GitOrigin-RevId: a4d42f032c
release-1.5
@@ -765,7 +765,7 @@ private: | |||||
std::string m_name; | std::string m_name; | ||||
}; | }; | ||||
class ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm final | |||||
class ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase | |||||
: public AlgoBase { | : public AlgoBase { | ||||
public: | public: | ||||
struct AlgoParam { | struct AlgoParam { | ||||
@@ -776,89 +776,121 @@ public: | |||||
int warp_n; | int warp_n; | ||||
int warp_k; | int warp_k; | ||||
}; | }; | ||||
AlgoInt4NCHW64IMMAImplicitGemmBase(AlgoParam algo_param) | |||||
: m_algo_param(algo_param) {} | |||||
AlgoAttribute attribute() const override { | |||||
return AlgoAttribute::REPRODUCIBLE; | |||||
} | |||||
const char* name() const override { return m_name.c_str(); } | |||||
std::string param() const override; | |||||
bool is_available(const SizeArgs& args) const override; | |||||
void exec(const ExecArgs& args) const override; | |||||
std::string to_string(AlgoParam algo_param); | |||||
protected: | |||||
virtual DTypeEnum src_dtype() const = 0; | |||||
// return filter_ptr, bias_ptr | |||||
virtual std::tuple<void*, void*> prepare_filter_bias( | |||||
const ExecArgs& args) const = 0; | |||||
// return alpha, beta, gamma, delta, theta | |||||
virtual std::tuple<float, float, float, float, float> get_constants( | |||||
const ExecArgs& args) const = 0; | |||||
virtual void do_exec(const ExecArgs& args, void* filter_ptr, void* bias_ptr, | |||||
void* z_ptr, convolution::ConvParam kern_param, | |||||
uint32_t nonlinear_mode, float alpha, float beta, | |||||
float gamma, float delta, float theta, | |||||
cudaStream_t stream) const = 0; | |||||
void reorder_filter(const ExecArgs& args, void* reordered_filter) const; | |||||
std::string m_name; | |||||
AlgoParam m_algo_param; | |||||
}; | |||||
class ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm final | |||||
: public AlgoInt4NCHW64IMMAImplicitGemmBase { | |||||
public: | |||||
using Base = AlgoInt4NCHW64IMMAImplicitGemmBase; | |||||
using AlgoParam = Base::AlgoParam; | |||||
AlgoInt4Int4NCHW64IMMAImplicitGemm(AlgoParam algo_param) | AlgoInt4Int4NCHW64IMMAImplicitGemm(AlgoParam algo_param) | ||||
: m_algo_param{algo_param} { | |||||
: Base{algo_param} { | |||||
m_name = ConvBias::algo_name<ConvBias::DirectParam>( | m_name = ConvBias::algo_name<ConvBias::DirectParam>( | ||||
ssprintf("INT4_INT4_NCHW64_IMMA_IMPLICIT_GEMM_%s", | ssprintf("INT4_INT4_NCHW64_IMMA_IMPLICIT_GEMM_%s", | ||||
to_string(m_algo_param).c_str()), | to_string(m_algo_param).c_str()), | ||||
ConvBias::DirectParam{}); | ConvBias::DirectParam{}); | ||||
} | } | ||||
bool is_available(const SizeArgs& args) const override; | |||||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | size_t get_workspace_in_bytes(const SizeArgs& args) const override; | ||||
void exec(const ExecArgs& args) const override; | |||||
const char* name() const override { return m_name.c_str(); } | |||||
AlgoAttribute attribute() const override { | |||||
return AlgoAttribute::REPRODUCIBLE; | |||||
} | |||||
static std::string to_string(AlgoParam algo_param); | |||||
size_t get_preprocess_workspace_in_bytes( | size_t get_preprocess_workspace_in_bytes( | ||||
const SizeArgs& args) const override; | const SizeArgs& args) const override; | ||||
SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | ||||
const SizeArgs& args) const override; | const SizeArgs& args) const override; | ||||
void exec_preprocess(const ExecArgs& args) const override; | void exec_preprocess(const ExecArgs& args) const override; | ||||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_GEMM_IMMA_NCHW64_INT4_INT4) | |||||
std::string param() const override { | |||||
std::string ret; | |||||
serialize_write_pod(m_algo_param, ret); | |||||
return ret; | |||||
} | |||||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_GEMM_IMMA_NCHW64_INT4_INT4) | |||||
private: | private: | ||||
WorkspaceBundle get_workspace_bundle(dt_byte* raw_ptr, | |||||
const SizeArgs& args) const; | |||||
DTypeEnum src_dtype() const override { return DTypeEnum::QuantizedS4; } | |||||
AlgoParam m_algo_param; | |||||
std::string m_name; | |||||
std::tuple<void*, void*> prepare_filter_bias( | |||||
const ExecArgs& args) const override; | |||||
std::tuple<float, float, float, float, float> get_constants( | |||||
const ExecArgs& args) const override; | |||||
void do_exec(const ExecArgs& args, void* filter_ptr, void* bias_ptr, | |||||
void* z_ptr, convolution::ConvParam kern_param, | |||||
uint32_t nonlinear_mode, float alpha, float beta, float gamma, | |||||
float delta, float theta, cudaStream_t stream) const override; | |||||
}; | }; | ||||
class ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm final | class ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm final | ||||
: public AlgoBase { | |||||
: public AlgoInt4NCHW64IMMAImplicitGemmBase { | |||||
public: | public: | ||||
struct AlgoParam { | |||||
int threadblock_m; | |||||
int threadblock_n; | |||||
int threadblock_k; | |||||
int warp_m; | |||||
int warp_n; | |||||
int warp_k; | |||||
}; | |||||
using Base = AlgoInt4NCHW64IMMAImplicitGemmBase; | |||||
using AlgoParam = Base::AlgoParam; | |||||
AlgoUInt4Int4NCHW64IMMAImplicitGemm(AlgoParam algo_param) | AlgoUInt4Int4NCHW64IMMAImplicitGemm(AlgoParam algo_param) | ||||
: m_algo_param{algo_param} { | |||||
: Base{algo_param} { | |||||
m_name = ConvBias::algo_name<ConvBias::DirectParam>( | m_name = ConvBias::algo_name<ConvBias::DirectParam>( | ||||
ssprintf("UINT4_INT4_NCHW64_IMMA_IMPLICIT_GEMM_%s", | ssprintf("UINT4_INT4_NCHW64_IMMA_IMPLICIT_GEMM_%s", | ||||
to_string(m_algo_param).c_str()), | to_string(m_algo_param).c_str()), | ||||
ConvBias::DirectParam{}); | ConvBias::DirectParam{}); | ||||
} | } | ||||
bool is_available(const SizeArgs& args) const override; | |||||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | size_t get_workspace_in_bytes(const SizeArgs& args) const override; | ||||
void exec(const ExecArgs& args) const override; | |||||
const char* name() const override { return m_name.c_str(); } | |||||
AlgoAttribute attribute() const override { | |||||
return AlgoAttribute::REPRODUCIBLE; | |||||
} | |||||
static std::string to_string(AlgoParam algo_param); | |||||
size_t get_preprocess_workspace_in_bytes( | size_t get_preprocess_workspace_in_bytes( | ||||
const SizeArgs& args) const override; | const SizeArgs& args) const override; | ||||
SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | ||||
const SizeArgs& args) const override; | const SizeArgs& args) const override; | ||||
void exec_preprocess(const ExecArgs& args) const override; | void exec_preprocess(const ExecArgs& args) const override; | ||||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_GEMM_IMMA_NCHW64_UINT4_INT4) | |||||
std::string param() const override { | |||||
std::string ret; | |||||
serialize_write_pod(m_algo_param, ret); | |||||
return ret; | |||||
} | |||||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_GEMM_IMMA_NCHW64_UINT4_INT4) | |||||
private: | private: | ||||
WorkspaceBundle get_workspace_bundle(dt_byte* raw_ptr, | |||||
const SizeArgs& args) const; | |||||
void reorder_filter_bias(const ExecArgs& args, void* reduce_filter, | |||||
void* reordered_filter, | |||||
void* reordered_bias) const; | |||||
AlgoParam m_algo_param; | |||||
std::string m_name; | |||||
DTypeEnum src_dtype() const override { return DTypeEnum::Quantized4Asymm; } | |||||
std::tuple<void*, void*> prepare_filter_bias( | |||||
const ExecArgs& args) const override; | |||||
std::tuple<float, float, float, float, float> get_constants( | |||||
const ExecArgs& args) const override; | |||||
void do_exec(const ExecArgs& args, void* filter_ptr, void* bias_ptr, | |||||
void* z_ptr, convolution::ConvParam kern_param, | |||||
uint32_t nonlinear_mode, float alpha, float beta, float gamma, | |||||
float delta, float theta, cudaStream_t stream) const override; | |||||
void update_bias(const ExecArgs& args, void* updated_bias, | |||||
void* reduce_filter_ptr, void* reduce_workspace) const; | |||||
}; | }; | ||||
#endif | #endif | ||||
@@ -11,117 +11,59 @@ | |||||
*/ | */ | ||||
#include "./algo.h" | #include "./algo.h" | ||||
#include "src/common/conv_bias.h" | |||||
#include "src/cuda/conv_bias/cutlass_convolution_wrapper.cuh" | #include "src/cuda/conv_bias/cutlass_convolution_wrapper.cuh" | ||||
#include "src/cuda/convolution_helper/parameter.cuh" | |||||
#include "src/cuda/utils.h" | |||||
using namespace megdnn; | using namespace megdnn; | ||||
using namespace cuda; | using namespace cuda; | ||||
using namespace convolution; | using namespace convolution; | ||||
#if CUDA_VERSION >= 10020 | #if CUDA_VERSION >= 10020 | ||||
bool ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::is_available( | |||||
size_t | |||||
ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::get_workspace_in_bytes( | |||||
const SizeArgs& args) const { | const SizeArgs& args) const { | ||||
if (args.bias_layout->ndim <= 0) | |||||
return false; | |||||
using Param = param::ConvBias; | |||||
using Format = Param::Format; | |||||
using Sparse = Param::Sparse; | |||||
using Mode = Param::Mode; | |||||
using NonlineMode = megdnn::param::ConvBias::NonlineMode; | |||||
auto&& param = args.opr->param(); | |||||
if (!check_bias_share_in_channel(*(args.bias_layout), param.format)) | |||||
return false; | |||||
if (param.format != Format::NCHW64 || param.sparse != Sparse::DENSE || | |||||
param.mode != Mode::CROSS_CORRELATION) | |||||
return false; | |||||
if (param.nonlineMode != NonlineMode::IDENTITY && | |||||
param.nonlineMode != NonlineMode::RELU && | |||||
param.nonlineMode != NonlineMode::H_SWISH) | |||||
return false; | |||||
if (args.src_layout->dtype.enumv() != DTypeEnum::QuantizedS4 || | |||||
args.filter_layout->dtype.enumv() != DTypeEnum::QuantizedS4 || | |||||
args.bias_layout->dtype.enumv() != DTypeEnum::QuantizedS32 || | |||||
args.dst_layout->dtype.enumv() != DTypeEnum::QuantizedS4) | |||||
return false; | |||||
if (!is_compute_capability_required(7, 5)) | |||||
return false; | |||||
return true; | |||||
} | |||||
WorkspaceBundle | |||||
ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::get_workspace_bundle( | |||||
dt_byte* raw_ptr, const SizeArgs& args) const { | |||||
if (args.preprocessed_filter) { | if (args.preprocessed_filter) { | ||||
return WorkspaceBundle{raw_ptr, {}}; | |||||
return 0; | |||||
} else { | } else { | ||||
size_t ws_filter = args.filter_layout->span().dist_byte(); | |||||
return WorkspaceBundle{raw_ptr, {ws_filter}}; | |||||
return args.filter_layout->span().dist_byte(); | |||||
} | } | ||||
} | } | ||||
size_t | |||||
ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::get_workspace_in_bytes( | |||||
const SizeArgs& args) const { | |||||
return get_workspace_bundle(nullptr, args).total_size_in_bytes(); | |||||
size_t ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm:: | |||||
get_preprocess_workspace_in_bytes(const SizeArgs& args) const { | |||||
return 0; | |||||
} | |||||
SmallVector<TensorLayout> ConvBiasForwardImpl:: | |||||
AlgoInt4Int4NCHW64IMMAImplicitGemm::deduce_preprocessed_filter_layout( | |||||
const SizeArgs& args) const { | |||||
return {args.filter_layout->collapse_contiguous()}; | |||||
} | } | ||||
void ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::exec( | |||||
void ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::exec_preprocess( | |||||
const ExecArgs& args) const { | |||||
megdnn_assert(args.preprocessed_filter->tensors.size() == 1); | |||||
void* filter_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | |||||
reorder_filter(args, filter_ptr); | |||||
} | |||||
std::tuple<void*, void*> | |||||
ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::prepare_filter_bias( | |||||
const ExecArgs& args) const { | const ExecArgs& args) const { | ||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
size_t n = args.src_layout->operator[](0), | |||||
ci = args.src_layout->operator[](1) * 64, | |||||
hi = args.src_layout->operator[](2), | |||||
wi = args.src_layout->operator[](3); | |||||
size_t co = args.dst_layout->operator[](1) * 64, | |||||
ho = args.dst_layout->operator[](2), | |||||
wo = args.dst_layout->operator[](3); | |||||
UNPACK_CONV_PARAMETER(fm, param); | |||||
MARK_USED_VAR | |||||
auto&& stream = cuda_stream(args.opr->handle()); | |||||
int8_t* filter_ptr = nullptr; | |||||
if (args.preprocessed_filter == nullptr) { | |||||
filter_ptr = reinterpret_cast<int8_t*>(args.workspace.raw_ptr); | |||||
// reformat filter from nchw64 to chwn64 | |||||
TensorLayout src{{co, ci / 64, fh, fw, 64}, dtype::QuantizedS4()}; | |||||
src.init_contiguous_stride(); | |||||
TensorLayout dst = src; | |||||
dst.stride[0] = 64; | |||||
dst.stride[1] = co * fh * fw * 64; | |||||
dst.stride[2] = co * fw * 64; | |||||
dst.stride[3] = co * 64; | |||||
dst.stride[4] = 1; | |||||
TensorND ts_src, ts_dst; | |||||
ts_src.raw_ptr = args.filter_tensor->raw_ptr; | |||||
ts_src.layout = src; | |||||
ts_dst.raw_ptr = args.workspace.raw_ptr; | |||||
ts_dst.layout = dst; | |||||
auto&& transpose = | |||||
args.opr->handle()->create_operator<RelayoutForward>(); | |||||
transpose->exec(ts_src, ts_dst); | |||||
void* filter_ptr = nullptr; | |||||
if (args.preprocessed_filter) { | |||||
megdnn_assert(args.preprocessed_filter->tensors.size() == 1); | |||||
filter_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | |||||
} else { | } else { | ||||
filter_ptr = reinterpret_cast<int8_t*>( | |||||
args.preprocessed_filter->tensors[0].raw_ptr); | |||||
filter_ptr = reinterpret_cast<void*>(args.workspace.raw_ptr); | |||||
reorder_filter(args, filter_ptr); | |||||
} | } | ||||
void* bias_ptr = args.bias_tensor->raw_ptr; | |||||
return {filter_ptr, bias_ptr}; | |||||
} | |||||
ConvParam kern_param; | |||||
kern_param.n = n, kern_param.co = co, kern_param.ci = ci, | |||||
kern_param.hi = hi, kern_param.wi = wi, kern_param.ho = ho, | |||||
kern_param.wo = wo, kern_param.ph = ph, kern_param.pw = pw, | |||||
kern_param.sh = sh, kern_param.sw = sw, kern_param.fh = fh, | |||||
kern_param.fw = fw; | |||||
std::tuple<float, float, float, float, float> | |||||
ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::get_constants( | |||||
const ExecArgs& args) const { | |||||
float src_scale = args.src_layout->dtype.param<dtype::QuantizedS4>().scale, | float src_scale = args.src_layout->dtype.param<dtype::QuantizedS4>().scale, | ||||
filter_scale = | filter_scale = | ||||
args.filter_layout->dtype.param<dtype::QuantizedS4>().scale, | args.filter_layout->dtype.param<dtype::QuantizedS4>().scale, | ||||
@@ -130,78 +72,37 @@ void ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::exec( | |||||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | ||||
float alpha = src_scale * filter_scale / dst_scale, | float alpha = src_scale * filter_scale / dst_scale, | ||||
beta = bias_scale / dst_scale; | |||||
beta = bias_scale / dst_scale, gamma = 0.f, delta = 0.f, theta = 0.f; | |||||
int8_t* z_dev_ptr = nullptr; | |||||
float gamma = 0.f; | |||||
if (args.z_layout->ndim > 0) { | if (args.z_layout->ndim > 0) { | ||||
z_dev_ptr = reinterpret_cast<int8_t*>(args.z_tensor->raw_ptr); | |||||
float z_scale = args.z_layout->dtype.param<dtype::QuantizedS4>().scale; | float z_scale = args.z_layout->dtype.param<dtype::QuantizedS4>().scale; | ||||
gamma = z_scale / dst_scale; | gamma = z_scale / dst_scale; | ||||
} | } | ||||
uint32_t nonlinear_mode = static_cast<uint32_t>(param.nonlineMode); | |||||
cutlass_wrapper::do_conv_bias_int4_int4_implicit_gemm_imma_ncdiv64hw64< | |||||
true>( | |||||
reinterpret_cast<int8_t*>(args.src_tensor->raw_ptr), filter_ptr, | |||||
args.bias_tensor->compatible_ptr<int32_t>(), z_dev_ptr, | |||||
reinterpret_cast<int8_t*>(args.dst_tensor->raw_ptr), nullptr, | |||||
kern_param, nonlinear_mode, alpha, beta, gamma, dst_scale, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, m_algo_param.warp_n, | |||||
m_algo_param.warp_k}, | |||||
stream); | |||||
return {alpha, beta, gamma, delta, theta}; | |||||
} | } | ||||
std::string ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::to_string( | |||||
AlgoParam algo_param) { | |||||
return ssprintf("%uX%uX%u_%uX%uX%u", algo_param.threadblock_m, | |||||
algo_param.threadblock_n, algo_param.threadblock_k, | |||||
algo_param.warp_m, algo_param.warp_n, algo_param.warp_k); | |||||
} | |||||
void ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::do_exec( | |||||
const ExecArgs& args, void* filter_ptr, void* bias_ptr, void* z_ptr, | |||||
ConvParam kern_param, uint32_t nonlinear_mode, float alpha, float beta, | |||||
float gamma, float delta, float theta, cudaStream_t stream) const { | |||||
float dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | |||||
size_t ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm:: | |||||
get_preprocess_workspace_in_bytes(const SizeArgs& args) const { | |||||
return 0_z; | |||||
} | |||||
cutlass_wrapper::GemmCoord threadblock_shape{m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}; | |||||
SmallVector<TensorLayout> ConvBiasForwardImpl:: | |||||
AlgoInt4Int4NCHW64IMMAImplicitGemm::deduce_preprocessed_filter_layout( | |||||
const SizeArgs& args) const { | |||||
return {args.filter_layout->collapse_contiguous()}; | |||||
} | |||||
cutlass_wrapper::GemmCoord warp_shape{ | |||||
m_algo_param.warp_m, m_algo_param.warp_n, m_algo_param.warp_k}; | |||||
void ConvBiasForwardImpl::AlgoInt4Int4NCHW64IMMAImplicitGemm::exec_preprocess( | |||||
const ExecArgs& args) const { | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
size_t n = args.src_layout->operator[](0), | |||||
ci = args.src_layout->operator[](1) * 64, | |||||
hi = args.src_layout->operator[](2), | |||||
wi = args.src_layout->operator[](3); | |||||
size_t co = args.dst_layout->operator[](1) * 64, | |||||
ho = args.dst_layout->operator[](2), | |||||
wo = args.dst_layout->operator[](3); | |||||
UNPACK_CONV_PARAMETER(fm, param); | |||||
MARK_USED_VAR | |||||
TensorLayout src{{co, ci / 64, fh, fw, 64}, dtype::QuantizedS4()}; | |||||
src.init_contiguous_stride(); | |||||
TensorLayout dst = src; | |||||
dst.stride[0] = 64; | |||||
dst.stride[1] = co * fh * fw * 64; | |||||
dst.stride[2] = co * fw * 64; | |||||
dst.stride[3] = co * 64; | |||||
dst.stride[4] = 1; | |||||
TensorND ts_src, ts_dst; | |||||
ts_src.raw_ptr = args.filter_tensor->raw_ptr; | |||||
ts_src.layout = src; | |||||
ts_dst.raw_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | |||||
ts_dst.layout = dst; | |||||
auto&& transpose = args.opr->handle()->create_operator<RelayoutForward>(); | |||||
transpose->exec(ts_src, ts_dst); | |||||
cutlass_wrapper::do_conv_bias_int4_int4_implicit_gemm_imma_ncdiv64hw64< | |||||
true>(reinterpret_cast<int8_t*>(args.src_tensor->raw_ptr), | |||||
reinterpret_cast<int8_t*>(filter_ptr), | |||||
reinterpret_cast<int32_t*>(bias_ptr), | |||||
reinterpret_cast<int8_t*>(z_ptr), | |||||
reinterpret_cast<int8_t*>(args.dst_tensor->raw_ptr), nullptr, | |||||
kern_param, nonlinear_mode, alpha, beta, gamma, dst_scale, | |||||
threadblock_shape, warp_shape, stream); | |||||
} | } | ||||
#endif | #endif | ||||
@@ -0,0 +1,149 @@ | |||||
/** | |||||
* \file dnn/src/cuda/conv_bias/implicit_gemm_int4_nchw64_imma_base.cpp | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include "./algo.h" | |||||
#include "src/common/conv_bias.h" | |||||
#include "src/cuda/conv_bias/cutlass_convolution_wrapper.cuh" | |||||
#include "src/cuda/conv_bias/reduce_filter.cuh" | |||||
#include "src/cuda/convolution_helper/parameter.cuh" | |||||
#include "src/cuda/utils.h" | |||||
using namespace megdnn; | |||||
using namespace cuda; | |||||
using namespace convolution; | |||||
#if CUDA_VERSION >= 10020 | |||||
std::string ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::param() | |||||
const { | |||||
std::string ret; | |||||
serialize_write_pod(m_algo_param, ret); | |||||
return ret; | |||||
} | |||||
bool ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::is_available( | |||||
const SizeArgs& args) const { | |||||
if (args.bias_layout->ndim <= 0) | |||||
return false; | |||||
using Param = param::ConvBias; | |||||
using Format = Param::Format; | |||||
using Sparse = Param::Sparse; | |||||
using Mode = Param::Mode; | |||||
using NonlineMode = megdnn::param::ConvBias::NonlineMode; | |||||
auto&& param = args.opr->param(); | |||||
if (!check_bias_share_in_channel(*(args.bias_layout), param.format)) | |||||
return false; | |||||
if (param.format != Format::NCHW64 || param.sparse != Sparse::DENSE || | |||||
param.mode != Mode::CROSS_CORRELATION) | |||||
return false; | |||||
if (param.nonlineMode != NonlineMode::IDENTITY && | |||||
param.nonlineMode != NonlineMode::RELU && | |||||
param.nonlineMode != NonlineMode::H_SWISH) | |||||
return false; | |||||
if (args.src_layout->dtype.enumv() != src_dtype() || | |||||
args.filter_layout->dtype.enumv() != DTypeEnum::QuantizedS4 || | |||||
args.bias_layout->dtype.enumv() != DTypeEnum::QuantizedS32 || | |||||
args.dst_layout->dtype.enumv() != src_dtype()) | |||||
return false; | |||||
if (!is_compute_capability_required(7, 5)) | |||||
return false; | |||||
return true; | |||||
} | |||||
void ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::exec( | |||||
const ExecArgs& args) const { | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
size_t n = args.src_layout->operator[](0), | |||||
ci = args.src_layout->operator[](1) * 64, | |||||
hi = args.src_layout->operator[](2), | |||||
wi = args.src_layout->operator[](3); | |||||
size_t co = args.dst_layout->operator[](1) * 64, | |||||
ho = args.dst_layout->operator[](2), | |||||
wo = args.dst_layout->operator[](3); | |||||
UNPACK_CONV_PARAMETER(fm, param); | |||||
MARK_USED_VAR | |||||
void* filter_ptr = nullptr; | |||||
void* bias_ptr = nullptr; | |||||
void* z_ptr = nullptr; | |||||
std::tie(filter_ptr, bias_ptr) = prepare_filter_bias(args); | |||||
if (args.z_layout->ndim > 0) | |||||
z_ptr = args.z_tensor->raw_ptr; | |||||
float alpha, beta, gamma, delta, theta; | |||||
std::tie(alpha, beta, gamma, delta, theta) = get_constants(args); | |||||
ConvParam kern_param; | |||||
kern_param.n = n, kern_param.co = co, kern_param.ci = ci, | |||||
kern_param.hi = hi, kern_param.wi = wi, kern_param.ho = ho, | |||||
kern_param.wo = wo, kern_param.ph = ph, kern_param.pw = pw, | |||||
kern_param.sh = sh, kern_param.sw = sw, kern_param.fh = fh, | |||||
kern_param.fw = fw; | |||||
uint32_t nonlinear_mode = static_cast<uint32_t>(param.nonlineMode); | |||||
cudaStream_t stream = cuda_stream(args.opr->handle()); | |||||
do_exec(args, filter_ptr, bias_ptr, z_ptr, kern_param, nonlinear_mode, | |||||
alpha, beta, gamma, delta, theta, stream); | |||||
} | |||||
std::string ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::to_string( | |||||
AlgoParam algo_param) { | |||||
return ssprintf("%uX%uX%u_%uX%uX%u", algo_param.threadblock_m, | |||||
algo_param.threadblock_n, algo_param.threadblock_k, | |||||
algo_param.warp_m, algo_param.warp_n, algo_param.warp_k); | |||||
} | |||||
void ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::reorder_filter( | |||||
const ExecArgs& args, void* reordered_filter) const { | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
size_t n = args.src_layout->operator[](0), | |||||
ci = args.src_layout->operator[](1) * 64, | |||||
hi = args.src_layout->operator[](2), | |||||
wi = args.src_layout->operator[](3); | |||||
size_t co = args.dst_layout->operator[](1) * 64, | |||||
ho = args.dst_layout->operator[](2), | |||||
wo = args.dst_layout->operator[](3); | |||||
UNPACK_CONV_PARAMETER(fm, param); | |||||
MARK_USED_VAR; | |||||
// filter: KCRS64 => CRSK64 | |||||
TensorLayout src{{co, ci / 64, fh, fw, 64}, dtype::QuantizedS4()}; | |||||
src.init_contiguous_stride(); | |||||
TensorLayout dst = src; | |||||
dst.stride[0] = 64; | |||||
dst.stride[1] = co * fh * fw * 64; | |||||
dst.stride[2] = co * fw * 64; | |||||
dst.stride[3] = co * 64; | |||||
dst.stride[4] = 1; | |||||
TensorND ts_src, ts_dst; | |||||
ts_src.raw_ptr = args.filter_tensor->raw_ptr; | |||||
ts_src.layout = src; | |||||
ts_dst.raw_ptr = reordered_filter; | |||||
ts_dst.layout = dst; | |||||
auto&& transpose = args.opr->handle()->create_operator<RelayoutForward>(); | |||||
transpose->exec(ts_src, ts_dst); | |||||
} | |||||
#endif | |||||
// vim: syntax=cpp.doxygen |
@@ -11,10 +11,8 @@ | |||||
*/ | */ | ||||
#include "./algo.h" | #include "./algo.h" | ||||
#include "src/common/conv_bias.h" | |||||
#include "src/cuda/conv_bias/cutlass_convolution_wrapper.cuh" | #include "src/cuda/conv_bias/cutlass_convolution_wrapper.cuh" | ||||
#include "src/cuda/conv_bias/reduce_filter.cuh" | #include "src/cuda/conv_bias/reduce_filter.cuh" | ||||
#include "src/cuda/convolution_helper/parameter.cuh" | |||||
#include "src/cuda/utils.h" | #include "src/cuda/utils.h" | ||||
using namespace megdnn; | using namespace megdnn; | ||||
@@ -22,85 +20,60 @@ using namespace cuda; | |||||
using namespace convolution; | using namespace convolution; | ||||
#if CUDA_VERSION >= 10020 | #if CUDA_VERSION >= 10020 | ||||
bool ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::is_available( | |||||
const SizeArgs& args) const { | |||||
if (args.bias_layout->ndim <= 0) | |||||
return false; | |||||
using Param = param::ConvBias; | |||||
using Format = Param::Format; | |||||
using Sparse = Param::Sparse; | |||||
using Mode = Param::Mode; | |||||
using NonlineMode = megdnn::param::ConvBias::NonlineMode; | |||||
auto&& param = args.opr->param(); | |||||
if (!check_bias_share_in_channel(*(args.bias_layout), param.format)) | |||||
return false; | |||||
if (param.format != Format::NCHW64 || param.sparse != Sparse::DENSE || | |||||
param.mode != Mode::CROSS_CORRELATION) | |||||
return false; | |||||
if (param.nonlineMode != NonlineMode::IDENTITY && | |||||
param.nonlineMode != NonlineMode::RELU && | |||||
param.nonlineMode != NonlineMode::H_SWISH) | |||||
return false; | |||||
if (args.src_layout->dtype.enumv() != DTypeEnum::Quantized4Asymm || | |||||
args.filter_layout->dtype.enumv() != DTypeEnum::QuantizedS4 || | |||||
args.bias_layout->dtype.enumv() != DTypeEnum::QuantizedS32 || | |||||
args.dst_layout->dtype.enumv() != DTypeEnum::Quantized4Asymm) | |||||
return false; | |||||
if (!is_compute_capability_required(7, 5)) | |||||
return false; | |||||
return true; | |||||
} | |||||
WorkspaceBundle | |||||
ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::get_workspace_bundle( | |||||
dt_byte* raw_ptr, const SizeArgs& args) const { | |||||
size_t ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm:: | |||||
get_workspace_in_bytes(const SizeArgs& args) const { | |||||
if (args.preprocessed_filter) { | if (args.preprocessed_filter) { | ||||
return WorkspaceBundle{raw_ptr, {}}; | |||||
return 0; | |||||
} else { | } else { | ||||
size_t ws_filter = args.filter_layout->span().dist_byte(), | size_t ws_filter = args.filter_layout->span().dist_byte(), | ||||
ws_bias = args.bias_layout->span().dist_byte(), | ws_bias = args.bias_layout->span().dist_byte(), | ||||
ws_reduce_filter = get_preprocess_workspace_in_bytes(args); | ws_reduce_filter = get_preprocess_workspace_in_bytes(args); | ||||
return WorkspaceBundle{raw_ptr, | |||||
{ws_filter + ws_bias + ws_reduce_filter}}; | |||||
return ws_filter + ws_bias + ws_reduce_filter; | |||||
} | } | ||||
} | } | ||||
size_t ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm:: | size_t ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm:: | ||||
get_workspace_in_bytes(const SizeArgs& args) const { | |||||
return get_workspace_bundle(nullptr, args).total_size_in_bytes(); | |||||
get_preprocess_workspace_in_bytes(const SizeArgs& args) const { | |||||
size_t co = args.filter_layout->operator[](0), | |||||
ci = args.filter_layout->operator[](1) * 64, | |||||
fh = args.filter_layout->operator[](2), | |||||
fw = args.filter_layout->operator[](3); | |||||
size_t ws_size_reduce_filter = co * sizeof(int32_t); | |||||
size_t A = co, B = ci * fh * fw / 8, C = 1; | |||||
ws_size_reduce_filter += do_dispatch_reduce_workspace_in_bytes(A, B, C); | |||||
return ws_size_reduce_filter; | |||||
} | } | ||||
void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::exec( | |||||
SmallVector<TensorLayout> ConvBiasForwardImpl:: | |||||
AlgoUInt4Int4NCHW64IMMAImplicitGemm::deduce_preprocessed_filter_layout( | |||||
const SizeArgs& args) const { | |||||
return {args.filter_layout->collapse_contiguous(), | |||||
args.bias_layout->collapse_contiguous()}; | |||||
} | |||||
void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::exec_preprocess( | |||||
const ExecArgs& args) const { | const ExecArgs& args) const { | ||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
size_t n = args.src_layout->operator[](0), | |||||
ci = args.src_layout->operator[](1) * 64, | |||||
hi = args.src_layout->operator[](2), | |||||
wi = args.src_layout->operator[](3); | |||||
size_t co = args.dst_layout->operator[](1) * 64, | |||||
ho = args.dst_layout->operator[](2), | |||||
wo = args.dst_layout->operator[](3); | |||||
UNPACK_CONV_PARAMETER(fm, param); | |||||
MARK_USED_VAR | |||||
auto&& stream = cuda_stream(args.opr->handle()); | |||||
megdnn_assert(args.preprocessed_filter->tensors.size() == 2); | |||||
void* filter_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | |||||
void* bias_ptr = args.preprocessed_filter->tensors[1].raw_ptr; | |||||
void* reduce_filter_ptr = reinterpret_cast<void*>(args.workspace.raw_ptr); | |||||
void* reduce_workspace = reinterpret_cast<void*>( | |||||
args.workspace.raw_ptr + args.bias_layout->span().dist_byte()); | |||||
reorder_filter(args, filter_ptr); | |||||
update_bias(args, bias_ptr, reduce_filter_ptr, reduce_workspace); | |||||
} | |||||
std::tuple<void*, void*> | |||||
ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::prepare_filter_bias( | |||||
const ExecArgs& args) const { | |||||
void* filter_ptr = nullptr; | void* filter_ptr = nullptr; | ||||
void* bias_ptr = nullptr; | void* bias_ptr = nullptr; | ||||
if (args.preprocessed_filter) { | if (args.preprocessed_filter) { | ||||
megdnn_assert(args.preprocessed_filter->tensors.size() == 2); | megdnn_assert(args.preprocessed_filter->tensors.size() == 2); | ||||
filter_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | filter_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | ||||
bias_ptr = args.preprocessed_filter->tensors[1].raw_ptr; | bias_ptr = args.preprocessed_filter->tensors[1].raw_ptr; | ||||
return {filter_ptr, bias_ptr}; | |||||
} else { | } else { | ||||
// reorder filter and bias | |||||
filter_ptr = reinterpret_cast<void*>(args.workspace.raw_ptr); | filter_ptr = reinterpret_cast<void*>(args.workspace.raw_ptr); | ||||
bias_ptr = | bias_ptr = | ||||
reinterpret_cast<void*>(args.workspace.raw_ptr + | reinterpret_cast<void*>(args.workspace.raw_ptr + | ||||
@@ -109,16 +82,20 @@ void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::exec( | |||||
reinterpret_cast<void*>(args.workspace.raw_ptr + | reinterpret_cast<void*>(args.workspace.raw_ptr + | ||||
args.filter_layout->span().dist_byte() + | args.filter_layout->span().dist_byte() + | ||||
args.bias_layout->span().dist_byte()); | args.bias_layout->span().dist_byte()); | ||||
reorder_filter_bias(args, reduce_filter_ptr, filter_ptr, bias_ptr); | |||||
void* reduce_workspace = | |||||
reinterpret_cast<void*>(args.workspace.raw_ptr + | |||||
args.filter_layout->span().dist_byte() + | |||||
args.bias_layout->span().dist_byte() + | |||||
args.bias_layout->span().dist_byte()); | |||||
reorder_filter(args, filter_ptr); | |||||
update_bias(args, bias_ptr, reduce_filter_ptr, reduce_workspace); | |||||
} | } | ||||
return {filter_ptr, bias_ptr}; | |||||
} | |||||
ConvParam kern_param; | |||||
kern_param.n = n, kern_param.co = co, kern_param.ci = ci, | |||||
kern_param.hi = hi, kern_param.wi = wi, kern_param.ho = ho, | |||||
kern_param.wo = wo, kern_param.ph = ph, kern_param.pw = pw, | |||||
kern_param.sh = sh, kern_param.sw = sw, kern_param.fh = fh, | |||||
kern_param.fw = fw; | |||||
std::tuple<float, float, float, float, float> | |||||
ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::get_constants( | |||||
const ExecArgs& args) const { | |||||
float src_scale = | float src_scale = | ||||
args.src_layout->dtype.param<dtype::Quantized4Asymm>().scale, | args.src_layout->dtype.param<dtype::Quantized4Asymm>().scale, | ||||
filter_scale = | filter_scale = | ||||
@@ -128,125 +105,67 @@ void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::exec( | |||||
dst_scale = | dst_scale = | ||||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | ||||
uint8_t src_zero = args.src_layout->dtype.param<dtype::Quantized4Asymm>() | |||||
.zero_point, | |||||
dst_zero = args.dst_layout->dtype.param<dtype::Quantized4Asymm>() | |||||
.zero_point; | |||||
float alpha = src_scale * filter_scale / dst_scale; | |||||
float beta = bias_scale / dst_scale; | |||||
float gamma = 0.f; | |||||
float delta = 0.f; | |||||
float theta = dst_zero; | |||||
uint8_t dst_zero = | |||||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().zero_point; | |||||
float alpha = src_scale * filter_scale / dst_scale, | |||||
beta = bias_scale / dst_scale, gamma = 0.f, delta = 0.f, | |||||
theta = dst_zero; | |||||
uint8_t* z_dev_ptr = nullptr; | |||||
if (args.z_layout->ndim > 0) { | if (args.z_layout->ndim > 0) { | ||||
z_dev_ptr = reinterpret_cast<uint8_t*>(args.z_tensor->raw_ptr); | |||||
float z_scale = | float z_scale = | ||||
args.z_layout->dtype.param<dtype::Quantized4Asymm>().scale; | args.z_layout->dtype.param<dtype::Quantized4Asymm>().scale; | ||||
gamma = z_scale / dst_scale; | |||||
uint8_t z_zero = | uint8_t z_zero = | ||||
args.z_layout->dtype.param<dtype::Quantized4Asymm>().zero_point; | args.z_layout->dtype.param<dtype::Quantized4Asymm>().zero_point; | ||||
gamma = z_scale / dst_scale; | |||||
delta = -z_zero * gamma; | delta = -z_zero * gamma; | ||||
} | } | ||||
uint32_t nonlinear_mode = static_cast<uint32_t>(param.nonlineMode); | |||||
cutlass_wrapper::do_conv_bias_uint4_int4_implicit_gemm_imma_ncdiv64hw64< | |||||
true>( | |||||
reinterpret_cast<uint8_t*>(args.src_tensor->raw_ptr), | |||||
reinterpret_cast<int8_t*>(filter_ptr), | |||||
reinterpret_cast<int32_t*>(bias_ptr), z_dev_ptr, | |||||
reinterpret_cast<uint8_t*>(args.dst_tensor->raw_ptr), nullptr, | |||||
kern_param, nonlinear_mode, alpha, beta, gamma, delta, theta, | |||||
dst_scale, src_zero, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}, | |||||
cutlass_wrapper::GemmCoord{m_algo_param.warp_m, m_algo_param.warp_n, | |||||
m_algo_param.warp_k}, | |||||
stream); | |||||
return {alpha, beta, gamma, delta, theta}; | |||||
} | } | ||||
std::string ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::to_string( | |||||
AlgoParam algo_param) { | |||||
return ssprintf("%uX%uX%u_%uX%uX%u", algo_param.threadblock_m, | |||||
algo_param.threadblock_n, algo_param.threadblock_k, | |||||
algo_param.warp_m, algo_param.warp_n, algo_param.warp_k); | |||||
void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::do_exec( | |||||
const ExecArgs& args, void* filter_ptr, void* bias_ptr, void* z_ptr, | |||||
ConvParam kern_param, uint32_t nonlinear_mode, float alpha, float beta, | |||||
float gamma, float delta, float theta, cudaStream_t stream) const { | |||||
float dst_scale = | |||||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||||
uint8_t src_zero = | |||||
args.src_layout->dtype.param<dtype::Quantized4Asymm>().zero_point; | |||||
cutlass_wrapper::GemmCoord threadblock_shape{m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k}; | |||||
cutlass_wrapper::GemmCoord warp_shape{ | |||||
m_algo_param.warp_m, m_algo_param.warp_n, m_algo_param.warp_k}; | |||||
cutlass_wrapper::do_conv_bias_uint4_int4_implicit_gemm_imma_ncdiv64hw64< | |||||
true>(reinterpret_cast<uint8_t*>(args.src_tensor->raw_ptr), | |||||
reinterpret_cast<int8_t*>(filter_ptr), | |||||
reinterpret_cast<int32_t*>(bias_ptr), | |||||
reinterpret_cast<uint8_t*>(z_ptr), | |||||
reinterpret_cast<uint8_t*>(args.dst_tensor->raw_ptr), nullptr, | |||||
kern_param, nonlinear_mode, alpha, beta, gamma, delta, theta, | |||||
dst_scale, src_zero, threadblock_shape, warp_shape, stream); | |||||
} | } | ||||
size_t ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm:: | |||||
get_preprocess_workspace_in_bytes(const SizeArgs& args) const { | |||||
void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::update_bias( | |||||
const ExecArgs& args, void* updated_bias, void* reduce_filter_ptr, | |||||
void* reduce_workspace) const { | |||||
size_t co = args.filter_layout->operator[](0), | size_t co = args.filter_layout->operator[](0), | ||||
ci = args.filter_layout->operator[](1) * 64, | ci = args.filter_layout->operator[](1) * 64, | ||||
fh = args.filter_layout->operator[](2), | fh = args.filter_layout->operator[](2), | ||||
fw = args.filter_layout->operator[](3); | fw = args.filter_layout->operator[](3); | ||||
size_t ws_size_reduce_filter = co * sizeof(int32_t); | |||||
size_t A = co, B = ci * fh * fw / 8, C = 1; | |||||
ws_size_reduce_filter += do_dispatch_reduce_workspace_in_bytes(A, B, C); | |||||
return ws_size_reduce_filter; | |||||
} | |||||
SmallVector<TensorLayout> ConvBiasForwardImpl:: | |||||
AlgoUInt4Int4NCHW64IMMAImplicitGemm::deduce_preprocessed_filter_layout( | |||||
const SizeArgs& args) const { | |||||
return {args.filter_layout->collapse_contiguous(), | |||||
args.bias_layout->collapse_contiguous()}; | |||||
} | |||||
void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm::exec_preprocess( | |||||
const ExecArgs& args) const { | |||||
megdnn_assert(args.preprocessed_filter->tensors.size() == 2); | |||||
reorder_filter_bias(args, args.workspace.raw_ptr, | |||||
args.preprocessed_filter->tensors[0].raw_ptr, | |||||
args.preprocessed_filter->tensors[1].raw_ptr); | |||||
} | |||||
void ConvBiasForwardImpl::AlgoUInt4Int4NCHW64IMMAImplicitGemm:: | |||||
reorder_filter_bias(const ExecArgs& args, void* reduce_filter, | |||||
void* reordered_filter, | |||||
void* reordered_bias) const { | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
size_t n = args.src_layout->operator[](0), | |||||
ci = args.src_layout->operator[](1) * 64, | |||||
hi = args.src_layout->operator[](2), | |||||
wi = args.src_layout->operator[](3); | |||||
size_t co = args.dst_layout->operator[](1) * 64, | |||||
ho = args.dst_layout->operator[](2), | |||||
wo = args.dst_layout->operator[](3); | |||||
UNPACK_CONV_PARAMETER(fm, param); | |||||
MARK_USED_VAR; | |||||
auto&& stream = cuda_stream(args.opr->handle()); | auto&& stream = cuda_stream(args.opr->handle()); | ||||
// filter: KCRS64 => CRSK64 | |||||
TensorLayout src{{co, ci / 64, fh, fw, 64}, dtype::QuantizedS4()}; | |||||
src.init_contiguous_stride(); | |||||
TensorLayout dst = src; | |||||
dst.stride[0] = 64; | |||||
dst.stride[1] = co * fh * fw * 64; | |||||
dst.stride[2] = co * fw * 64; | |||||
dst.stride[3] = co * 64; | |||||
dst.stride[4] = 1; | |||||
TensorND ts_src, ts_dst; | |||||
ts_src.raw_ptr = args.filter_tensor->raw_ptr; | |||||
ts_src.layout = src; | |||||
ts_dst.raw_ptr = reordered_filter; | |||||
ts_dst.layout = dst; | |||||
auto&& transpose = args.opr->handle()->create_operator<RelayoutForward>(); | |||||
transpose->exec(ts_src, ts_dst); | |||||
// reduce filter and update bias | |||||
int32_t* workspace = reinterpret_cast<int32_t*>(reordered_bias) + | |||||
args.bias_layout->span().dist_byte(); | |||||
int src_zero_point = | int src_zero_point = | ||||
args.src_tensor->layout.dtype.param<dtype::Quantized4Asymm>() | args.src_tensor->layout.dtype.param<dtype::Quantized4Asymm>() | ||||
.zero_point; | .zero_point; | ||||
do_dispatch_reduce_filter_and_update_bias_4bit<true>( | do_dispatch_reduce_filter_and_update_bias_4bit<true>( | ||||
reinterpret_cast<uint8_t*>(args.filter_tensor->raw_ptr), | reinterpret_cast<uint8_t*>(args.filter_tensor->raw_ptr), | ||||
args.bias_tensor->compatible_ptr<int32_t>(), co, ci * fh * fw / 8, | args.bias_tensor->compatible_ptr<int32_t>(), co, ci * fh * fw / 8, | ||||
reinterpret_cast<int32_t*>(reordered_bias), workspace, | |||||
src_zero_point, stream); | |||||
reinterpret_cast<int32_t*>(updated_bias), | |||||
reinterpret_cast<int32_t*>(reduce_workspace), src_zero_point, | |||||
stream); | |||||
} | } | ||||
#endif | #endif | ||||
@@ -64,6 +64,7 @@ public: | |||||
class AlgoInt8CHWN4IMMAImplicitGemmReorderFilter; | class AlgoInt8CHWN4IMMAImplicitGemmReorderFilter; | ||||
class AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth; | class AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth; | ||||
class AlgoInt8NCHW32IMMAImplicitGemm; | class AlgoInt8NCHW32IMMAImplicitGemm; | ||||
class AlgoInt4NCHW64IMMAImplicitGemmBase; | |||||
class AlgoInt4Int4NCHW64IMMAImplicitGemm; | class AlgoInt4Int4NCHW64IMMAImplicitGemm; | ||||
class AlgoUInt4Int4NCHW64IMMAImplicitGemm; | class AlgoUInt4Int4NCHW64IMMAImplicitGemm; | ||||
class AlgoBFloat16; | class AlgoBFloat16; | ||||