Browse Source

feat(mge): do not export F.nn.interpolate

GitOrigin-RevId: 031c6555c0
release-1.1
Megvii Engine Team 4 years ago
parent
commit
e42679b517
2 changed files with 10 additions and 11 deletions
  1. +2
    -3
      imperative/python/megengine/functional/nn.py
  2. +8
    -8
      imperative/python/test/unit/functional/test_functional.py

+ 2
- 3
imperative/python/megengine/functional/nn.py View File

@@ -36,7 +36,6 @@ __all__ = [
"dot",
"dropout",
"indexing_one_hot",
"interpolate",
"leaky_relu",
"linear",
"local_conv2d",
@@ -1112,9 +1111,9 @@ def interpolate(
import megengine.functional as F

x = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))
out = F.interpolate(x, [4, 4], align_corners=False)
out = F.nn.interpolate(x, [4, 4], align_corners=False)
print(out.numpy())
out2 = F.interpolate(x, scale_factor=2.)
out2 = F.nn.interpolate(x, scale_factor=2.)
np.testing.assert_allclose(out.numpy(), out2.numpy())

Outputs:


+ 8
- 8
imperative/python/test/unit/functional/test_functional.py View File

@@ -101,8 +101,8 @@ def test_interpolate():
def linear_interpolate():
inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

out = F.interpolate(inp, scale_factor=2.0, mode="LINEAR")
out2 = F.interpolate(inp, 4, mode="LINEAR")
out = F.nn.interpolate(inp, scale_factor=2.0, mode="LINEAR")
out2 = F.nn.interpolate(inp, 4, mode="LINEAR")

np.testing.assert_allclose(
out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)
@@ -114,16 +114,16 @@ def test_interpolate():
def many_batch_interpolate():
inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2))

out = F.interpolate(inp, [4, 4])
out2 = F.interpolate(inp, scale_factor=2.0)
out = F.nn.interpolate(inp, [4, 4])
out2 = F.nn.interpolate(inp, scale_factor=2.0)

np.testing.assert_allclose(out.numpy(), out2.numpy())

def assign_corner_interpolate():
inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

out = F.interpolate(inp, [4, 4], align_corners=True)
out2 = F.interpolate(inp, scale_factor=2.0, align_corners=True)
out = F.nn.interpolate(inp, [4, 4], align_corners=True)
out2 = F.nn.interpolate(inp, scale_factor=2.0, align_corners=True)

np.testing.assert_allclose(out.numpy(), out2.numpy())

@@ -131,13 +131,13 @@ def test_interpolate():
inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

with pytest.raises(ValueError):
F.interpolate(inp, scale_factor=2.0, mode="LINEAR")
F.nn.interpolate(inp, scale_factor=2.0, mode="LINEAR")

def inappropriate_scale_linear_interpolate():
inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

with pytest.raises(ValueError):
F.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR")
F.nn.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR")

linear_interpolate()
many_batch_interpolate()


Loading…
Cancel
Save