Browse Source

test(mge): skip some doctests having different results on gpu

GitOrigin-RevId: 66e5db5c89
tags/v0.3.2
Megvii Engine Team 5 years ago
parent
commit
e1b2d31d36
4 changed files with 11 additions and 8 deletions
  1. +4
    -3
      python_module/megengine/functional/nn.py
  2. +4
    -2
      python_module/megengine/functional/tensor.py
  3. +1
    -1
      python_module/megengine/module/conv.py
  4. +2
    -2
      python_module/megengine/random/distribution.py

+ 4
- 3
python_module/megengine/functional/nn.py View File

@@ -741,11 +741,11 @@ def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor:
.. testcode:: .. testcode::


import numpy as np import numpy as np
from megengine import tensor
import megengine as mge

import megengine.functional as F import megengine.functional as F
from megengine.random import manual_seed
from megengine import tensor


manual_seed(0)
data = tensor(np.ones(10, dtype=np.float32)) data = tensor(np.ones(10, dtype=np.float32))
out = F.dropout(data, 1./3.) out = F.dropout(data, 1./3.)
print(out.numpy()) print(out.numpy())
@@ -753,6 +753,7 @@ def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor:
Outputs: Outputs:


.. testoutput:: .. testoutput::
:options: +SKIP


[1.5 1.5 0. 1.5 1.5 1.5 1.5 1.5 1.5 1.5] [1.5 1.5 0. 1.5 1.5 1.5 1.5 1.5 1.5 1.5]




+ 4
- 2
python_module/megengine/functional/tensor.py View File

@@ -249,6 +249,7 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor:
import numpy as np import numpy as np
import megengine.functional as F import megengine.functional as F
from megengine.core import tensor from megengine.core import tensor

inp = tensor(np.zeros(shape=(3,5),dtype=np.float32)) inp = tensor(np.zeros(shape=(3,5),dtype=np.float32))
source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]]) source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]])
index = tensor([[0,2,0,2,1],[2,0,0,1,2]]) index = tensor([[0,2,0,2,1],[2,0,0,1,2]])
@@ -258,6 +259,7 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor:
Outputs: Outputs:


.. testoutput:: .. testoutput::
:options: +SKIP


[[0.9935 0.0718 0.5939 0. 0. ] [[0.9935 0.0718 0.5939 0. 0. ]
[0. 0. 0. 0.357 0.4396] [0. 0. 0. 0.357 0.4396]
@@ -314,9 +316,9 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor:
def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor:
r""" r"""
Select elements either from Tensor x or Tensor y, according to mask. Select elements either from Tensor x or Tensor y, according to mask.
.. math:: .. math::
\textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i \textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i


:param mask: a mask used for choosing x or y :param mask: a mask used for choosing x or y


+ 1
- 1
python_module/megengine/module/conv.py View File

@@ -115,7 +115,7 @@ class Conv2d(_ConvNd):
and there would be an extra dimension at the beginning of the weight's and there would be an extra dimension at the beginning of the weight's
shape. Specifically, the shape of weight would be ``(groups, shape. Specifically, the shape of weight would be ``(groups,
out_channel // groups, in_channels // groups, *kernel_size)``. out_channel // groups, in_channels // groups, *kernel_size)``.
:param bias: wether to add a bias onto the result of convolution. Default:
:param bias: whether to add a bias onto the result of convolution. Default:
True True
:param conv_mode: Supports `CROSS_CORRELATION` or `CONVOLUTION`. Default: :param conv_mode: Supports `CROSS_CORRELATION` or `CONVOLUTION`. Default:
`CROSS_CORRELATION`. `CROSS_CORRELATION`.


+ 2
- 2
python_module/megengine/random/distribution.py View File

@@ -42,11 +42,11 @@ def gaussian(
import megengine as mge import megengine as mge
import megengine.random as rand import megengine.random as rand


rand.manual_seed(0)
x = rand.gaussian((2, 2), mean=0, std=1) x = rand.gaussian((2, 2), mean=0, std=1)
print(x.numpy()) print(x.numpy())


.. testoutput:: .. testoutput::
:options: +SKIP


[[-0.20235455 -0.6959438 ] [[-0.20235455 -0.6959438 ]
[-1.4939808 -1.5824696 ]] [-1.4939808 -1.5824696 ]]
@@ -79,11 +79,11 @@ def uniform(
import megengine as mge import megengine as mge
import megengine.random as rand import megengine.random as rand


rand.manual_seed(0)
x = rand.uniform((2, 2)) x = rand.uniform((2, 2))
print(x.numpy()) print(x.numpy())


.. testoutput:: .. testoutput::
:options: +SKIP


[[0.76901674 0.70496535] [[0.76901674 0.70496535]
[0.09365904 0.62957656]] [0.09365904 0.62957656]]


Loading…
Cancel
Save