@@ -52,6 +52,7 @@ namespace megdnn { | |||
MEGDNN_INC_FLOAT16(cb(Float16)) \ | |||
MEGDNN_INC_FLOAT16(cb(BFloat16)) \ | |||
cb(UintB4) \ | |||
cb(Bool) \ | |||
/*! | |||
* \brief iterate through each full byte dtype | |||
@@ -65,6 +66,7 @@ namespace megdnn { | |||
cb(Byte) \ | |||
MEGDNN_INC_FLOAT16(cb(Float16)) \ | |||
MEGDNN_INC_FLOAT16(cb(BFloat16)) \ | |||
cb(Bool) \ | |||
/*! | |||
* \brief iterate through each fractional byte dtype | |||
@@ -122,7 +124,7 @@ namespace megdnn { | |||
*/ | |||
#define MEGDNN_FOREACH_COMPUTING_DTYPE(cb) \ | |||
MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(cb) \ | |||
MEGDNN_FOREACH_COMPUTING_DTYPE_INT(cb) | |||
MEGDNN_FOREACH_COMPUTING_DTYPE_INT(cb) \ | |||
//! In order to avoid an unnecessary increase in binary size, we just | |||
//! use QuantizedS16 dtype in winograd_filter_preprocess now. So I didn't add | |||
@@ -348,6 +350,7 @@ typedef int32_t dt_int32; | |||
typedef int16_t dt_int16; | |||
typedef int8_t dt_int8; | |||
typedef uint8_t dt_uint8; | |||
typedef bool dt_bool; | |||
MEGDNN_INC_FLOAT16(typedef half_float::half dt_float16;) | |||
MEGDNN_INC_FLOAT16(typedef half_bfloat16::bfloat16 dt_bfloat16;) | |||
@@ -375,7 +378,7 @@ MEGDNN_INC_FLOAT16(typedef half_bfloat16::bfloat16 dt_bfloat16;) | |||
#if !MEGDNN_DISABLE_FLOAT16 | |||
BFloat16 = 11, | |||
#endif | |||
Bool = 12, | |||
#define FST(_name) _name = MEGDNN_PARAMETERIZED_DTYPE_ENUM_BASE, | |||
#define D(_name) _name, | |||
MEGDNN_FOREACH_PARAMETERIZED_DTYPE_2(FST, D) | |||
@@ -392,7 +395,7 @@ MEGDNN_INC_FLOAT16(typedef half_bfloat16::bfloat16 dt_bfloat16;) | |||
#if MEGDNN_CC_HOST | |||
//! dtype numeric category fo | |||
enum class DTypeCategory: int { | |||
OTHER, FLOAT, INT, LOWBIT, QUANTIZED | |||
OTHER, FLOAT, INT, LOWBIT, QUANTIZED, BOOL | |||
}; | |||
//! dtype signedness | |||
enum class DTypeSignedness: int { | |||
@@ -401,7 +404,7 @@ MEGDNN_INC_FLOAT16(typedef half_bfloat16::bfloat16 dt_bfloat16;) | |||
#else | |||
struct DTypeCategory { | |||
enum Ev { | |||
OTHER, FLOAT, INT, LOWBIT, QUANTIZED | |||
OTHER, FLOAT, INT, LOWBIT, QUANTIZED, BOOL | |||
}; | |||
int ev; | |||
}; | |||
@@ -707,6 +710,7 @@ MEGDNN_DEF_DT(Int32, dt_int32, INT, SIGNED, INT32_MIN, INT32_MAX); | |||
MEGDNN_DEF_DT(Int16, dt_int16, INT, SIGNED, INT16_MIN, INT16_MAX); | |||
MEGDNN_DEF_DT(Int8, dt_int8, INT, SIGNED, INT8_MIN, INT8_MAX); | |||
MEGDNN_DEF_DT(Uint8, dt_uint8, INT, UNSIGNED, 0, UINT8_MAX); | |||
MEGDNN_DEF_DT(Bool, dt_bool, BOOL, UNSIGNED, false, true); | |||
MEGDNN_INC_FLOAT16(MEGDNN_DEF_DT(Float16, dt_float16, FLOAT, SIGNED, | |||
std::numeric_limits<dt_float16>::lowest(), | |||
std::numeric_limits<dt_float16>::max())); | |||
@@ -39,11 +39,12 @@ class ElemwiseForward: public OperatorBase { | |||
bool commutable; //!< whether arity == 2 and inputs commutable | |||
bool allow_int; //!< whether int inputs allowed | |||
bool allow_float; //!< whether float inputs allowed | |||
bool allow_bool; //!< whether bool inputs allowed | |||
const char* name; //!< name of the mode | |||
ModeTrait(): | |||
arity(0), commutable(0), allow_int(0), allow_float(0), | |||
arity(0), commutable(0), allow_int(0), allow_float(0), allow_bool(0), | |||
name(NULL) | |||
{} | |||
@@ -5,6 +5,7 @@ DTYPES = {'dt_int32': ('Int32', 'INT'), | |||
'dt_uint8': ('Uint8', 'INT'), | |||
'dt_int8': ('Int8', 'INT'), | |||
'dt_int16': ('Int16', 'INT'), | |||
'dt_bool': ('Bool', 'BOOL'), | |||
'dt_float32': ('Float32', 'FLOAT'), | |||
'dt_float16': ('Float16', 'FLOAT'), | |||
'dt_bfloat16': ('BFloat16', 'FLOAT') | |||
@@ -28,4 +29,7 @@ MODES = { | |||
'FUSE_ADD_SIGMOID', 'ATAN2', 'H_SWISH_GRAD', | |||
'FUSE_ADD_H_SWISH'], | |||
(3, 'FLOAT'): ['COND_LEQ_MOV', 'FUSE_MUL_ADD3'], | |||
(1, 'BOOL'): ['NOT'], | |||
(2, 'BOOL'): ['AND', 'OR', 'XOR'], | |||
(3, 'BOOL'): [] | |||
} |
@@ -314,7 +314,12 @@ pdef('Elemwise').add_enum( | |||
Doc('ERFCINV', 'unary: inverse function of erfc(x)'), | |||
Doc('H_SWISH', 'unary: x * clip(x + 3, 0, 6) / 6'), | |||
Doc('H_SWISH_GRAD', 'binary: x < -3 ? 0 : (x > 3 ? y : (2 * x + 3) / 6 * y)'), | |||
Doc('FUSE_ADD_H_SWISH', 'binary: hswish(x+y)') | |||
Doc('FUSE_ADD_H_SWISH', 'binary: hswish(x+y)'), | |||
Doc('NOT', 'unary: !x'), | |||
Doc('AND', 'binary: x && y'), | |||
Doc('OR', 'binary: x || y'), | |||
Doc('XOR', 'binary: x ^ y') | |||
) | |||
pdef('ElemwiseMultiType').add_enum( | |||
@@ -68,6 +68,7 @@ namespace cond_take { | |||
#define inst_eq_i(_dt) do_inst_eq_i(DTypeTrait<_dt>::ctype) | |||
MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(inst_eq_f) | |||
MEGDNN_FOREACH_COMPUTING_DTYPE_INT(inst_eq_i) | |||
inst_eq_i(::megdnn::dtype::Bool) | |||
#undef inst_eq_f | |||
#undef inst_eq_i | |||
@@ -9,6 +9,9 @@ | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
// generated by gen_elemwise_each_mode.py | |||
#define MEGDNN_FOREACH_ELEMWISE_MODE_UNARY_BOOL(cb) \ | |||
MEGDNN_ELEMWISE_MODE_ENABLE(NOT, cb) \ | |||
#define MEGDNN_FOREACH_ELEMWISE_MODE_UNARY_FLOAT(cb) \ | |||
MEGDNN_ELEMWISE_MODE_ENABLE(RELU, cb) \ | |||
MEGDNN_ELEMWISE_MODE_ENABLE(ABS, cb) \ | |||
@@ -38,6 +41,11 @@ | |||
MEGDNN_ELEMWISE_MODE_ENABLE(ABS, cb) \ | |||
MEGDNN_ELEMWISE_MODE_ENABLE(NEGATE, cb) \ | |||
#define MEGDNN_FOREACH_ELEMWISE_MODE_BINARY_BOOL(cb) \ | |||
MEGDNN_ELEMWISE_MODE_ENABLE(AND, cb) \ | |||
MEGDNN_ELEMWISE_MODE_ENABLE(OR, cb) \ | |||
MEGDNN_ELEMWISE_MODE_ENABLE(XOR, cb) \ | |||
#define MEGDNN_FOREACH_ELEMWISE_MODE_BINARY_FLOAT(cb) \ | |||
MEGDNN_ELEMWISE_MODE_ENABLE(ABS_GRAD, cb) \ | |||
MEGDNN_ELEMWISE_MODE_ENABLE(ADD, cb) \ | |||
@@ -139,6 +139,7 @@ namespace megdnn { | |||
DEF_KERN_FLOAT(H_SWISH, x * min(max(x + 3, 0.f), 6.f) * (1.f / 6.f)); | |||
// int only | |||
DEF_KERN(dt_bool, NOT, x ^ 1); | |||
#undef KERN_SIG | |||
@@ -156,6 +157,9 @@ namespace megdnn { | |||
DEF_KERN_ALL(MAX, x > y ? x : y); | |||
DEF_KERN_ALL(MIN, x < y ? x : y); | |||
DEF_KERN_ALL(MUL, x* y); | |||
DEF_KERN(dt_bool, AND, x && y); | |||
DEF_KERN(dt_bool, OR, x || y); | |||
DEF_KERN(dt_bool, XOR, x ^ y); | |||
DEF_KERN_INT(RMULH, round_mulh_saturate(x, y)); | |||
DEF_KERN_ALL(SIGMOID_GRAD, x*(ctype(1) - x) * y); | |||
DEF_KERN_ALL(SUB, x - y); | |||
@@ -74,6 +74,15 @@ const ModeTrait& ModeTrait::from_mode(Mode mode) { | |||
#define cb(_m) \ | |||
MIDOUT_BEGIN(megdnn_common_elemwise, midout_iv(Mode::_m)) { \ | |||
get(Mode::_m).allow_bool = true; \ | |||
} \ | |||
MIDOUT_END(); | |||
MEGDNN_FOREACH_ELEMWISE_MODE_UNARY_BOOL(cb); | |||
MEGDNN_FOREACH_ELEMWISE_MODE_BINARY_BOOL(cb); | |||
#undef cb | |||
#define cb(_m) \ | |||
MIDOUT_BEGIN(megdnn_common_elemwise, midout_iv(Mode::_m)) { \ | |||
auto&& t = get(Mode::_m); \ | |||
t.arity = _a; \ | |||
t.name = megdnn_mangle(#_m); \ | |||
@@ -82,10 +91,12 @@ const ModeTrait& ModeTrait::from_mode(Mode mode) { | |||
#define _a 1 | |||
MEGDNN_FOREACH_ELEMWISE_MODE_UNARY_FLOAT(cb); | |||
MEGDNN_FOREACH_ELEMWISE_MODE_UNARY_INT(cb); | |||
MEGDNN_FOREACH_ELEMWISE_MODE_UNARY_BOOL(cb); | |||
#undef _a | |||
#define _a 2 | |||
MEGDNN_FOREACH_ELEMWISE_MODE_BINARY_FLOAT(cb); | |||
MEGDNN_FOREACH_ELEMWISE_MODE_BINARY_INT(cb); | |||
MEGDNN_FOREACH_ELEMWISE_MODE_BINARY_BOOL(cb); | |||
#undef _a | |||
#define _a 3 | |||
MEGDNN_FOREACH_ELEMWISE_MODE_TERNARY_FLOAT(cb); | |||
@@ -98,6 +109,7 @@ const ModeTrait& ModeTrait::from_mode(Mode mode) { | |||
auto&& t = get(Mode::_m); \ | |||
t.allow_int = true; \ | |||
t.allow_float = true; \ | |||
t.allow_bool = true; \ | |||
t.arity = _arity; \ | |||
t.name = megdnn_mangle(#_m); \ | |||
} \ | |||
@@ -129,7 +141,7 @@ const ModeTrait& ModeTrait::from_mode(Mode mode) { | |||
#if MEGDNN_ELEMWISE_MODE_ENABLE_ALL | |||
for (auto&& i : traits) { | |||
megdnn_assert(i.arity && (i.allow_int || i.allow_float) && | |||
megdnn_assert(i.arity && (i.allow_int || i.allow_float || i.allow_bool) && | |||
(!i.commutable || i.arity == 2)); | |||
} | |||
#else | |||
@@ -282,6 +294,10 @@ void ElemwiseForward::check_dtype(DType dtype) { | |||
megdnn_assert(trait.allow_int, "unsupport mode %s for int\n", | |||
trait.name); | |||
break; | |||
case DTypeCategory::BOOL: | |||
megdnn_assert(trait.allow_bool, "unsupport mode %s for bool\n", | |||
trait.name); | |||
break; | |||
default: | |||
megdnn_throw("bad dtype"); | |||
} | |||
@@ -18,6 +18,15 @@ void ElemwiseForwardImpl::on_arity_dispatched() { | |||
auto src = make_elemwise_op_param<arity>(); | |||
MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(on_arity_dispatched_cb_dtype) | |||
MEGDNN_FOREACH_COMPUTING_DTYPE_INT(on_arity_dispatched_cb_dtype) | |||
on_arity_dispatched_cb_dtype(::megdnn::dtype::Bool) | |||
megdnn_throw("bad dtype"); | |||
} | |||
template<int arity> | |||
void ElemwiseForwardImpl::on_arity_dispatched_no_bool() { | |||
auto src = make_elemwise_op_param<arity>(); | |||
MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(on_arity_dispatched_cb_dtype) | |||
MEGDNN_FOREACH_COMPUTING_DTYPE_INT(on_arity_dispatched_cb_dtype) | |||
megdnn_throw("bad dtype"); | |||
} | |||
@@ -45,6 +54,14 @@ IMPL_MODE_DISPATCHER(2, DTypeCategory::FLOAT); | |||
IMPL_MODE_DISPATCHER(3, DTypeCategory::FLOAT); | |||
#undef FOREACH | |||
#define FOREACH MEGDNN_FOREACH_ELEMWISE_MODE_UNARY_BOOL | |||
IMPL_MODE_DISPATCHER(1, DTypeCategory::BOOL); | |||
#undef FOREACH | |||
#define FOREACH MEGDNN_FOREACH_ELEMWISE_MODE_BINARY_BOOL | |||
IMPL_MODE_DISPATCHER(2, DTypeCategory::BOOL); | |||
#undef FOREACH | |||
void ElemwiseForwardImpl::exec( | |||
const TensorNDArray &src, | |||
_megdnn_tensor_out dst) { | |||
@@ -97,8 +114,8 @@ void ElemwiseForwardImpl::exec( | |||
#define D(_n) case _n: return on_arity_dispatched<_n>() | |||
D(1); | |||
D(2); | |||
D(3); | |||
#undef D | |||
case 3: return on_arity_dispatched_no_bool<3>(); | |||
default: | |||
megdnn_throw("bad size of input tensors"); | |||
} | |||
@@ -13,6 +13,9 @@ | |||
template<int arity> | |||
void on_arity_dispatched(); | |||
template<int arity> | |||
void on_arity_dispatched_no_bool(); | |||
template<int arity, DTypeCategory dtype_cat, typename ctype> | |||
struct ModeDispatcher; | |||
@@ -19,10 +19,12 @@ void TypeCvt::check_exec(const TensorLayout &src, const TensorLayout &dst) { | |||
megdnn_assert_eq_shape(src, dst); | |||
auto cat = src.dtype.category(); | |||
megdnn_assert(cat == DTypeCategory::FLOAT || cat == DTypeCategory::INT || | |||
cat == DTypeCategory::QUANTIZED); | |||
cat == DTypeCategory::QUANTIZED || | |||
cat == DTypeCategory::BOOL); | |||
cat = dst.dtype.category(); | |||
megdnn_assert(cat == DTypeCategory::FLOAT || cat == DTypeCategory::INT || | |||
cat == DTypeCategory::QUANTIZED); | |||
cat == DTypeCategory::QUANTIZED || | |||
cat == DTypeCategory::BOOL); | |||
} | |||
} // namespace megdnn | |||
@@ -0,0 +1,27 @@ | |||
/** | |||
* \file dnn/src/cuda/cond_take/kimpl/dt_bool.cu | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
// generated by gen_cond_take_kern_impls.py | |||
#include "../kern.inl" | |||
namespace megdnn { | |||
namespace cuda { | |||
namespace cond_take { | |||
inst_genidx(::megdnn::dtype::Bool) | |||
#undef inst_genidx | |||
inst_copy(::megdnn::dtype::Bool) | |||
#undef inst_copy | |||
#undef inst_copy_ | |||
} // cond_take | |||
} // cuda | |||
} // megdnn |
@@ -25,8 +25,9 @@ namespace cuda { | |||
1, KernImpl, | |||
typename std::enable_if< | |||
!std::is_same<typename KernImpl::ctype, dt_int8>::value && | |||
!std::is_same<typename KernImpl::ctype, | |||
dt_uint8>::value>::type> { | |||
!std::is_same<typename KernImpl::ctype, dt_uint8>::value && | |||
!std::is_same<typename KernImpl::ctype, | |||
dt_bool>::value>::type> { | |||
typedef typename KernImpl::ctype ctype; | |||
ctype* dst; | |||
@@ -41,8 +42,9 @@ namespace cuda { | |||
2, KernImpl, | |||
typename std::enable_if< | |||
!std::is_same<typename KernImpl::ctype, dt_int8>::value && | |||
!std::is_same<typename KernImpl::ctype, | |||
dt_uint8>::value>::type> { | |||
!std::is_same<typename KernImpl::ctype, dt_uint8>::value && | |||
!std::is_same<typename KernImpl::ctype, | |||
dt_bool>::value>::type> { | |||
typedef typename KernImpl::ctype ctype; | |||
ctype* dst; | |||
@@ -57,8 +59,9 @@ namespace cuda { | |||
3, KernImpl, | |||
typename std::enable_if< | |||
!std::is_same<typename KernImpl::ctype, dt_int8>::value && | |||
!std::is_same<typename KernImpl::ctype, | |||
dt_uint8>::value>::type> { | |||
!std::is_same<typename KernImpl::ctype, dt_uint8>::value && | |||
!std::is_same<typename KernImpl::ctype, | |||
dt_bool>::value>::type> { | |||
typedef typename KernImpl::ctype ctype; | |||
ctype* dst; | |||
@@ -74,8 +77,9 @@ namespace cuda { | |||
1, KernImpl, | |||
typename std::enable_if< | |||
std::is_same<typename KernImpl::ctype, dt_int8>::value || | |||
std::is_same<typename KernImpl::ctype, | |||
dt_uint8>::value>::type> { | |||
std::is_same<typename KernImpl::ctype, dt_uint8>::value || | |||
std::is_same<typename KernImpl::ctype, | |||
dt_bool>::value>::type> { | |||
typedef typename KernImpl::ctype ctype; | |||
using VectTypeTrait = elemwise_intl::VectTypeTrait<ctype>; | |||
typedef typename VectTypeTrait::vect_type vect_type; | |||
@@ -99,8 +103,9 @@ namespace cuda { | |||
2, KernImpl, | |||
typename std::enable_if< | |||
std::is_same<typename KernImpl::ctype, dt_int8>::value || | |||
std::is_same<typename KernImpl::ctype, | |||
dt_uint8>::value>::type> { | |||
std::is_same<typename KernImpl::ctype, dt_uint8>::value || | |||
std::is_same<typename KernImpl::ctype, | |||
dt_bool>::value>::type> { | |||
typedef typename KernImpl::ctype ctype; | |||
using VectTypeTrait = elemwise_intl::VectTypeTrait<ctype>; | |||
typedef typename VectTypeTrait::vect_type vect_type; | |||
@@ -126,8 +131,9 @@ namespace cuda { | |||
3, KernImpl, | |||
typename std::enable_if< | |||
std::is_same<typename KernImpl::ctype, dt_int8>::value || | |||
std::is_same<typename KernImpl::ctype, | |||
dt_uint8>::value>::type> { | |||
std::is_same<typename KernImpl::ctype, dt_uint8>::value || | |||
std::is_same<typename KernImpl::ctype, | |||
dt_bool>::value>::type> { | |||
typedef typename KernImpl::ctype ctype; | |||
using VectTypeTrait = elemwise_intl::VectTypeTrait<ctype>; | |||
typedef typename VectTypeTrait::vect_type vect_type; | |||
@@ -0,0 +1,15 @@ | |||
/** | |||
* \file dnn/src/cuda/elemwise/kimpl/AND_dt_bool.cu | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
// generated by gen_elemwise_kern_impls.py | |||
#define KERN_IMPL_MODE(cb) MEGDNN_ELEMWISE_MODE_ENABLE(AND, cb) | |||
#define KERN_IMPL_ARITY 2 | |||
#define KERN_IMPL_CTYPE dt_bool | |||
#include "../kern_impl.inl" |
@@ -0,0 +1,15 @@ | |||
/** | |||
* \file dnn/src/cuda/elemwise/kimpl/NOT_dt_bool.cu | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
// generated by gen_elemwise_kern_impls.py | |||
#define KERN_IMPL_MODE(cb) MEGDNN_ELEMWISE_MODE_ENABLE(NOT, cb) | |||
#define KERN_IMPL_ARITY 1 | |||
#define KERN_IMPL_CTYPE dt_bool | |||
#include "../kern_impl.inl" |
@@ -0,0 +1,15 @@ | |||
/** | |||
* \file dnn/src/cuda/elemwise/kimpl/OR_dt_bool.cu | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
// generated by gen_elemwise_kern_impls.py | |||
#define KERN_IMPL_MODE(cb) MEGDNN_ELEMWISE_MODE_ENABLE(OR, cb) | |||
#define KERN_IMPL_ARITY 2 | |||
#define KERN_IMPL_CTYPE dt_bool | |||
#include "../kern_impl.inl" |
@@ -0,0 +1,15 @@ | |||
/** | |||
* \file dnn/src/cuda/elemwise/kimpl/XOR_dt_bool.cu | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
// generated by gen_elemwise_kern_impls.py | |||
#define KERN_IMPL_MODE(cb) MEGDNN_ELEMWISE_MODE_ENABLE(XOR, cb) | |||
#define KERN_IMPL_ARITY 2 | |||
#define KERN_IMPL_CTYPE dt_bool | |||
#include "../kern_impl.inl" |
@@ -169,6 +169,9 @@ INST_FOR_CTYPE | |||
#define ct dt_qint32 | |||
INST_FOR_CTYPE | |||
#undef ct | |||
#define ct dt_bool | |||
INST_FOR_CTYPE | |||
#undef ct | |||
#undef INST_FOR_CTYPE | |||
#undef INST | |||
@@ -216,6 +219,9 @@ INST_FOR_CTYPE | |||
#define ct dt_qint32 | |||
INST_FOR_CTYPE | |||
#undef ct | |||
#define ct dt_bool | |||
INST_FOR_CTYPE | |||
#undef ct | |||
#undef ndim_cb | |||
@@ -225,6 +231,7 @@ INST_FOR_CTYPE | |||
#define INST(dt_ibyte) template class ParamVectVisitor<4, dt_ibyte, BCAST_1010> | |||
INST(dt_int8); | |||
INST(dt_uint8); | |||
INST(dt_bool); | |||
INST(dt_qint8); | |||
INST(dt_quint8); | |||
#undef dt_ibyte | |||
@@ -102,6 +102,7 @@ INST(dt_float16, half4); | |||
INST(dt_bfloat16, bhalf4); | |||
INST(dt_int32, int4); | |||
INST(dt_int16, short4); | |||
INST(dt_bool, uchar4); | |||
#undef as_raw | |||
#define as_raw(x) x.as_int8() | |||
INST(dt_qint8, char4); | |||
@@ -454,6 +455,7 @@ INST_DT_IBYTE(dt_int8); | |||
INST_DT_IBYTE(dt_uint8); | |||
INST_DT_IBYTE(dt_qint8); | |||
INST_DT_IBYTE(dt_quint8); | |||
INST_DT_IBYTE(dt_bool); | |||
#undef INST_DT_IBYTE | |||
#undef DEVICE_WRAPPER | |||
#undef INST_PARAM_VECT_VISITOR | |||
@@ -913,6 +915,7 @@ INST_DT_IBYTE(dt_int8); | |||
INST_DT_IBYTE(dt_uint8); | |||
INST_DT_IBYTE(dt_qint8); | |||
INST_DT_IBYTE(dt_quint8); | |||
INST_DT_IBYTE(dt_bool); | |||
#undef INST_DT_IBYTE | |||
//! implement general case by UserOpInvokerToSameNdim | |||
@@ -1259,6 +1262,7 @@ INST_DT_IBYTE(dt_int8); | |||
INST_DT_IBYTE(dt_uint8); | |||
INST_DT_IBYTE(dt_qint8); | |||
INST_DT_IBYTE(dt_quint8); | |||
INST_DT_IBYTE(dt_bool); | |||
#undef INST_DT_IBYTE | |||
#endif | |||
@@ -62,7 +62,8 @@ template <typename ctype_dest, typename ctype_src> | |||
struct TypeCvtOp<ctype_dest, ctype_src, | |||
typename std::enable_if< | |||
std::is_same<ctype_src, dt_int8>::value || | |||
std::is_same<ctype_src, dt_uint8>::value>::type> { | |||
std::is_same<ctype_src, dt_uint8>::value || | |||
std::is_same<ctype_src, dt_bool>::value>::type> { | |||
ctype_dest* dest; | |||
using src_vect_type = typename VectTypeTrait<ctype_src>::vect_type; | |||
using dst_vect_type = typename VectTypeTrait<ctype_dest>::vect_type; | |||
@@ -85,7 +86,8 @@ struct TypeCvtOpToQuantized< | |||
ctype_dest, ctype_src, | |||
typename std::enable_if< | |||
std::is_same<ctype_src, dt_int8>::value || | |||
std::is_same<ctype_src, dt_uint8>::value>::type> { | |||
std::is_same<ctype_src, dt_uint8>::value || | |||
std::is_same<ctype_src, dt_bool>::value>::type> { | |||
ctype_dest* dest; | |||
CudaDTypeParam<ctype_dest> param; | |||
using src_vect_type = typename VectTypeTrait<ctype_src>::vect_type; | |||
@@ -109,7 +111,8 @@ struct TypeCvtOpFromQuantized< | |||
ctype_dest, ctype_src, | |||
typename std::enable_if< | |||
std::is_same<ctype_src, dt_qint8>::value || | |||
std::is_same<ctype_src, dt_quint8>::value>::type> { | |||
std::is_same<ctype_src, dt_quint8>::value || | |||
std::is_same<ctype_src, dt_bool>::value>::type> { | |||
ctype_dest* dest; | |||
CudaDTypeParam<ctype_src> param; | |||
using src_vect_type = typename VectTypeTrait<ctype_src>::vect_type; | |||
@@ -137,7 +140,8 @@ struct TypeCvtOpBetweenQuantized< | |||
ctype_dest, ctype_src, | |||
typename std::enable_if< | |||
std::is_same<ctype_src, dt_qint8>::value || | |||
std::is_same<ctype_src, dt_quint8>::value>::type> { | |||
std::is_same<ctype_src, dt_quint8>::value || | |||
std::is_same<ctype_src, dt_bool>::value>::type> { | |||
ctype_dest* dest; | |||
CudaDTypeParam<ctype_src> src_param; | |||
CudaDTypeParam<ctype_dest> dst_param; | |||
@@ -243,6 +247,7 @@ void typecvt_kern_n2n(const TensorND& dest, const TensorND& src, | |||
cb(dtype_src, dt_float32) \ | |||
cb(dtype_src, dt_float16) \ | |||
cb(dtype_src, dt_bfloat16) \ | |||
cb(dtype_src, dt_bool) \ | |||
#define MEGDNN_FOREACH_QUANTIZED_DTYPE_WITH_DTYPE_SRC(dtype_src, cb) \ | |||
cb(dtype_src, dt_quint8) \ | |||
@@ -265,6 +270,7 @@ void typecvt_kern_n2n(const TensorND& dest, const TensorND& src, | |||
cb(dt_float32) \ | |||
cb(dt_float16) \ | |||
cb(dt_bfloat16) \ | |||
cb(dt_bool) \ | |||
#define MEGDNN_FOREACH_QUANTIZED_CTYPE(cb) \ | |||
cb(dt_quint8) \ | |||
@@ -138,7 +138,8 @@ void do_cvt_s8_normal(_megdnn_tensor_in src, _megdnn_tensor_out dst) { | |||
dctype* __restrict dptr = dst.ptr<dctype>(); | |||
float scale = src.layout.dtype.param<dtype::QuantizedS8>().scale; | |||
for (size_t i = 0; i < n; ++i) { | |||
dptr[i] = static_cast<dctype>(sptr[i] * scale); | |||
auto val = sptr[i] * scale; | |||
dptr[i] = static_cast<dctype>(val); | |||
} | |||
} | |||
@@ -150,7 +151,8 @@ void do_cvt_s32_normal(_megdnn_tensor_in src, _megdnn_tensor_out dst) { | |||
dctype* __restrict dptr = dst.ptr<dctype>(); | |||
float scale = src.layout.dtype.param<dtype::QuantizedS32>().scale; | |||
for (size_t i = 0; i < n; ++i) { | |||
dptr[i] = static_cast<dctype>(sptr[i] * scale); | |||
auto val = sptr[i] * scale; | |||
dptr[i] = static_cast<dctype>(val); | |||
} | |||
} | |||
@@ -163,7 +165,8 @@ void do_cvt_asymm8_normal(_megdnn_tensor_in src, _megdnn_tensor_out dst) { | |||
float scale = src.layout.dtype.param<dtype::Quantized8Asymm>().scale; | |||
uint8_t zp = src.layout.dtype.param<dtype::Quantized8Asymm>().zero_point; | |||
for (size_t i = 0; i < n; ++i) { | |||
dptr[i] = static_cast<dctype>((sptr[i] - zp) * scale); | |||
auto val = (sptr[i] - zp) * scale; | |||
dptr[i] = static_cast<dctype>(val); | |||
} | |||
} | |||
@@ -310,6 +313,7 @@ void on_dest_ctype(_megdnn_tensor_in src, _megdnn_tensor_out dst) { | |||
break; \ | |||
} | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
cb(::megdnn::dtype::Bool) | |||
case DTypeEnum::QuantizedS8: | |||
MIDOUT_BEGIN(megdnn_fb_typecvt_src_dtype, | |||
midout_iv(DTypeEnum::QuantizedS8)) { | |||
@@ -467,6 +471,7 @@ void run_contiguous(_megdnn_tensor_in src, _megdnn_tensor_out dst) { | |||
} | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
cb(::megdnn::dtype::Bool) | |||
case DTypeEnum::QuantizedS8: | |||
MIDOUT_BEGIN(megdnn_fb_typecvt_dst_dtype, | |||
midout_iv(DTypeEnum::QuantizedS8)) { | |||
@@ -0,0 +1,15 @@ | |||
/** | |||
* \file dnn/src/naive/elemwise/kimpl/AND_dt_bool.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
// generated by gen_elemwise_kern_impls.py | |||
#define KERN_IMPL_MODE(cb) MEGDNN_ELEMWISE_MODE_ENABLE(AND, cb) | |||
#define KERN_IMPL_ARITY 2 | |||
#define KERN_IMPL_CTYPE dt_bool | |||
#include "../kern_impl.inl" |
@@ -0,0 +1,15 @@ | |||
/** | |||
* \file dnn/src/naive/elemwise/kimpl/NOT_dt_bool.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
// generated by gen_elemwise_kern_impls.py | |||
#define KERN_IMPL_MODE(cb) MEGDNN_ELEMWISE_MODE_ENABLE(NOT, cb) | |||
#define KERN_IMPL_ARITY 1 | |||
#define KERN_IMPL_CTYPE dt_bool | |||
#include "../kern_impl.inl" |
@@ -0,0 +1,15 @@ | |||
/** | |||
* \file dnn/src/naive/elemwise/kimpl/OR_dt_bool.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
// generated by gen_elemwise_kern_impls.py | |||
#define KERN_IMPL_MODE(cb) MEGDNN_ELEMWISE_MODE_ENABLE(OR, cb) | |||
#define KERN_IMPL_ARITY 2 | |||
#define KERN_IMPL_CTYPE dt_bool | |||
#include "../kern_impl.inl" |
@@ -0,0 +1,15 @@ | |||
/** | |||
* \file dnn/src/naive/elemwise/kimpl/XOR_dt_bool.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
// generated by gen_elemwise_kern_impls.py | |||
#define KERN_IMPL_MODE(cb) MEGDNN_ELEMWISE_MODE_ENABLE(XOR, cb) | |||
#define KERN_IMPL_ARITY 2 | |||
#define KERN_IMPL_CTYPE dt_bool | |||
#include "../kern_impl.inl" |
@@ -82,6 +82,7 @@ void on_dest_ctype(HandleImpl* handle, const TensorND& dest, | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
MEGDNN_FOREACH_QUANTIZED_DTYPE(cb) | |||
MEGDNN_FOREACH_QUANTIZED_LOWBIT_DTYPE(cb) | |||
cb(::megdnn::dtype::Bool) | |||
#undef cb | |||
default: | |||
megdnn_throw("bad dtype"); | |||
@@ -103,6 +104,7 @@ void TypeCvtImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst) { | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
MEGDNN_FOREACH_QUANTIZED_DTYPE(cb) | |||
MEGDNN_FOREACH_QUANTIZED_LOWBIT_DTYPE(cb) | |||
cb(::megdnn::dtype::Bool) | |||
#undef cb | |||
default: | |||
megdnn_throw("bad dtype"); | |||
@@ -942,6 +942,8 @@ TEST(TEST_ELEMWISE, MODE_TRAIT) { | |||
ASSERT_TRUE(T::from_mode(M::RMULH).commutable); | |||
ASSERT_FALSE(T::from_mode(M::RMULH).allow_float); | |||
ASSERT_TRUE(T::from_mode(M::XOR).allow_bool); | |||
} | |||
} // namespace elemwise | |||
@@ -916,6 +916,7 @@ SymbolVar fill_retain_dtype(SymbolVar var, PyObject *value) { | |||
case DTypeEnum::QuantizedS4: | |||
case DTypeEnum::Byte: | |||
case DTypeEnum::QuantizedS16: | |||
case DTypeEnum::Bool: | |||
break; | |||
#define cb(low_bit, size) \ | |||
case DTypeEnum::low_bit##size: \ | |||
@@ -27,6 +27,7 @@ using ::megdnn::dt_int32; | |||
using ::megdnn::dt_quint8; | |||
using ::megdnn::dt_qint8; | |||
using ::megdnn::dt_qint32; | |||
using ::megdnn::dt_bool; | |||
using ::megdnn::DType; | |||
using ::megdnn::DTypeEnum; | |||
using ::megdnn::DTypeTrait; | |||
@@ -145,9 +145,9 @@ const ElemGeneratorMap& ast_c::elem_opr_generator() { | |||
0.f}) / | |||
6.f), | |||
}; | |||
mgb_assert(map.size() + 8 == opr::Elemwise::Param::MODE_NR_MEMBER); | |||
mgb_assert(map.size() + 12 == opr::Elemwise::Param::MODE_NR_MEMBER); | |||
// unimplemented modes: SHL, SHR, FAST_TANH, FAST_TANH_GRAD, ROUND, RMULH, | |||
// ERFINV, ERFCINV | |||
// ERFINV, ERFCINV, NOT, AND, OR, XOR | |||
return map; | |||
#undef ADD_OPR | |||
} | |||
@@ -193,6 +193,14 @@ Halide::Expr dispatch_elemwise_mode( | |||
return Halide::round(inp(0)); | |||
case Mode::RMULH: | |||
return (inp(0) * inp(1)) >> Halide::popcount(inp(0)); | |||
case Mode::NOT: | |||
return cv(1) - cv(inp(0) != cv(0)); | |||
case Mode::AND: | |||
return cv(inp(0) != cv(0)) * cv(inp(1) != cv(0)); | |||
case Mode::OR: | |||
return cv(cv(inp(0) != cv(0)) + cv(inp(1) != cv(0)) > cv(0)); | |||
case Mode::XOR: | |||
return cv(cv(inp(0) != cv(0)) + cv(inp(1) != cv(0)) == cv(1)); | |||
default: | |||
mgb_throw(InternalError, "unsupported Elemwise mode(%d)", | |||
static_cast<int>(mode)); | |||
@@ -631,6 +631,8 @@ MGB_IMPL_OPR_GRAD(Elemwise) { | |||
RET(EL2(H_SWISH_GRAD, i0, og)); | |||
case Mode::FUSE_ADD_H_SWISH: | |||
RET(EL2(H_SWISH_GRAD, (i0 + i1), og)); | |||
case Mode::NOT: | |||
return nullptr; | |||
// binary | |||
case Mode::ABS_GRAD: | |||
@@ -693,6 +695,10 @@ MGB_IMPL_OPR_GRAD(Elemwise) { | |||
return nullptr; | |||
case Mode::EQ: | |||
RET_INVALID(); | |||
case Mode::OR: | |||
case Mode::XOR: | |||
case Mode::AND: | |||
return nullptr; | |||
// ternary | |||
case Mode::COND_LEQ_MOV: | |||
@@ -408,6 +408,8 @@ cg::OperatorNodeBase::NodeProp* Loop::do_make_node_prop() const { | |||
break; | |||
case DTypeEnum::UintB4: | |||
break; | |||
case DTypeEnum::Bool: | |||
break; | |||
#define cb(x) case DTypeEnum::x: break; | |||
MEGDNN_FOREACH_PARAMETERIZED_DTYPE(cb) | |||
@@ -247,6 +247,8 @@ MGB_DEFINE_OPR_CLASS(LoopImpl::DescImplBase::LoopCondManager::GetCondOpr, | |||
break; | |||
case DTypeEnum::UintB4: | |||
break; | |||
case DTypeEnum::Bool: | |||
break; | |||
#define cb(_dt) \ | |||
case DTypeEnum::_dt: \ | |||
break; | |||
@@ -32,6 +32,7 @@ namespace opr { | |||
EL1(exp, EXP) | |||
EL1(log, LOG) | |||
EL1(abs, ABS) | |||
EL1(not_, NOT) | |||
#undef EL1 | |||
@@ -53,6 +54,9 @@ namespace opr { | |||
EL2(min, MIN) | |||
EL2(switch_gt0, SWITCH_GT0) | |||
EL2(eq, EQ) | |||
EL2(and_, AND) | |||
EL2(or_, OR) | |||
EL2(xor_, XOR) | |||
#undef EL2 | |||
@@ -206,6 +206,7 @@ namespace { | |||
static constexpr Mode MODE = Mode::_mode; \ | |||
static constexpr bool ALLOW_INT = _ALLOW_INT; \ | |||
static constexpr bool ALLOW_FLOAT = _ALLOW_FLOAT; \ | |||
static constexpr bool ALLOW_BOOL = _ALLOW_BOOL; \ | |||
static constexpr const char* NAME = #_mode; \ | |||
template<typename ctype> \ | |||
static inline ctype apply( \ | |||
@@ -588,6 +589,14 @@ namespace { | |||
struct enable_for_dtype_impl<dtype::Int32, void> { | |||
static constexpr bool value = false; | |||
}; | |||
template<class Trait> | |||
struct enable_for_dtype_impl<dtype::Bool, Trait> { | |||
static constexpr bool value = Trait::ALLOW_BOOL; | |||
}; | |||
template<> | |||
struct enable_for_dtype_impl<dtype::Bool, void> { | |||
static constexpr bool value = false; | |||
}; | |||
} | |||
//! whether to enable test for specific dtype and Trait | |||
@@ -749,8 +758,60 @@ TYPED_TEST(TestOprBasicArithTernaryElemwise, Float32) { | |||
TEST(TestOprBasicArithElemwise, CheckAllModeTested) { | |||
size_t nr_member = opr::Elemwise::Param::MODE_NR_MEMBER; | |||
ASSERT_EQ(nr_member, tested_mode.size()); | |||
ASSERT_EQ(nr_member, tested_mode.size() + 4); | |||
// Not using TestRunner: NOT, AND, OR, XOR | |||
} | |||
#define TEST_OPR_BASIC_ARITH_UNARY_BOOL(_mode, _op) \ | |||
TEST(TestOprBasicArithElemwise, _mode) { \ | |||
HostTensorGenerator<dtype::Bool> gen; \ | |||
auto host_x = gen({2, 1}); \ | |||
auto ptr = host_x->ptr<dt_bool>(); \ | |||
for (size_t i = 0; i < 2; ++i) { \ | |||
ptr[i] = (i & 1); \ | |||
} \ | |||
auto graph = ComputingGraph::make(); \ | |||
using Mode = opr::Elemwise::Mode; \ | |||
auto x = opr::Host2DeviceCopy::make(*graph, host_x), \ | |||
y = opr::Elemwise::make({x}, Mode::_mode); \ | |||
HostTensorND host_y; \ | |||
auto func = graph->compile({make_callback_copy(y, host_y)}); \ | |||
func->execute(); \ | |||
ASSERT_EQ(TensorShape({2, 1}), host_y.shape()); \ | |||
auto ptry = host_y.ptr<dt_bool>(); \ | |||
for (int i = 0;i < 2;i ++) { \ | |||
ASSERT_EQ(_op ptr[i], ptry[i]); \ | |||
} \ | |||
} \ | |||
TEST_OPR_BASIC_ARITH_UNARY_BOOL(NOT, !) | |||
#define TEST_OPR_BASIC_ARITH_BINARY_BOOL(_mode, _op) \ | |||
TEST(TestOprBasicArithElemwise, _mode) { \ | |||
HostTensorGenerator<dtype::Bool> gen; \ | |||
auto host_x1 = gen({2, 2}), host_x2 = gen({2, 2}); \ | |||
auto ptr1 = host_x1->ptr<dt_bool>(), ptr2 = host_x2->ptr<dt_bool>(); \ | |||
for (size_t i = 0; i < 4; ++i) { \ | |||
ptr1[i] = (i < 2); \ | |||
ptr2[i] = (i & 1); \ | |||
} \ | |||
auto graph = ComputingGraph::make(); \ | |||
using Mode = opr::Elemwise::Mode; \ | |||
auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1), \ | |||
x2 = opr::Host2DeviceCopy::make(*graph, host_x2), \ | |||
y = opr::Elemwise::make({x1, x2}, Mode::_mode); \ | |||
HostTensorND host_y; \ | |||
auto func = graph->compile({make_callback_copy(y, host_y)}); \ | |||
func->execute(); \ | |||
ASSERT_EQ(TensorShape({2, 2}), host_y.shape()); \ | |||
auto ptry = host_y.ptr<dt_bool>(); \ | |||
for (int i = 0;i < 4;i ++) { \ | |||
ASSERT_EQ(ptr1[i] _op ptr2[i], ptry[i]); \ | |||
} \ | |||
} \ | |||
TEST_OPR_BASIC_ARITH_BINARY_BOOL(AND, &&) | |||
TEST_OPR_BASIC_ARITH_BINARY_BOOL(OR, ||) | |||
TEST_OPR_BASIC_ARITH_BINARY_BOOL(XOR, ^) | |||
TEST(TestOprBasicArithElemwise, FuseMulAdd3Shapes) { | |||
using Checker = AutoOprChecker<3, 1>; | |||
@@ -19,6 +19,17 @@ | |||
ctype x = inp[0][idx]; \ | |||
ctype y = inp[1][idx] | |||
#define _ALLOW_BOOL true | |||
#define _ALLOW_FLOAT false | |||
#define _ALLOW_INT false | |||
DEF_TRAIT(AND, x && y) | |||
DEF_TRAIT(OR, x || y) | |||
DEF_TRAIT(XOR, x ^ y) | |||
#undef _ALLOW_INT | |||
#undef _ALLOW_FLOAT | |||
#undef _ALLOW_BOOL | |||
#define _ALLOW_BOOL false | |||
#define _ALLOW_FLOAT true | |||
#define _ALLOW_INT true | |||
DEF_TRAIT(ABS_GRAD, x > 0 ? y : -y) | |||
@@ -60,6 +71,7 @@ DEF_TRAIT(SHR, do_shr(x, y)) | |||
DEF_TRAIT(RMULH, do_round_mulh_saturate(x, y)) | |||
#undef _ALLOW_INT | |||
#undef _ALLOW_FLOAT | |||
#undef _ALLOW_BOOL | |||
#undef _CUR_ARITY | |||
#undef _EXPAND_PARAMS | |||
@@ -20,6 +20,7 @@ | |||
ctype y = inp[1][idx]; \ | |||
ctype z = inp[2][idx] | |||
#define _ALLOW_BOOL false | |||
#define _ALLOW_FLOAT true | |||
#define _ALLOW_INT true | |||
DEF_TRAIT(COND_LEQ_MOV, x <= y ? z : 0) | |||
@@ -46,5 +47,6 @@ DEF_TRAIT(FUSE_MUL_ADD4, i0 * i1 + i2 * i3) | |||
#undef _CUR_ARITY | |||
#undef _EXPAND_PARAMS | |||
#undef _ALLOW_BOOL | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -18,6 +18,15 @@ | |||
#define _EXPAND_PARAMS \ | |||
ctype x = inp[0][idx] | |||
#define _ALLOW_BOOL true | |||
#define _ALLOW_FLOAT false | |||
#define _ALLOW_INT false | |||
DEF_TRAIT(NOT, !x) | |||
#undef _ALLOW_INT | |||
#undef _ALLOW_FLOAT | |||
#undef _ALLOW_BOOL | |||
#define _ALLOW_BOOL false | |||
#define _ALLOW_FLOAT true | |||
@@ -51,6 +60,8 @@ DEF_TRAIT(H_SWISH, do_h_swish(x)) | |||
#undef _ALLOW_FLOAT | |||
#undef _ALLOW_BOOL | |||
#undef _CUR_ARITY | |||
#undef _EXPAND_PARAMS | |||
@@ -21,6 +21,7 @@ enum DTypeEnum : byte { | |||
QuantizedS4, | |||
QuantizedS16, | |||
BFloat16, | |||
Bool, | |||
} | |||
table LinearQuantizationParam { | |||
@@ -141,6 +141,21 @@ namespace mgb { | |||
template class HostTensorGenerator< | |||
dtype::Int32, RandomDistribution::CONSTANT>; | |||
std::shared_ptr<HostTensorND> | |||
HostTensorGenerator<dtype::Bool, RandomDistribution::UNIFORM>:: | |||
operator()(const TensorShape& shape, CompNode cn) { | |||
if (!cn.valid()) | |||
cn = CompNode::load("xpu0"); | |||
auto dtype = dtype::Bool(); | |||
std::shared_ptr<HostTensorND> ret = | |||
std::make_shared<HostTensorND>(cn, shape, dtype); | |||
auto ptr = ret->ptr<dt_bool>(); | |||
for (size_t i = 0, it = shape.total_nr_elems(); i < it; ++i) { | |||
ptr[i] = (i % 2 == 1); | |||
} | |||
return ret; | |||
} | |||
std::shared_ptr<HostTensorND> | |||
HostTensorGenerator<dtype::QuantizedS8, RandomDistribution::UNIFORM>:: | |||
operator()(const TensorShape& shape, CompNode cn) { | |||
if (!cn.valid()) | |||
@@ -202,6 +202,10 @@ struct RandomDistributionDTypeDefault<dtype::Int32> { | |||
static constexpr auto dist = RandomDistribution::UNIFORM; | |||
}; | |||
template<> | |||
struct RandomDistributionDTypeDefault<dtype::Bool> { | |||
static constexpr auto dist = RandomDistribution::UNIFORM; | |||
}; | |||
template<> | |||
struct RandomDistributionDTypeDefault<dtype::QuantizedS8> { | |||
static constexpr auto dist = RandomDistribution::UNIFORM; | |||
}; | |||
@@ -251,6 +255,10 @@ struct UniformRNGDefaultRange<dtype::Uint8> { | |||
static constexpr dt_uint8 LO = 0, HI = 255; | |||
}; | |||
template<> | |||
struct UniformRNGDefaultRange<dtype::Bool> { | |||
static constexpr dt_bool LO = false, HI = true; | |||
}; | |||
template<> | |||
struct UniformRNGDefaultRange<dtype::Int16> { | |||
static constexpr dt_int16 LO = -32767, HI = 32767; | |||
}; | |||
@@ -341,6 +349,20 @@ class HostTensorGenerator<dtype, RandomDistribution::CONSTANT> final: | |||
private: | |||
ctype m_default_val; | |||
}; | |||
template <> | |||
class HostTensorGenerator<dtype::Bool, RandomDistribution::UNIFORM> final | |||
: public HostTensorGeneratorBase { | |||
public: | |||
using ctype = typename DTypeTrait<dtype::Bool>::ctype; | |||
HostTensorGenerator(uint64_t seed = next_rand_seed()) | |||
: HostTensorGeneratorBase{seed} {} | |||
std::shared_ptr<HostTensorND> operator()(const TensorShape& shape, | |||
CompNode cn = {}) override; | |||
using HostTensorGeneratorBase::operator(); | |||
}; | |||
template <> | |||
class HostTensorGenerator<dtype::QuantizedS8, RandomDistribution::UNIFORM> final | |||