|
@@ -101,8 +101,8 @@ def test_interpolate(): |
|
|
def linear_interpolate(): |
|
|
def linear_interpolate(): |
|
|
inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) |
|
|
inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) |
|
|
|
|
|
|
|
|
out = F.interpolate(inp, scale_factor=2.0, mode="LINEAR") |
|
|
|
|
|
out2 = F.interpolate(inp, 4, mode="LINEAR") |
|
|
|
|
|
|
|
|
out = F.nn.interpolate(inp, scale_factor=2.0, mode="LINEAR") |
|
|
|
|
|
out2 = F.nn.interpolate(inp, 4, mode="LINEAR") |
|
|
|
|
|
|
|
|
np.testing.assert_allclose( |
|
|
np.testing.assert_allclose( |
|
|
out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32) |
|
|
out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32) |
|
@@ -114,16 +114,16 @@ def test_interpolate(): |
|
|
def many_batch_interpolate(): |
|
|
def many_batch_interpolate(): |
|
|
inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2)) |
|
|
inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2)) |
|
|
|
|
|
|
|
|
out = F.interpolate(inp, [4, 4]) |
|
|
|
|
|
out2 = F.interpolate(inp, scale_factor=2.0) |
|
|
|
|
|
|
|
|
out = F.nn.interpolate(inp, [4, 4]) |
|
|
|
|
|
out2 = F.nn.interpolate(inp, scale_factor=2.0) |
|
|
|
|
|
|
|
|
np.testing.assert_allclose(out.numpy(), out2.numpy()) |
|
|
np.testing.assert_allclose(out.numpy(), out2.numpy()) |
|
|
|
|
|
|
|
|
def assign_corner_interpolate(): |
|
|
def assign_corner_interpolate(): |
|
|
inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) |
|
|
inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) |
|
|
|
|
|
|
|
|
out = F.interpolate(inp, [4, 4], align_corners=True) |
|
|
|
|
|
out2 = F.interpolate(inp, scale_factor=2.0, align_corners=True) |
|
|
|
|
|
|
|
|
out = F.nn.interpolate(inp, [4, 4], align_corners=True) |
|
|
|
|
|
out2 = F.nn.interpolate(inp, scale_factor=2.0, align_corners=True) |
|
|
|
|
|
|
|
|
np.testing.assert_allclose(out.numpy(), out2.numpy()) |
|
|
np.testing.assert_allclose(out.numpy(), out2.numpy()) |
|
|
|
|
|
|
|
@@ -131,13 +131,13 @@ def test_interpolate(): |
|
|
inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) |
|
|
inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) |
|
|
|
|
|
|
|
|
with pytest.raises(ValueError): |
|
|
with pytest.raises(ValueError): |
|
|
F.interpolate(inp, scale_factor=2.0, mode="LINEAR") |
|
|
|
|
|
|
|
|
F.nn.interpolate(inp, scale_factor=2.0, mode="LINEAR") |
|
|
|
|
|
|
|
|
def inappropriate_scale_linear_interpolate(): |
|
|
def inappropriate_scale_linear_interpolate(): |
|
|
inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) |
|
|
inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) |
|
|
|
|
|
|
|
|
with pytest.raises(ValueError): |
|
|
with pytest.raises(ValueError): |
|
|
F.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR") |
|
|
|
|
|
|
|
|
F.nn.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR") |
|
|
|
|
|
|
|
|
linear_interpolate() |
|
|
linear_interpolate() |
|
|
many_batch_interpolate() |
|
|
many_batch_interpolate() |
|
|