GitOrigin-RevId: a4d42f032c
release-1.5
@@ -765,7 +765,7 @@ private: | |||
std::string m_name; | |||
}; | |||
class ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm final | |||
class ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase | |||
: public AlgoBase { | |||
public: | |||
struct AlgoParam { | |||
@@ -776,89 +776,121 @@ public: | |||
int warp_n; | |||
int warp_k; | |||
}; | |||
AlgoInt4NCHW64IMMAImplicitGemmBase(AlgoParam algo_param) | |||
: m_algo_param(algo_param) {} | |||
AlgoAttribute attribute() const override { | |||
return AlgoAttribute::REPRODUCIBLE; | |||
} | |||
const char* name() const override { return m_name.c_str(); } | |||
std::string param() const override; | |||
bool is_available(const SizeArgs& args) const override; | |||
void exec(const ExecArgs& args) const override; | |||
std::string to_string(AlgoParam algo_param); | |||
protected: | |||
virtual DTypeEnum src_dtype() const = 0; | |||
// return filter_ptr, bias_ptr | |||
virtual std::tuple<void*, void*> prepare_filter_bias( | |||
const ExecArgs& args) const = 0; | |||
// return alpha, beta, gamma, delta, theta | |||
virtual std::tuple<float, float, float, float, float> get_constants( | |||
const ExecArgs& args) const = 0; | |||
virtual void do_exec(const ExecArgs& args, void* filter_ptr, void* bias_ptr, | |||
void* z_ptr, convolution::ConvParam kern_param, | |||
uint32_t nonlinear_mode, float alpha, float beta, | |||
float gamma, float delta, float theta, | |||
cudaStream_t stream) const = 0; | |||
void reorder_filter(const ExecArgs& args, void* reordered_filter) const; | |||
std::string m_name; | |||
AlgoParam m_algo_param; | |||
}; | |||
class ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm final | |||
: public AlgoInt4NCHW64IMMAImplicitGemmBase { | |||
public: | |||
using Base = AlgoInt4NCHW64IMMAImplicitGemmBase; | |||
using AlgoParam = Base::AlgoParam; | |||
AlgoInt4Int4NCHW64IMMAImplicitGemm(AlgoParam algo_param) | |||
: m_algo_param{algo_param} { | |||
: Base{algo_param} { | |||
m_name = ConvBias::algo_name<ConvBias::DirectParam>( | |||
ssprintf("INT4_INT4_NCHW64_IMMA_IMPLICIT_GEMM_%s", | |||
to_string(m_algo_param).c_str()), | |||
ConvBias::DirectParam{}); | |||
} | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { return m_name.c_str(); } | |||
AlgoAttribute attribute() const override { | |||
return AlgoAttribute::REPRODUCIBLE; | |||
} | |||
static std::string to_string(AlgoParam algo_param); | |||
size_t get_preprocess_workspace_in_bytes( | |||
const SizeArgs& args) const override; | |||
SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | |||
const SizeArgs& args) const override; | |||
void exec_preprocess(const ExecArgs& args) const override; | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_GEMM_IMMA_NCHW64_INT4_INT4) | |||
std::string param() const override { | |||
std::string ret; | |||
serialize_write_pod(m_algo_param, ret); | |||
return ret; | |||
} | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_GEMM_IMMA_NCHW64_INT4_INT4) | |||
private: | |||
WorkspaceBundle get_workspace_bundle(dt_byte* raw_ptr, | |||
const SizeArgs& args) const; | |||
DTypeEnum src_dtype() const override { return DTypeEnum::QuantizedS4; } | |||
AlgoParam m_algo_param; | |||
std::string m_name; | |||
std::tuple<void*, void*> prepare_filter_bias( | |||
const ExecArgs& args) const override; | |||
std::tuple<float, float, float, float, float> get_constants( | |||
const ExecArgs& args) const override; | |||
void do_exec(const ExecArgs& args, void* filter_ptr, void* bias_ptr, | |||
void* z_ptr, convolution::ConvParam kern_param, | |||
uint32_t nonlinear_mode, float alpha, float beta, float gamma, | |||
float delta, float theta, cudaStream_t stream) const override; | |||
}; | |||
class ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm final | |||
: public AlgoBase { | |||
: public AlgoInt4NCHW64IMMAImplicitGemmBase { | |||
public: | |||
struct AlgoParam { | |||
int threadblock_m; | |||
int threadblock_n; | |||
int threadblock_k; | |||
int warp_m; | |||
int warp_n; | |||
int warp_k; | |||
}; | |||
using Base = AlgoInt4NCHW64IMMAImplicitGemmBase; | |||
using AlgoParam = Base::AlgoParam; | |||
AlgoUInt4Int4NCHW64IMMAImplicitGemm(AlgoParam algo_param) | |||
: m_algo_param{algo_param} { | |||
: Base{algo_param} { | |||
m_name = ConvBias::algo_name<ConvBias::DirectParam>( | |||
ssprintf("UINT4_INT4_NCHW64_IMMA_IMPLICIT_GEMM_%s", | |||
to_string(m_algo_param).c_str()), | |||
ConvBias::DirectParam{}); | |||
} | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { return m_name.c_str(); } | |||
AlgoAttribute attribute() const override { | |||
return AlgoAttribute::REPRODUCIBLE; | |||
} | |||
static std::string to_string(AlgoParam algo_param); | |||
size_t get_preprocess_workspace_in_bytes( | |||
const SizeArgs& args) const override; | |||
SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | |||
const SizeArgs& args) const override; | |||
void exec_preprocess(const ExecArgs& args) const override; | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_GEMM_IMMA_NCHW64_UINT4_INT4) | |||
std::string param() const override { | |||
std::string ret; | |||
serialize_write_pod(m_algo_param, ret); | |||
return ret; | |||
} | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_GEMM_IMMA_NCHW64_UINT4_INT4) | |||
private: | |||
WorkspaceBundle get_workspace_bundle(dt_byte* raw_ptr, | |||
const SizeArgs& args) const; | |||
void reorder_filter_bias(const ExecArgs& args, void* reduce_filter, | |||
void* reordered_filter, | |||
void* reordered_bias) const; | |||
AlgoParam m_algo_param; | |||
std::string m_name; | |||
DTypeEnum src_dtype() const override { return DTypeEnum::Quantized4Asymm; } | |||
std::tuple<void*, void*> prepare_filter_bias( | |||
const ExecArgs& args) const override; | |||
std::tuple<float, float, float, float, float> get_constants( | |||
const ExecArgs& args) const override; | |||
void do_exec(const ExecArgs& args, void* filter_ptr, void* bias_ptr, | |||
void* z_ptr, convolution::ConvParam kern_param, | |||
uint32_t nonlinear_mode, float alpha, float beta, float gamma, | |||
float delta, float theta, cudaStream_t stream) const override; | |||
void update_bias(const ExecArgs& args, void* updated_bias, | |||
void* reduce_filter_ptr, void* reduce_workspace) const; | |||
}; | |||
#endif | |||
@@ -11,117 +11,59 @@ | |||
*/ | |||
#include "./algo.h" | |||
#include "src/common/conv_bias.h" | |||
#include "src/cuda/conv_bias/cutlass_convolution_wrapper.cuh" | |||
#include "src/cuda/convolution_helper/parameter.cuh" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
using namespace convolution; | |||
#if CUDA_VERSION >= 10020 | |||
bool ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::is_available( | |||
size_t | |||
ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::get_workspace_in_bytes( | |||
const SizeArgs& args) const { | |||
if (args.bias_layout->ndim <= 0) | |||
return false; | |||
using Param = param::ConvBias; | |||
using Format = Param::Format; | |||
using Sparse = Param::Sparse; | |||
using Mode = Param::Mode; | |||
using NonlineMode = megdnn::param::ConvBias::NonlineMode; | |||
auto&& param = args.opr->param(); | |||
if (!check_bias_share_in_channel(*(args.bias_layout), param.format)) | |||
return false; | |||
if (param.format != Format::NCHW64 || param.sparse != Sparse::DENSE || | |||
param.mode != Mode::CROSS_CORRELATION) | |||
return false; | |||
if (param.nonlineMode != NonlineMode::IDENTITY && | |||
param.nonlineMode != NonlineMode::RELU && | |||
param.nonlineMode != NonlineMode::H_SWISH) | |||
return false; | |||
if (args.src_layout->dtype.enumv() != DTypeEnum::QuantizedS4 || | |||
args.filter_layout->dtype.enumv() != DTypeEnum::QuantizedS4 || | |||
args.bias_layout->dtype.enumv() != DTypeEnum::QuantizedS32 || | |||
args.dst_layout->dtype.enumv() != DTypeEnum::QuantizedS4) | |||
return false; | |||
if (!is_compute_capability_required(7, 5)) | |||
return false; | |||
return true; | |||
} | |||
WorkspaceBundle | |||
ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::get_workspace_bundle( | |||
dt_byte* raw_ptr, const SizeArgs& args) const { | |||
if (args.preprocessed_filter) { | |||
return WorkspaceBundle{raw_ptr, {}}; | |||
return 0; | |||
} else { | |||
size_t ws_filter = args.filter_layout->span().dist_byte(); | |||
return WorkspaceBundle{raw_ptr, {ws_filter}}; | |||
return args.filter_layout->span().dist_byte(); | |||
} | |||
} | |||
size_t | |||
ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::get_workspace_in_bytes( | |||
const SizeArgs& args) const { | |||
return get_workspace_bundle(nullptr, args).total_size_in_bytes(); | |||
size_t ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm:: | |||
get_preprocess_workspace_in_bytes(const SizeArgs& args) const { | |||
return 0; | |||
} | |||
SmallVector<TensorLayout> ConvBiasForwardImpl:: | |||
AlgoInt4Int4NCHW64IMMAImplicitGemm::deduce_preprocessed_filter_layout( | |||
const SizeArgs& args) const { | |||
return {args.filter_layout->collapse_contiguous()}; | |||
} | |||
void ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::exec( | |||
void ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::exec_preprocess( | |||
const ExecArgs& args) const { | |||
megdnn_assert(args.preprocessed_filter->tensors.size() == 1); | |||
void* filter_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | |||
reorder_filter(args, filter_ptr); | |||
} | |||
std::tuple<void*, void*> | |||
ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::prepare_filter_bias( | |||
const ExecArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
size_t n = args.src_layout->operator[](0), | |||
ci = args.src_layout->operator[](1) * 64, | |||
hi = args.src_layout->operator[](2), | |||
wi = args.src_layout->operator[](3); | |||
size_t co = args.dst_layout->operator[](1) * 64, | |||
ho = args.dst_layout->operator[](2), | |||
wo = args.dst_layout->operator[](3); | |||
UNPACK_CONV_PARAMETER(fm, param); | |||
MARK_USED_VAR | |||
auto&& stream = cuda_stream(args.opr->handle()); | |||
int8_t* filter_ptr = nullptr; | |||
if (args.preprocessed_filter == nullptr) { | |||
filter_ptr = reinterpret_cast<int8_t*>(args.workspace.raw_ptr); | |||
// reformat filter from nchw64 to chwn64 | |||
TensorLayout src{{co, ci / 64, fh, fw, 64}, dtype::QuantizedS4()}; | |||
src.init_contiguous_stride(); | |||
TensorLayout dst = src; | |||
dst.stride[0] = 64; | |||
dst.stride[1] = co * fh * fw * 64; | |||
dst.stride[2] = co * fw * 64; | |||
dst.stride[3] = co * 64; | |||
dst.stride[4] = 1; | |||
TensorND ts_src, ts_dst; | |||
ts_src.raw_ptr = args.filter_tensor->raw_ptr; | |||
ts_src.layout = src; | |||
ts_dst.raw_ptr = args.workspace.raw_ptr; | |||
ts_dst.layout = dst; | |||
auto&& transpose = | |||
args.opr->handle()->create_operator<RelayoutForward>(); | |||
transpose->exec(ts_src, ts_dst); | |||
void* filter_ptr = nullptr; | |||
if (args.preprocessed_filter) { | |||
megdnn_assert(args.preprocessed_filter->tensors.size() == 1); | |||
filter_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | |||
} else { | |||
filter_ptr = reinterpret_cast<int8_t*>( | |||
args.preprocessed_filter->tensors[0].raw_ptr); | |||
filter_ptr = reinterpret_cast<void*>(args.workspace.raw_ptr); | |||
reorder_filter(args, filter_ptr); | |||
} | |||
void* bias_ptr = args.bias_tensor->raw_ptr; | |||
return {filter_ptr, bias_ptr}; | |||
} | |||
ConvParam kern_param; | |||
kern_param.n = n, kern_param.co = co, kern_param.ci = ci, | |||
kern_param.hi = hi, kern_param.wi = wi, kern_param.ho = ho, | |||
kern_param.wo = wo, kern_param.ph = ph, kern_param.pw = pw, | |||
kern_param.sh = sh, kern_param.sw = sw, kern_param.fh = fh, | |||
kern_param.fw = fw; | |||
std::tuple<float, float, float, float, float> | |||
ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::get_constants( | |||
const ExecArgs& args) const { | |||
float src_scale = args.src_layout->dtype.param<dtype::QuantizedS4>().scale, | |||
filter_scale = | |||
args.filter_layout->dtype.param<dtype::QuantizedS4>().scale, | |||
@@ -130,78 +72,37 @@ void ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::exec( | |||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | |||
float alpha = src_scale * filter_scale / dst_scale, | |||
beta = bias_scale / dst_scale; | |||
beta = bias_scale / dst_scale, gamma = 0.f, delta = 0.f, theta = 0.f; | |||
int8_t* z_dev_ptr = nullptr; | |||
float gamma = 0.f; | |||
if (args.z_layout->ndim > 0) { | |||
z_dev_ptr = reinterpret_cast<int8_t*>(args.z_tensor->raw_ptr); | |||
float z_scale = args.z_layout->dtype.param<dtype::QuantizedS4>().scale; | |||
gamma = z_scale / dst_scale; | |||
} | |||
uint32_t nonlinear_mode = static_cast<uint32_t>(param.nonlineMode); | |||
cutlass_wrapper::do_conv_bias_int4_int4_implicit_gemm_imma_ncdiv64hw64< | |||
true>( | |||
reinterpret_cast<int8_t*>(args.src_tensor->raw_ptr), filter_ptr, | |||
args.bias_tensor->compatible_ptr<int32_t>(), z_dev_ptr, | |||
reinterpret_cast<int8_t*>(args.dst_tensor->raw_ptr), nullptr, | |||
kern_param, nonlinear_mode, alpha, beta, gamma, dst_scale, | |||
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
m_algo_param.threadblock_k}, | |||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, m_algo_param.warp_n, | |||
m_algo_param.warp_k}, | |||
stream); | |||
return {alpha, beta, gamma, delta, theta}; | |||
} | |||
std::string ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::to_string( | |||
AlgoParam algo_param) { | |||
return ssprintf("%uX%uX%u_%uX%uX%u", algo_param.threadblock_m, | |||
algo_param.threadblock_n, algo_param.threadblock_k, | |||
algo_param.warp_m, algo_param.warp_n, algo_param.warp_k); | |||
} | |||
void ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::do_exec( | |||
const ExecArgs& args, void* filter_ptr, void* bias_ptr, void* z_ptr, | |||
ConvParam kern_param, uint32_t nonlinear_mode, float alpha, float beta, | |||
float gamma, float delta, float theta, cudaStream_t stream) const { | |||
float dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | |||
size_t ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm:: | |||
get_preprocess_workspace_in_bytes(const SizeArgs& args) const { | |||
return 0_z; | |||
} | |||
cutlass_wrapper::GemmCoord threadblock_shape{m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
m_algo_param.threadblock_k}; | |||
SmallVector<TensorLayout> ConvBiasForwardImpl:: | |||
AlgoInt4Int4NCHW64IMMAImplicitGemm::deduce_preprocessed_filter_layout( | |||
const SizeArgs& args) const { | |||
return {args.filter_layout->collapse_contiguous()}; | |||
} | |||
cutlass_wrapper::GemmCoord warp_shape{ | |||
m_algo_param.warp_m, m_algo_param.warp_n, m_algo_param.warp_k}; | |||
void ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::exec_preprocess( | |||
const ExecArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
size_t n = args.src_layout->operator[](0), | |||
ci = args.src_layout->operator[](1) * 64, | |||
hi = args.src_layout->operator[](2), | |||
wi = args.src_layout->operator[](3); | |||
size_t co = args.dst_layout->operator[](1) * 64, | |||
ho = args.dst_layout->operator[](2), | |||
wo = args.dst_layout->operator[](3); | |||
UNPACK_CONV_PARAMETER(fm, param); | |||
MARK_USED_VAR | |||
TensorLayout src{{co, ci / 64, fh, fw, 64}, dtype::QuantizedS4()}; | |||
src.init_contiguous_stride(); | |||
TensorLayout dst = src; | |||
dst.stride[0] = 64; | |||
dst.stride[1] = co * fh * fw * 64; | |||
dst.stride[2] = co * fw * 64; | |||
dst.stride[3] = co * 64; | |||
dst.stride[4] = 1; | |||
TensorND ts_src, ts_dst; | |||
ts_src.raw_ptr = args.filter_tensor->raw_ptr; | |||
ts_src.layout = src; | |||
ts_dst.raw_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | |||
ts_dst.layout = dst; | |||
auto&& transpose = args.opr->handle()->create_operator<RelayoutForward>(); | |||
transpose->exec(ts_src, ts_dst); | |||
cutlass_wrapper::do_conv_bias_int4_int4_implicit_gemm_imma_ncdiv64hw64< | |||
true>(reinterpret_cast<int8_t*>(args.src_tensor->raw_ptr), | |||
reinterpret_cast<int8_t*>(filter_ptr), | |||
reinterpret_cast<int32_t*>(bias_ptr), | |||
reinterpret_cast<int8_t*>(z_ptr), | |||
reinterpret_cast<int8_t*>(args.dst_tensor->raw_ptr), nullptr, | |||
kern_param, nonlinear_mode, alpha, beta, gamma, dst_scale, | |||
threadblock_shape, warp_shape, stream); | |||
} | |||
#endif | |||
@@ -0,0 +1,149 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/implicit_gemm_int4_nchw64_imma_base.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "./algo.h" | |||
#include "src/common/conv_bias.h" | |||
#include "src/cuda/conv_bias/cutlass_convolution_wrapper.cuh" | |||
#include "src/cuda/conv_bias/reduce_filter.cuh" | |||
#include "src/cuda/convolution_helper/parameter.cuh" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
using namespace convolution; | |||
#if CUDA_VERSION >= 10020 | |||
std::string ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::param() | |||
const { | |||
std::string ret; | |||
serialize_write_pod(m_algo_param, ret); | |||
return ret; | |||
} | |||
bool ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::is_available( | |||
const SizeArgs& args) const { | |||
if (args.bias_layout->ndim <= 0) | |||
return false; | |||
using Param = param::ConvBias; | |||
using Format = Param::Format; | |||
using Sparse = Param::Sparse; | |||
using Mode = Param::Mode; | |||
using NonlineMode = megdnn::param::ConvBias::NonlineMode; | |||
auto&& param = args.opr->param(); | |||
if (!check_bias_share_in_channel(*(args.bias_layout), param.format)) | |||
return false; | |||
if (param.format != Format::NCHW64 || param.sparse != Sparse::DENSE || | |||
param.mode != Mode::CROSS_CORRELATION) | |||
return false; | |||
if (param.nonlineMode != NonlineMode::IDENTITY && | |||
param.nonlineMode != NonlineMode::RELU && | |||
param.nonlineMode != NonlineMode::H_SWISH) | |||
return false; | |||
if (args.src_layout->dtype.enumv() != src_dtype() || | |||
args.filter_layout->dtype.enumv() != DTypeEnum::QuantizedS4 || | |||
args.bias_layout->dtype.enumv() != DTypeEnum::QuantizedS32 || | |||
args.dst_layout->dtype.enumv() != src_dtype()) | |||
return false; | |||
if (!is_compute_capability_required(7, 5)) | |||
return false; | |||
return true; | |||
} | |||
void ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::exec( | |||
const ExecArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
size_t n = args.src_layout->operator[](0), | |||
ci = args.src_layout->operator[](1) * 64, | |||
hi = args.src_layout->operator[](2), | |||
wi = args.src_layout->operator[](3); | |||
size_t co = args.dst_layout->operator[](1) * 64, | |||
ho = args.dst_layout->operator[](2), | |||
wo = args.dst_layout->operator[](3); | |||
UNPACK_CONV_PARAMETER(fm, param); | |||
MARK_USED_VAR | |||
void* filter_ptr = nullptr; | |||
void* bias_ptr = nullptr; | |||
void* z_ptr = nullptr; | |||
std::tie(filter_ptr, bias_ptr) = prepare_filter_bias(args); | |||
if (args.z_layout->ndim > 0) | |||
z_ptr = args.z_tensor->raw_ptr; | |||
float alpha, beta, gamma, delta, theta; | |||
std::tie(alpha, beta, gamma, delta, theta) = get_constants(args); | |||
ConvParam kern_param; | |||
kern_param.n = n, kern_param.co = co, kern_param.ci = ci, | |||
kern_param.hi = hi, kern_param.wi = wi, kern_param.ho = ho, | |||
kern_param.wo = wo, kern_param.ph = ph, kern_param.pw = pw, | |||
kern_param.sh = sh, kern_param.sw = sw, kern_param.fh = fh, | |||
kern_param.fw = fw; | |||
uint32_t nonlinear_mode = static_cast<uint32_t>(param.nonlineMode); | |||
cudaStream_t stream = cuda_stream(args.opr->handle()); | |||
do_exec(args, filter_ptr, bias_ptr, z_ptr, kern_param, nonlinear_mode, | |||
alpha, beta, gamma, delta, theta, stream); | |||
} | |||
std::string ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::to_string( | |||
AlgoParam algo_param) { | |||
return ssprintf("%uX%uX%u_%uX%uX%u", algo_param.threadblock_m, | |||
algo_param.threadblock_n, algo_param.threadblock_k, | |||
algo_param.warp_m, algo_param.warp_n, algo_param.warp_k); | |||
} | |||
void ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::reorder_filter( | |||
const ExecArgs& args, void* reordered_filter) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
size_t n = args.src_layout->operator[](0), | |||
ci = args.src_layout->operator[](1) * 64, | |||
hi = args.src_layout->operator[](2), | |||
wi = args.src_layout->operator[](3); | |||
size_t co = args.dst_layout->operator[](1) * 64, | |||
ho = args.dst_layout->operator[](2), | |||
wo = args.dst_layout->operator[](3); | |||
UNPACK_CONV_PARAMETER(fm, param); | |||
MARK_USED_VAR; | |||
// filter: KCRS64 => CRSK64 | |||
TensorLayout src{{co, ci / 64, fh, fw, 64}, dtype::QuantizedS4()}; | |||
src.init_contiguous_stride(); | |||
TensorLayout dst = src; | |||
dst.stride[0] = 64; | |||
dst.stride[1] = co * fh * fw * 64; | |||
dst.stride[2] = co * fw * 64; | |||
dst.stride[3] = co * 64; | |||
dst.stride[4] = 1; | |||
TensorND ts_src, ts_dst; | |||
ts_src.raw_ptr = args.filter_tensor->raw_ptr; | |||
ts_src.layout = src; | |||
ts_dst.raw_ptr = reordered_filter; | |||
ts_dst.layout = dst; | |||
auto&& transpose = args.opr->handle()->create_operator<RelayoutForward>(); | |||
transpose->exec(ts_src, ts_dst); | |||
} | |||
#endif | |||
// vim: syntax=cpp.doxygen |
@@ -11,10 +11,8 @@ | |||
*/ | |||
#include "./algo.h" | |||
#include "src/common/conv_bias.h" | |||
#include "src/cuda/conv_bias/cutlass_convolution_wrapper.cuh" | |||
#include "src/cuda/conv_bias/reduce_filter.cuh" | |||
#include "src/cuda/convolution_helper/parameter.cuh" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
@@ -22,85 +20,60 @@ using namespace cuda; | |||
using namespace convolution; | |||
#if CUDA_VERSION >= 10020 | |||
bool ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::is_available( | |||
const SizeArgs& args) const { | |||
if (args.bias_layout->ndim <= 0) | |||
return false; | |||
using Param = param::ConvBias; | |||
using Format = Param::Format; | |||
using Sparse = Param::Sparse; | |||
using Mode = Param::Mode; | |||
using NonlineMode = megdnn::param::ConvBias::NonlineMode; | |||
auto&& param = args.opr->param(); | |||
if (!check_bias_share_in_channel(*(args.bias_layout), param.format)) | |||
return false; | |||
if (param.format != Format::NCHW64 || param.sparse != Sparse::DENSE || | |||
param.mode != Mode::CROSS_CORRELATION) | |||
return false; | |||
if (param.nonlineMode != NonlineMode::IDENTITY && | |||
param.nonlineMode != NonlineMode::RELU && | |||
param.nonlineMode != NonlineMode::H_SWISH) | |||
return false; | |||
if (args.src_layout->dtype.enumv() != DTypeEnum::Quantized4Asymm || | |||
args.filter_layout->dtype.enumv() != DTypeEnum::QuantizedS4 || | |||
args.bias_layout->dtype.enumv() != DTypeEnum::QuantizedS32 || | |||
args.dst_layout->dtype.enumv() != DTypeEnum::Quantized4Asymm) | |||
return false; | |||
if (!is_compute_capability_required(7, 5)) | |||
return false; | |||
return true; | |||
} | |||
WorkspaceBundle | |||
ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::get_workspace_bundle( | |||
dt_byte* raw_ptr, const SizeArgs& args) const { | |||
size_t ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm:: | |||
get_workspace_in_bytes(const SizeArgs& args) const { | |||
if (args.preprocessed_filter) { | |||
return WorkspaceBundle{raw_ptr, {}}; | |||
return 0; | |||
} else { | |||
size_t ws_filter = args.filter_layout->span().dist_byte(), | |||
ws_bias = args.bias_layout->span().dist_byte(), | |||
ws_reduce_filter = get_preprocess_workspace_in_bytes(args); | |||
return WorkspaceBundle{raw_ptr, | |||
{ws_filter + ws_bias + ws_reduce_filter}}; | |||
return ws_filter + ws_bias + ws_reduce_filter; | |||
} | |||
} | |||
size_t ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm:: | |||
get_workspace_in_bytes(const SizeArgs& args) const { | |||
return get_workspace_bundle(nullptr, args).total_size_in_bytes(); | |||
get_preprocess_workspace_in_bytes(const SizeArgs& args) const { | |||
size_t co = args.filter_layout->operator[](0), | |||
ci = args.filter_layout->operator[](1) * 64, | |||
fh = args.filter_layout->operator[](2), | |||
fw = args.filter_layout->operator[](3); | |||
size_t ws_size_reduce_filter = co * sizeof(int32_t); | |||
size_t A = co, B = ci * fh * fw / 8, C = 1; | |||
ws_size_reduce_filter += do_dispatch_reduce_workspace_in_bytes(A, B, C); | |||
return ws_size_reduce_filter; | |||
} | |||
void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::exec( | |||
SmallVector<TensorLayout> ConvBiasForwardImpl:: | |||
AlgoUInt4Int4NCHW64IMMAImplicitGemm::deduce_preprocessed_filter_layout( | |||
const SizeArgs& args) const { | |||
return {args.filter_layout->collapse_contiguous(), | |||
args.bias_layout->collapse_contiguous()}; | |||
} | |||
void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::exec_preprocess( | |||
const ExecArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
size_t n = args.src_layout->operator[](0), | |||
ci = args.src_layout->operator[](1) * 64, | |||
hi = args.src_layout->operator[](2), | |||
wi = args.src_layout->operator[](3); | |||
size_t co = args.dst_layout->operator[](1) * 64, | |||
ho = args.dst_layout->operator[](2), | |||
wo = args.dst_layout->operator[](3); | |||
UNPACK_CONV_PARAMETER(fm, param); | |||
MARK_USED_VAR | |||
auto&& stream = cuda_stream(args.opr->handle()); | |||
megdnn_assert(args.preprocessed_filter->tensors.size() == 2); | |||
void* filter_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | |||
void* bias_ptr = args.preprocessed_filter->tensors[1].raw_ptr; | |||
void* reduce_filter_ptr = reinterpret_cast<void*>(args.workspace.raw_ptr); | |||
void* reduce_workspace = reinterpret_cast<void*>( | |||
args.workspace.raw_ptr + args.bias_layout->span().dist_byte()); | |||
reorder_filter(args, filter_ptr); | |||
update_bias(args, bias_ptr, reduce_filter_ptr, reduce_workspace); | |||
} | |||
std::tuple<void*, void*> | |||
ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::prepare_filter_bias( | |||
const ExecArgs& args) const { | |||
void* filter_ptr = nullptr; | |||
void* bias_ptr = nullptr; | |||
if (args.preprocessed_filter) { | |||
megdnn_assert(args.preprocessed_filter->tensors.size() == 2); | |||
filter_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | |||
bias_ptr = args.preprocessed_filter->tensors[1].raw_ptr; | |||
return {filter_ptr, bias_ptr}; | |||
} else { | |||
// reorder filter and bias | |||
filter_ptr = reinterpret_cast<void*>(args.workspace.raw_ptr); | |||
bias_ptr = | |||
reinterpret_cast<void*>(args.workspace.raw_ptr + | |||
@@ -109,16 +82,20 @@ void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::exec( | |||
reinterpret_cast<void*>(args.workspace.raw_ptr + | |||
args.filter_layout->span().dist_byte() + | |||
args.bias_layout->span().dist_byte()); | |||
reorder_filter_bias(args, reduce_filter_ptr, filter_ptr, bias_ptr); | |||
void* reduce_workspace = | |||
reinterpret_cast<void*>(args.workspace.raw_ptr + | |||
args.filter_layout->span().dist_byte() + | |||
args.bias_layout->span().dist_byte() + | |||
args.bias_layout->span().dist_byte()); | |||
reorder_filter(args, filter_ptr); | |||
update_bias(args, bias_ptr, reduce_filter_ptr, reduce_workspace); | |||
} | |||
return {filter_ptr, bias_ptr}; | |||
} | |||
ConvParam kern_param; | |||
kern_param.n = n, kern_param.co = co, kern_param.ci = ci, | |||
kern_param.hi = hi, kern_param.wi = wi, kern_param.ho = ho, | |||
kern_param.wo = wo, kern_param.ph = ph, kern_param.pw = pw, | |||
kern_param.sh = sh, kern_param.sw = sw, kern_param.fh = fh, | |||
kern_param.fw = fw; | |||
std::tuple<float, float, float, float, float> | |||
ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::get_constants( | |||
const ExecArgs& args) const { | |||
float src_scale = | |||
args.src_layout->dtype.param<dtype::Quantized4Asymm>().scale, | |||
filter_scale = | |||
@@ -128,125 +105,67 @@ void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::exec( | |||
dst_scale = | |||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||
uint8_t src_zero = args.src_layout->dtype.param<dtype::Quantized4Asymm>() | |||
.zero_point, | |||
dst_zero = args.dst_layout->dtype.param<dtype::Quantized4Asymm>() | |||
.zero_point; | |||
float alpha = src_scale * filter_scale / dst_scale; | |||
float beta = bias_scale / dst_scale; | |||
float gamma = 0.f; | |||
float delta = 0.f; | |||
float theta = dst_zero; | |||
uint8_t dst_zero = | |||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().zero_point; | |||
float alpha = src_scale * filter_scale / dst_scale, | |||
beta = bias_scale / dst_scale, gamma = 0.f, delta = 0.f, | |||
theta = dst_zero; | |||
uint8_t* z_dev_ptr = nullptr; | |||
if (args.z_layout->ndim > 0) { | |||
z_dev_ptr = reinterpret_cast<uint8_t*>(args.z_tensor->raw_ptr); | |||
float z_scale = | |||
args.z_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||
gamma = z_scale / dst_scale; | |||
uint8_t z_zero = | |||
args.z_layout->dtype.param<dtype::Quantized4Asymm>().zero_point; | |||
gamma = z_scale / dst_scale; | |||
delta = -z_zero * gamma; | |||
} | |||
uint32_t nonlinear_mode = static_cast<uint32_t>(param.nonlineMode); | |||
cutlass_wrapper::do_conv_bias_uint4_int4_implicit_gemm_imma_ncdiv64hw64< | |||
true>( | |||
reinterpret_cast<uint8_t*>(args.src_tensor->raw_ptr), | |||
reinterpret_cast<int8_t*>(filter_ptr), | |||
reinterpret_cast<int32_t*>(bias_ptr), z_dev_ptr, | |||
reinterpret_cast<uint8_t*>(args.dst_tensor->raw_ptr), nullptr, | |||
kern_param, nonlinear_mode, alpha, beta, gamma, delta, theta, | |||
dst_scale, src_zero, | |||
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
m_algo_param.threadblock_k}, | |||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, m_algo_param.warp_n, | |||
m_algo_param.warp_k}, | |||
stream); | |||
return {alpha, beta, gamma, delta, theta}; | |||
} | |||
std::string ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::to_string( | |||
AlgoParam algo_param) { | |||
return ssprintf("%uX%uX%u_%uX%uX%u", algo_param.threadblock_m, | |||
algo_param.threadblock_n, algo_param.threadblock_k, | |||
algo_param.warp_m, algo_param.warp_n, algo_param.warp_k); | |||
void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::do_exec( | |||
const ExecArgs& args, void* filter_ptr, void* bias_ptr, void* z_ptr, | |||
ConvParam kern_param, uint32_t nonlinear_mode, float alpha, float beta, | |||
float gamma, float delta, float theta, cudaStream_t stream) const { | |||
float dst_scale = | |||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||
uint8_t src_zero = | |||
args.src_layout->dtype.param<dtype::Quantized4Asymm>().zero_point; | |||
cutlass_wrapper::GemmCoord threadblock_shape{m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
m_algo_param.threadblock_k}; | |||
cutlass_wrapper::GemmCoord warp_shape{ | |||
m_algo_param.warp_m, m_algo_param.warp_n, m_algo_param.warp_k}; | |||
cutlass_wrapper::do_conv_bias_uint4_int4_implicit_gemm_imma_ncdiv64hw64< | |||
true>(reinterpret_cast<uint8_t*>(args.src_tensor->raw_ptr), | |||
reinterpret_cast<int8_t*>(filter_ptr), | |||
reinterpret_cast<int32_t*>(bias_ptr), | |||
reinterpret_cast<uint8_t*>(z_ptr), | |||
reinterpret_cast<uint8_t*>(args.dst_tensor->raw_ptr), nullptr, | |||
kern_param, nonlinear_mode, alpha, beta, gamma, delta, theta, | |||
dst_scale, src_zero, threadblock_shape, warp_shape, stream); | |||
} | |||
size_t ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm:: | |||
get_preprocess_workspace_in_bytes(const SizeArgs& args) const { | |||
void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::update_bias( | |||
const ExecArgs& args, void* updated_bias, void* reduce_filter_ptr, | |||
void* reduce_workspace) const { | |||
size_t co = args.filter_layout->operator[](0), | |||
ci = args.filter_layout->operator[](1) * 64, | |||
fh = args.filter_layout->operator[](2), | |||
fw = args.filter_layout->operator[](3); | |||
size_t ws_size_reduce_filter = co * sizeof(int32_t); | |||
size_t A = co, B = ci * fh * fw / 8, C = 1; | |||
ws_size_reduce_filter += do_dispatch_reduce_workspace_in_bytes(A, B, C); | |||
return ws_size_reduce_filter; | |||
} | |||
SmallVector<TensorLayout> ConvBiasForwardImpl:: | |||
AlgoUInt4Int4NCHW64IMMAImplicitGemm::deduce_preprocessed_filter_layout( | |||
const SizeArgs& args) const { | |||
return {args.filter_layout->collapse_contiguous(), | |||
args.bias_layout->collapse_contiguous()}; | |||
} | |||
void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::exec_preprocess( | |||
const ExecArgs& args) const { | |||
megdnn_assert(args.preprocessed_filter->tensors.size() == 2); | |||
reorder_filter_bias(args, args.workspace.raw_ptr, | |||
args.preprocessed_filter->tensors[0].raw_ptr, | |||
args.preprocessed_filter->tensors[1].raw_ptr); | |||
} | |||
void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm:: | |||
reorder_filter_bias(const ExecArgs& args, void* reduce_filter, | |||
void* reordered_filter, | |||
void* reordered_bias) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
size_t n = args.src_layout->operator[](0), | |||
ci = args.src_layout->operator[](1) * 64, | |||
hi = args.src_layout->operator[](2), | |||
wi = args.src_layout->operator[](3); | |||
size_t co = args.dst_layout->operator[](1) * 64, | |||
ho = args.dst_layout->operator[](2), | |||
wo = args.dst_layout->operator[](3); | |||
UNPACK_CONV_PARAMETER(fm, param); | |||
MARK_USED_VAR; | |||
auto&& stream = cuda_stream(args.opr->handle()); | |||
// filter: KCRS64 => CRSK64 | |||
TensorLayout src{{co, ci / 64, fh, fw, 64}, dtype::QuantizedS4()}; | |||
src.init_contiguous_stride(); | |||
TensorLayout dst = src; | |||
dst.stride[0] = 64; | |||
dst.stride[1] = co * fh * fw * 64; | |||
dst.stride[2] = co * fw * 64; | |||
dst.stride[3] = co * 64; | |||
dst.stride[4] = 1; | |||
TensorND ts_src, ts_dst; | |||
ts_src.raw_ptr = args.filter_tensor->raw_ptr; | |||
ts_src.layout = src; | |||
ts_dst.raw_ptr = reordered_filter; | |||
ts_dst.layout = dst; | |||
auto&& transpose = args.opr->handle()->create_operator<RelayoutForward>(); | |||
transpose->exec(ts_src, ts_dst); | |||
// reduce filter and update bias | |||
int32_t* workspace = reinterpret_cast<int32_t*>(reordered_bias) + | |||
args.bias_layout->span().dist_byte(); | |||
int src_zero_point = | |||
args.src_tensor->layout.dtype.param<dtype::Quantized4Asymm>() | |||
.zero_point; | |||
do_dispatch_reduce_filter_and_update_bias_4bit<true>( | |||
reinterpret_cast<uint8_t*>(args.filter_tensor->raw_ptr), | |||
args.bias_tensor->compatible_ptr<int32_t>(), co, ci * fh * fw / 8, | |||
reinterpret_cast<int32_t*>(reordered_bias), workspace, | |||
src_zero_point, stream); | |||
reinterpret_cast<int32_t*>(updated_bias), | |||
reinterpret_cast<int32_t*>(reduce_workspace), src_zero_point, | |||
stream); | |||
} | |||
#endif | |||
@@ -64,6 +64,7 @@ public: | |||
class AlgoInt8CHWN4IMMAImplicitGemmReorderFilter; | |||
class AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth; | |||
class AlgoInt8NCHW32IMMAImplicitGemm; | |||
class AlgoInt4NCHW64IMMAImplicitGemmBase; | |||
class AlgoInt4Int4NCHW64IMMAImplicitGemm; | |||
class AlgoUInt4Int4NCHW64IMMAImplicitGemm; | |||
class AlgoBFloat16; | |||