector>
#include "megbrain/common.h"

namespace mgb
{

class TextTable {
public:
enum Level { Summary, Detail };
enum class Align : int { Left, Right, Mid };
explicit TextTable(const std::string& table_name) : m_name(table_name) {}
TextTable& horizontal(char c) {
m_row.params.horizontal = c;
return *this;
}
TextTable& vertical(char c) {
m_row.params.vertical = c;
return *this;
}
TextTable& corner(char c) {
m_row.params.corner = c;
return *this;
}
TextTable& align(Align v) {
m_row.params.align = v;
return *this;
}
TextTable& padding(size_t w) {
m_padding = w;
return *this;
}
TextTable& prefix(const std::string& str) {
m_prefix = str;
return *this;
}

template <typename T>
TextTable& add(const T& value) {
m_row.values.emplace_back(value);
if (m_cols_max_w.size() < m_row.values.size()) {
m_cols_max_w.emplace_back(m_row.values.back().length());
} else {
mgb_assert(m_row.values.size() >= 1);
size_t i = m_row.values.size() - 1;
m_cols_max_w[i] =
std::max(m_cols_max_w[i], m_row.values.back().length());
}
return *this;
}

template <typename T, typename std::enable_if<std::is_floating_point<T>::value, bool>::type = 0>
TextTable& add(const T& value) {
std::stringstream ss;
ss << std::setiosflags(std::ios::fixed) << std::setprecision(2);
ss << value;
m_row.values.emplace_back(ss.str());
if (m_cols_max_w.size() < m_row.values.size()) {
m_cols_max_w.emplace_back(m_row.values.back().length());
} else {
mgb_assert(m_row.values.size() >= 1);
size_t i = m_row.values.size() - 1;
m_cols_max_w[i] =
std::max(m_cols_max_w[i], m_row.values.back().length());
}
return *this;
}

template <typename T, typename std::enable_if<std::is_integral<T>::value, bool>::type = 0>
TextTable& add(const T& value) {
m_row.values.emplace_back(std::to_string(value));
return *this;
}

void eor() {
m_rows.emplace_back(m_row);
adjuster_last_row();
m_row.values.clear();
}

void reset() {
m_row = {};
m_cols_max_w.clear();
m_padding = 0;
m_rows.clear();
}

void show(std::ostream& os);

private:
void adjuster_last_row();
std::string m_name;
std::vector<size_t> m_cols_max_w;
size_t m_padding = 0;
std::string m_prefix = "";
struct Row {
std::vector<std::string> values;
struct Params {
Align align = Align::Left;
char horizontal = '-', vertical = '|', corner = '+';
} params;
};
std::vector<Row> m_rows;
Row m_row;
};

inline std::ostream& operator<<(std::ostream& stream, TextTable& table) {
table.show(stream);
return stream;
}

} // namespace mgb

+ 0
- 74
sdk/load-and-run/test/json_loader_test.cpp View File

@@ -1,74 +0,0 @@
/**
* \file sdk/load-and-run/test/test_json_loader.cpp
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/

#include <cfloat>
#include <cstdint>
#include <cstdio>
#include <cmath>
#include "../src/json_loader.h"

using namespace mgb;

void test_number(double real, std::string str) {
JsonLoader json;
auto root = json.load(str.data(), str.size());
mgb_assert(root->is_number());
mgb_assert(std::fabs(real - root->number()) <= DBL_EPSILON);
}

void test_string(std::string str, std::string json_str) {
JsonLoader json;
auto root = json.load(json_str.data(), json_str.size());
mgb_assert(root->is_str());
mgb_assert(str == root->str());
}

void test_array(size_t num, std::string str) {
JsonLoader json;
auto root = json.load(str.data(), str.size());
mgb_assert(root->is_array());
mgb_assert(root->len() == num);
}

void test_object(size_t num, std::string str) {
JsonLoader json;
auto root = json.load(str.data(), str.size());
mgb_assert(root->is_object());
mgb_assert(root->len() == num);
}

int main() {
test_number(1.0, "1.0");
test_number(1e10, "1e10");
test_number(0.2345678, "0.02345678e1");
test_number(-10086, "-1.0086E4");
test_number(1.7976931348623157e+308,
"1.7976931348623157e+308"); // max double

test_string("a", "\"a\"");
test_string("\\table", "\"\\table\"");

test_array(0, " [ ] ");
test_array(4, " [ 0.1, 0.2,0.3, 1990 ] ");
test_array(2, " [ 0.1, \"hello-world\"]");
test_array(3, " [ 0.1, \"hello-world\", [2.0, 33]]");
test_array(1, " [ [ [ [2020] ], [2021], [[2022]] ] ]");

test_object(0, " { } ");
test_object(1, "{\"key1\": 2023}");
test_object(1,
"{\"key1\": { \"key2\": { "
"\"key3\": \"value\" } } }");
test_object(1, "{\"key1\":{\"key2\":{}}}");

printf("test passed\n");
return 0;
}

Loading…
Cancel
Save