|
|
@@ -12,7 +12,8 @@ from typing import Optional, Tuple, Union |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
|
|
|
|
from ..core import Tensor |
|
|
|
from ..core import Tensor, Graph |
|
|
|
from ..random import gaussian, uniform |
|
|
|
|
|
|
|
|
|
|
|
def fill_(tensor: Tensor, val: Union[float, int]) -> None: |
|
|
@@ -48,7 +49,8 @@ def uniform_(tensor: Tensor, a: float = 0.0, b: float = 1.0) -> None: |
|
|
|
:param a: Lower bound of the sampling interval |
|
|
|
:param b: Upper bound of the sampling interval |
|
|
|
""" |
|
|
|
tensor.set_value(np.random.uniform(a, b, tensor.shape).astype(tensor.dtype)) |
|
|
|
with Graph(eager_evaluation=True): |
|
|
|
tensor.set_value((b - a) * uniform(tensor.shape) + a) |
|
|
|
|
|
|
|
|
|
|
|
def normal_(tensor: Tensor, mean: float = 0.0, std: float = 1.0) -> None: |
|
|
@@ -59,7 +61,8 @@ def normal_(tensor: Tensor, mean: float = 0.0, std: float = 1.0) -> None: |
|
|
|
:param mean: The mean of the normal distribution |
|
|
|
:param std: The standard deviation of the normal distribution |
|
|
|
""" |
|
|
|
tensor.set_value(np.random.normal(mean, std, tensor.shape).astype(np.float32)) |
|
|
|
with Graph(eager_evaluation=True): |
|
|
|
tensor.set_value(gaussian(tensor.shape, mean=mean, std=std)) |
|
|
|
|
|
|
|
|
|
|
|
def calculate_gain( |
|
|
|