|
|
@@ -0,0 +1,50 @@ |
|
|
|
# -*- coding: utf-8 -*- |
|
|
|
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") |
|
|
|
# |
|
|
|
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved. |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, |
|
|
|
# software distributed under the License is distributed on an |
|
|
|
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
import itertools |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
|
|
|
|
from megengine import Parameter, tensor |
|
|
|
from megengine.module import AvgPool2d, MaxPool2d |
|
|
|
|
|
|
|
|
|
|
|
def test_avg_pool2d(): |
|
|
|
def test_func( |
|
|
|
batch_size, |
|
|
|
in_channels, |
|
|
|
out_channels, |
|
|
|
in_height, |
|
|
|
in_width, |
|
|
|
kernel_size, |
|
|
|
stride, |
|
|
|
padding, |
|
|
|
): |
|
|
|
pool = AvgPool2d(kernel_size, stride=stride, padding=padding, mode="average") |
|
|
|
inp = np.random.normal( |
|
|
|
size=(batch_size, in_channels, in_height, in_width) |
|
|
|
).astype(np.float32) |
|
|
|
out_height = (in_height + padding * 2 - kernel_size) // stride + 1 |
|
|
|
out_width = (in_width + padding * 2 - kernel_size) // stride + 1 |
|
|
|
out = pool(tensor(inp)) |
|
|
|
inp = np.pad(inp, ((0, 0), (0, 0), (padding, padding), (padding, padding))) |
|
|
|
expected = np.zeros( |
|
|
|
(batch_size, out_channels, out_height, out_width), dtype=np.float32, |
|
|
|
) |
|
|
|
for n, c, oh, ow in itertools.product( |
|
|
|
*map(range, [batch_size, out_channels, out_height, out_width]) |
|
|
|
): |
|
|
|
ih, iw = oh * stride, ow * stride |
|
|
|
expected[n, c, oh, ow] = np.sum( |
|
|
|
inp[n, c, ih : ih + kernel_size, iw : iw + kernel_size,] |
|
|
|
) / (kernel_size * kernel_size) |
|
|
|
np.testing.assert_almost_equal(out.numpy(), expected, 1e-5) |
|
|
|
|
|
|
|
test_func(10, 4, 4, 5, 5, 2, 2, 1) |
|
|
|
test_func(10, 4, 4, 6, 6, 2, 2, 0) |
|
|
|
test_func(10, 16, 16, 14, 14, 2, 2, 0) |