Browse Source

feat(dnn/cuda): add heuristic rule for implicit batched gemm large kernel dwconv2d kernels

GitOrigin-RevId: 2d2c213bfd
release-1.8
Megvii Engine Team 王彪 3 years ago
parent
commit
e8a169292f
2 changed files with 25 additions and 1 deletions
  1. +12
    -1
      dnn/src/cuda/conv_bias/opr_impl.cpp
  2. +13
    -0
      dnn/src/cuda/convolution/opr_impl.cpp

+ 12
- 1
dnn/src/cuda/conv_bias/opr_impl.cpp View File

@@ -145,9 +145,20 @@ ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_heuristic(
const bool prefer_dnn_chanwise = slow_cudnn_chanwise_impl ||
args.filter_meta.stride[0] != 1 ||
args.filter_meta.stride[1] != 1 || hw_size < 512;
//! choose for large kernel cases
size_t fh = args.filter_meta.spatial[2], fw = args.filter_meta.spatial[3];
size_t hi = src[2], wi = src[3];
const bool prefer_dnn_lk_implbmm = hi <= 2 * fh && wi <= 2 * fw;
//! avoid bad case in cudnn, check dnn chanwise impl first
if (is_chanwise) {
if (prefer_dnn_chanwise) {
if (prefer_dnn_lk_implbmm) {
if (sm_algo_pack.f16_implicit_bmm[0].is_available_attribute(
args, positive_attr, negative_attr, workspace_limit_in_bytes))
return &sm_algo_pack.f16_implicit_bmm[0];
if (sm_algo_pack.f32_implicit_bmm[0].is_available_attribute(
args, positive_attr, negative_attr, workspace_limit_in_bytes))
return &sm_algo_pack.f32_implicit_bmm[0];
} else if (prefer_dnn_chanwise) {
if (sm_algo_pack.chanwise.is_available_attribute(
args, positive_attr, negative_attr, workspace_limit_in_bytes))
return &sm_algo_pack.chanwise;


+ 13
- 0
dnn/src/cuda/convolution/opr_impl.cpp View File

@@ -115,6 +115,19 @@ ConvolutionBackwardDataImpl::Algorithm* ConvolutionBackwardDataImpl::
const AlgoAttribute& negative_attr) {
AlgoBase::SizeArgs args(this, filter, diff, grad);

//! choose for large kernel cases
size_t fh = args.filter_meta.spatial[2], fw = args.filter_meta.spatial[3];
size_t ho = diff[2], wo = diff[3];
const bool prefer_dnn_lk_implbmm = args.filter_meta.format == Param::Format::NCHW &&
ho <= 2 * fh && wo <= 2 * fw;
if (prefer_dnn_lk_implbmm) {
if (sm_algo_pack.implbmm_nchw_hmma.is_available_attribute(
args, positive_attr, negative_attr, workspace_limit_in_bytes))
return &sm_algo_pack.implbmm_nchw_hmma[0];
if (sm_algo_pack.implbmm_nchw_fma.is_available_attribute(args, positive_attr, negative_attr, workspace_limit_in_bytes))
return &sm_algo_pack.implbmm_nchw_fma[0];
}

if (args.filter_meta.group > 1 &&
sm_algo_pack.chanwise.is_available_attribute(
args, positive_attr, negative_attr, workspace_limit_in_bytes)) {


Loading…
Cancel
Save