Browse Source

feat(imperative/python): support pooling mode "average" for avg pool2d module

GitOrigin-RevId: 9fe442129f
release-1.5
Megvii Engine Team 4 years ago
parent
commit
e275dfeca1
2 changed files with 70 additions and 1 deletions
  1. +20
    -1
      imperative/python/megengine/module/pooling.py
  2. +50
    -0
      imperative/python/test/unit/module/test_pool2d.py

+ 20
- 1
imperative/python/megengine/module/pooling.py View File

@@ -103,6 +103,9 @@ class AvgPool2d(_PoolNd):
:param kernel_size: the size of the window.
:param stride: the stride of the window. Default value is kernel_size。
:param padding: implicit zero padding to be added on both sides.
:param mode: whether to count padding values. "average" mode will do counting and
"average_count_exclude_padding" mode won't do counting.
Default: "average_count_exclude_padding"

Examples:

@@ -126,5 +129,21 @@ class AvgPool2d(_PoolNd):

"""

def __init__(
self,
kernel_size: Union[int, Tuple[int, int]],
stride: Union[int, Tuple[int, int]] = None,
padding: Union[int, Tuple[int, int]] = 0,
mode: str = "average_count_exclude_padding",
**kwargs
):
super(AvgPool2d, self).__init__(kernel_size, stride, padding, **kwargs)
self.mode = mode

def forward(self, inp):
return avg_pool2d(inp, self.kernel_size, self.stride, self.padding)
return avg_pool2d(inp, self.kernel_size, self.stride, self.padding, self.mode)

def _module_info_string(self) -> str:
return "kernel_size={kernel_size}, stride={stride}, padding={padding}, mode={mode}".format(
**self.__dict__
)

+ 50
- 0
imperative/python/test/unit/module/test_pool2d.py View File

@@ -0,0 +1,50 @@
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import itertools

import numpy as np

from megengine import Parameter, tensor
from megengine.module import AvgPool2d, MaxPool2d


def test_avg_pool2d():
def test_func(
batch_size,
in_channels,
out_channels,
in_height,
in_width,
kernel_size,
stride,
padding,
):
pool = AvgPool2d(kernel_size, stride=stride, padding=padding, mode="average")
inp = np.random.normal(
size=(batch_size, in_channels, in_height, in_width)
).astype(np.float32)
out_height = (in_height + padding * 2 - kernel_size) // stride + 1
out_width = (in_width + padding * 2 - kernel_size) // stride + 1
out = pool(tensor(inp))
inp = np.pad(inp, ((0, 0), (0, 0), (padding, padding), (padding, padding)))
expected = np.zeros(
(batch_size, out_channels, out_height, out_width), dtype=np.float32,
)
for n, c, oh, ow in itertools.product(
*map(range, [batch_size, out_channels, out_height, out_width])
):
ih, iw = oh * stride, ow * stride
expected[n, c, oh, ow] = np.sum(
inp[n, c, ih : ih + kernel_size, iw : iw + kernel_size,]
) / (kernel_size * kernel_size)
np.testing.assert_almost_equal(out.numpy(), expected, 1e-5)

test_func(10, 4, 4, 5, 5, 2, 2, 1)
test_func(10, 4, 4, 6, 6, 2, 2, 0)
test_func(10, 16, 16, 14, 14, 2, 2, 0)

Loading…
Cancel
Save