@@ -554,9 +554,7 @@ void WarpPerspectiveForwardImpl::exec( | |||
cuda_check(cudaMemcpyAsync( | |||
bundle.get(i), workspace_cpu.get(0), workspace_cpu.get_size(0), | |||
cudaMemcpyHostToDevice, stream)); | |||
cuda_check(cudaStreamAddCallback( | |||
stream, callback_free, static_cast<void*>(workspace_cpu_raw), | |||
0)); | |||
free(workspace_cpu_raw); | |||
warp_perspective::forward_proxy_multi_src( | |||
is_nhwc, srcs_gpu, mat.ptr<dt_float32>(), | |||
mat_idx.raw_ptr() ? mat_idx.ptr<int>() : nullptr, | |||
@@ -579,9 +577,7 @@ void WarpPerspectiveForwardImpl::exec( | |||
cuda_check(cudaMemcpyAsync( | |||
bundle.get(0), workspace_cpu.get(0), workspace_cpu.get_size(0), | |||
cudaMemcpyHostToDevice, stream)); | |||
cuda_check(cudaStreamAddCallback( | |||
stream, callback_free, static_cast<void*>(workspace_cpu_raw), | |||
0)); | |||
free(workspace_cpu_raw); | |||
warp_perspective::forward_proxy_multi_src( | |||
is_nhwc, srcs_gpu, mat.ptr<dt_float32>(), | |||
mat_idx.raw_ptr() ? mat_idx.ptr<int>() : nullptr, | |||
@@ -299,7 +299,7 @@ public: | |||
* @param io_name the name of the tensor | |||
* @param phase indicate the tensor is input tensor | |||
*/ | |||
std::vector<std::shared_ptr<Tensor>> get_io_tensors( | |||
std::vector<std::shared_ptr<Tensor>> get_discrete_tensors( | |||
std::string io_name, LiteTensorPhase phase = LiteTensorPhase::LITE_INPUT); | |||
//! get the network input tensor by index | |||
@@ -311,7 +311,7 @@ LITE_API int LITE_get_io_tensor( | |||
* \param[in] phase The tensor phase | |||
* \param[out] tensor The IO tensor get from the network | |||
*/ | |||
LITE_API int LITE_get_io_tensors( | |||
LITE_API int LITE_get_discrete_tensor( | |||
LiteNetwork network, const char* io_name, size_t n_idx, LiteTensorPhase phase, | |||
LiteTensor* tensor); | |||
@@ -278,13 +278,13 @@ int LITE_get_io_tensor( | |||
LITE_CAPI_END(); | |||
} | |||
int LITE_get_io_tensors( | |||
int LITE_get_discrete_tensor( | |||
LiteNetwork network, const char* io_name, size_t n_idx, LiteTensorPhase phase, | |||
LiteTensor* tensor) { | |||
LITE_CAPI_BEGIN(); | |||
LITE_ASSERT(network, "The network pass to LITE api is null"); | |||
auto io_tensors = | |||
static_cast<lite::Network*>(network)->get_io_tensors(io_name, phase); | |||
static_cast<lite::Network*>(network)->get_discrete_tensors(io_name, phase); | |||
LITE_ASSERT( | |||
n_idx < io_tensors.size(), "n_idx should be less than %zu", | |||
io_tensors.size()); | |||
@@ -542,7 +542,7 @@ class _NetworkAPI(_LiteCObjBase): | |||
), | |||
("LITE_extra_configure", [_Cnetwork, LiteExtraConfig]), | |||
( | |||
"LITE_get_io_tensors", | |||
"LITE_get_discrete_tensor", | |||
[_Cnetwork, c_char_p, c_size_t, c_int, POINTER(_Ctensor)], | |||
), | |||
] | |||
@@ -745,7 +745,7 @@ class LiteNetwork(object): | |||
tensor.update() | |||
return tensor | |||
def get_io_tensors(self, name, n_idx, phase=LiteTensorPhase.LITE_INPUT): | |||
def get_discrete_tensor(self, name, n_idx, phase=LiteTensorPhase.LITE_INPUT): | |||
""" | |||
get the n_idx'th tensor in the network input tensors whose | |||
input consists of discrete multiple tensors and tensor name is name | |||
@@ -763,7 +763,7 @@ class LiteNetwork(object): | |||
else: | |||
c_name = c_char_p(name) | |||
tensor = LiteTensor(physic_construct=False) | |||
self._api.LITE_get_io_tensors( | |||
self._api.LITE_get_discrete_tensor( | |||
self._network, c_name, n_idx, phase, byref(tensor._tensor) | |||
) | |||
tensor.update() | |||
@@ -504,28 +504,59 @@ class TestNetwork(TestShuffleNet): | |||
class TestDiscreteInputNet(unittest.TestCase): | |||
source_dir = os.getenv("LITE_TEST_RESOURCE") | |||
data_path = os.path.join(source_dir, "data_b3.npy") | |||
data0_path = os.path.join(source_dir, "data0.npy") | |||
data1_path = os.path.join(source_dir, "data1.npy") | |||
data2_path = os.path.join(source_dir, "data2.npy") | |||
roi_path = os.path.join(source_dir, "roi.npy") | |||
model_path = os.path.join(source_dir, "test_discrete_input.mge") | |||
data = np.load(data_path) | |||
data0 = np.load(data0_path) | |||
data1 = np.load(data1_path) | |||
data2 = np.load(data2_path) | |||
roi = np.load(roi_path) | |||
def do_forward(self, network, times=3): | |||
def check_correct(self, out_data, error=1e-4): | |||
out_data = out_data.flatten() | |||
config = LiteConfig() | |||
net = LiteNetwork(config) | |||
net.load(self.model_path) | |||
input_tensor = net.get_io_tensor("data") | |||
input_tensor.set_data_by_share(self.data) | |||
roi_tensor = net.get_io_tensor("roi") | |||
roi_tensor.set_data_by_share(self.roi) | |||
output_name = net.get_output_name(0) | |||
output_tensor = net.get_io_tensor(output_name) | |||
net.forward() | |||
net.wait() | |||
correct_data = output_tensor.to_numpy().flatten() | |||
assert correct_data.size == out_data.size | |||
for i in range(out_data.size): | |||
assert abs(out_data[i] - correct_data[i]) < error | |||
def do_forward(self, network, times=1): | |||
data_name = network.get_input_name(1) | |||
datas = [] | |||
datas.append(network.get_io_tensors(data_name, 0)) | |||
datas.append(network.get_io_tensors(data_name, 1)) | |||
datas.append(network.get_io_tensors(data_name, 2)) | |||
datas[0].set_data_by_copy(self.data0) | |||
datas[1].set_data_by_copy(self.data1) | |||
datas[2].set_data_by_copy(self.data2) | |||
datas.append(network.get_discrete_tensor(data_name, 0)) | |||
datas.append(network.get_discrete_tensor(data_name, 1)) | |||
datas.append(network.get_discrete_tensor(data_name, 2)) | |||
datas[0].set_data_by_share(self.data0) | |||
datas[1].set_data_by_share(self.data1) | |||
datas[2].set_data_by_share(self.data2) | |||
roi_tensor = network.get_io_tensor("roi") | |||
roi_tensor.set_data_by_share(self.roi) | |||
out_name = network.get_output_name(0) | |||
out_tensor = network.get_io_tensor(out_name) | |||
for i in range(times): | |||
network.forward() | |||
network.wait() | |||
out_data = out_tensor.to_numpy() | |||
self.check_correct(out_data) | |||
class TestDiscreteInput(TestDiscreteInputNet): | |||
def test_discrete_input(self): | |||
@@ -268,57 +268,69 @@ void NetworkImplDft::replace_src_discrete_input_opr_pass() { | |||
gopt::SubGraph graph{dest_with_extra_deps}; | |||
auto rewriter = graph.make_rewriter(); | |||
auto on_opr = [&](mgb::cg::OperatorNodeBase* opr) { | |||
if (opr->same_type<mgb::opr::WarpPerspective>()) { | |||
bool is_h2d = true; | |||
if (opr->input(0)->owner_opr()->same_type<mgb::opr::Host2DeviceCopy>()) | |||
is_h2d = true; | |||
else if (opr->input(0) | |||
->owner_opr() | |||
->same_type<mgb::opr::VolatileSharedDeviceTensor>()) | |||
is_h2d = false; | |||
else | |||
return; | |||
SymbolVarArray srcs; | |||
if (is_h2d) { | |||
auto h2d = opr->input(0)->owner_opr(); | |||
for (auto&& inp : get_io_tensors(m_user_config->discrete_input_name)) { | |||
auto val = TensorHelper::implement(inp) | |||
->cast_final_safe<TensorImplDft>() | |||
.m_host_tensor; | |||
LITE_ASSERT(val); | |||
srcs.push_back(mgb::opr::Host2DeviceCopy::make( | |||
*m_load_result.graph, val, h2d->config())); | |||
auto on_opr = [&](cg::OperatorNodeBase* opr) { | |||
bool replace_output = false; | |||
for (auto inp : opr->input()) { | |||
if ((inp->owner_opr()->same_type<mgb::opr::Host2DeviceCopy>() || | |||
inp->owner_opr()->same_type<mgb::opr::VolatileSharedDeviceTensor>()) && | |||
inp->name() == m_user_config->discrete_input_name) { | |||
bool is_h2d = true; | |||
if (inp->owner_opr()->same_type<mgb::opr::Host2DeviceCopy>()) { | |||
is_h2d = true; | |||
} else { | |||
is_h2d = false; | |||
} | |||
} else { | |||
auto volatiled = opr->input(0)->owner_opr(); | |||
for (auto&& inp : get_io_tensors(m_user_config->discrete_input_name)) { | |||
auto val = TensorHelper::implement(inp) | |||
->cast_final_safe<TensorImplDft>() | |||
.m_dev_tensor; | |||
LITE_ASSERT(val); | |||
srcs.push_back(mgb::opr::VolatileSharedDeviceTensor::make( | |||
*m_load_result.graph, val, volatiled->config())); | |||
SymbolVarArray srcs; | |||
if (is_h2d) { | |||
auto h2d = inp->owner_opr(); | |||
for (auto&& i : | |||
get_discrete_tensors(m_user_config->discrete_input_name)) { | |||
auto val = TensorHelper::implement(i) | |||
->cast_final_safe<TensorImplDft>() | |||
.m_host_tensor; | |||
LITE_ASSERT(val); | |||
srcs.push_back(mgb::opr::Host2DeviceCopy::make( | |||
*m_load_result.graph, val, h2d->config())); | |||
} | |||
} else { | |||
auto volatiled = inp->owner_opr(); | |||
for (auto&& i : | |||
get_discrete_tensors(m_user_config->discrete_input_name)) { | |||
auto val = TensorHelper::implement(i) | |||
->cast_final_safe<TensorImplDft>() | |||
.m_dev_tensor; | |||
LITE_ASSERT(val); | |||
srcs.push_back(mgb::opr::VolatileSharedDeviceTensor::make( | |||
*m_load_result.graph, val, volatiled->config())); | |||
} | |||
} | |||
} | |||
auto& warp = opr->cast_final<mgb::opr::WarpPerspective>(); | |||
SymbolVar new_out; | |||
if (opr->input().size() == 3) { | |||
new_out = mgb::opr::WarpPerspective::make( | |||
srcs, warp.input(1), warp.input(2), warp.param(), | |||
warp.config()); | |||
} else { | |||
LITE_ASSERT(opr->input().size() == 4); | |||
new_out = mgb::opr::WarpPerspective::make( | |||
srcs, warp.input(1), warp.input(2), warp.input(3), warp.param(), | |||
warp.config()); | |||
if (opr->same_type<mgb::opr::WarpPerspective>()) { | |||
auto& warp = opr->cast_final<mgb::opr::WarpPerspective>(); | |||
SymbolVar new_out; | |||
if (opr->input().size() == 3) { | |||
new_out = mgb::opr::WarpPerspective::make( | |||
srcs, warp.input(1), warp.input(2), warp.param(), | |||
warp.config()); | |||
} else { | |||
LITE_ASSERT(opr->input().size() == 4); | |||
new_out = mgb::opr::WarpPerspective::make( | |||
srcs, warp.input(1), warp.input(2), warp.input(3), | |||
warp.param(), warp.config()); | |||
} | |||
rewriter.replace_var( | |||
warp.output(0), new_out.node(), | |||
"replace WarpPerspective to WarpPerspective multi src " | |||
"version."); | |||
replace_output = true; | |||
} else { | |||
auto concat = mgb::opr::Concat::make(srcs, 0); | |||
rewriter.replace_var(inp, concat.node(), "add a concat opr."); | |||
} | |||
} | |||
rewriter.replace_var( | |||
warp.output(0), new_out.node(), | |||
"replace WarpPerspective to WarpPerspective multi src version."); | |||
} else { | |||
} | |||
if (!replace_output) { | |||
rewriter.auto_replace_outputs(opr); | |||
} | |||
}; | |||
@@ -385,6 +397,10 @@ void NetworkImplDft::replace_dev_input_pass() { | |||
inp_var_map[host_val2var.at(host_val.get())] = dev_var; | |||
name2dev_tensor[config_in.name] = dev_val; | |||
} | |||
//! reset lite_tensor in discrete mode | |||
if (config_in.name == m_user_config->discrete_input_name) { | |||
config_in.lite_tensor.reset(); | |||
} | |||
} | |||
auto new_ovar = mgb::cg::replace_vars(m_load_result.output_var_list, inp_var_map); | |||
for (size_t i = 0; i < new_ovar.size(); ++i) { | |||
@@ -611,8 +627,9 @@ void NetworkImplDft::configure_after_loaded() { | |||
void NetworkImplDft::compile_graph() { | |||
replace_dev_input_pass(); | |||
if (!m_user_config->discrete_input_name.empty()) | |||
if (!m_user_config->discrete_input_name.empty()) { | |||
replace_src_discrete_input_opr_pass(); | |||
} | |||
make_output_spec(); | |||
m_execute_func = m_load_result.graph_compile(m_output_spec); | |||
} | |||
@@ -792,6 +809,7 @@ void NetworkImplDft::update_input() { | |||
} | |||
} | |||
//! initialization lite_tensors when input is composed of discrete multiple tensors | |||
void NetworkImplDft::update_input_lite_tensors() { | |||
auto device_type = m_user_config->device_type; | |||
auto device_id = m_compnode_locator.device; | |||
@@ -801,24 +819,22 @@ void NetworkImplDft::update_input_lite_tensors() { | |||
if (in_tensor_iter.first != m_user_config->discrete_input_name) { | |||
continue; | |||
} | |||
bool found = false; | |||
for (auto&& config_in : m_network_io->inputs) { | |||
if (in_tensor_iter.first == config_in.name) { | |||
found = true; | |||
size_t bs = in_tensor_iter.second->shape(0); | |||
auto shape = in_tensor_iter.second->shape(); | |||
shape.shape[0] = 1; | |||
if (config_in.config_layout.ndim) { | |||
bs = config_in.config_layout.shapes[0]; | |||
shape.shape[1] = config_in.config_layout.shapes[1]; | |||
shape.shape[2] = config_in.config_layout.shapes[2]; | |||
shape.shape[3] = config_in.config_layout.shapes[3]; | |||
for (size_t i = 0; i < config_in.config_layout.ndim; ++i) { | |||
shape.shape[i] = config_in.config_layout.shapes[i]; | |||
} | |||
} | |||
HostTensorND tensor( | |||
in_tensor_iter.second->comp_node(), shape, | |||
in_tensor_iter.second->dtype(), | |||
in_tensor_iter.second->format()); | |||
shape.shape[0] = 1; | |||
for (size_t i = 0; i < bs; ++i) { | |||
HostTensorND tensor( | |||
in_tensor_iter.second->comp_node(), shape, | |||
in_tensor_iter.second->dtype(), | |||
in_tensor_iter.second->format()); | |||
if (config_in.is_host) { | |||
config_in.lite_tensors.push_back(std::make_shared<Tensor>( | |||
device_id, stream_id, device_type, true)); | |||
@@ -839,29 +855,6 @@ void NetworkImplDft::update_input_lite_tensors() { | |||
} | |||
} | |||
} | |||
if (!found) { | |||
size_t bs = in_tensor_iter.second->shape(0); | |||
auto shape = in_tensor_iter.second->shape(); | |||
shape.shape[0] = 1; | |||
HostTensorND tensor( | |||
in_tensor_iter.second->comp_node(), shape, | |||
in_tensor_iter.second->dtype(), in_tensor_iter.second->format()); | |||
IOInner io_in; | |||
io_in.name = in_tensor_iter.first; | |||
for (size_t i = 0; i < bs; ++i) { | |||
io_in.lite_tensors.push_back(std::make_shared<Tensor>( | |||
device_id, stream_id, device_type, true)); | |||
TensorHelper::implement(io_in.lite_tensors[i]) | |||
->cast_final_safe<TensorImplDft>() | |||
.m_host_tensor = std::make_shared<HostTensorND>(tensor); | |||
TensorHelper::implement(io_in.lite_tensors[i]) | |||
->cast_final_safe<TensorImplDft>() | |||
.m_record_reset = | |||
m_user_config->options.comp_node_seq_record_level > 0; | |||
io_in.lite_tensors[i]->update_from_implement(); | |||
} | |||
m_network_io->inputs.push_back(io_in); | |||
} | |||
} | |||
} | |||
@@ -997,7 +990,15 @@ std::shared_ptr<Tensor> NetworkImplDft::get_io_tensor( | |||
if (phase == LiteTensorPhase::LITE_INPUT || phase == LiteTensorPhase::LITE_IO) { | |||
for (auto&& config_in : m_network_io->inputs) { | |||
if (io_name == config_in.name) { | |||
return config_in.lite_tensor; | |||
if (config_in.lite_tensor) { | |||
return config_in.lite_tensor; | |||
} else { | |||
LITE_THROW(mgb::ssprintf( | |||
"%s input tensor is in discrete mode, you can use " | |||
"get_discrete_tensors to get this input.", | |||
io_name.c_str())); | |||
return nullptr; | |||
} | |||
} | |||
} | |||
} | |||
@@ -1018,7 +1019,7 @@ std::shared_ptr<Tensor> NetworkImplDft::get_io_tensor( | |||
return nullptr; | |||
} | |||
std::vector<std::shared_ptr<Tensor>> NetworkImplDft::get_io_tensors( | |||
std::vector<std::shared_ptr<Tensor>> NetworkImplDft::get_discrete_tensors( | |||
std::string io_name, LiteTensorPhase phase) { | |||
if (phase == LiteTensorPhase::LITE_INPUT) { | |||
for (auto&& config_in : m_network_io->inputs) { | |||
@@ -1038,7 +1039,7 @@ std::shared_ptr<Tensor> NetworkImplDft::get_input_tensor(size_t index) { | |||
} | |||
std::vector<std::shared_ptr<Tensor>> NetworkImplDft::get_input_tensors(size_t index) { | |||
return get_io_tensors(get_input_name(index)); | |||
return get_discrete_tensors(get_input_name(index)); | |||
} | |||
std::shared_ptr<Tensor> NetworkImplDft::get_output_tensor(size_t index) { | |||
@@ -59,7 +59,7 @@ public: | |||
//! get the network input tensors which input consists of discrete multiple tensors, | |||
//! layout (1, c, h, w) | |||
std::vector<std::shared_ptr<Tensor>> get_io_tensors( | |||
std::vector<std::shared_ptr<Tensor>> get_discrete_tensors( | |||
std::string io_name, | |||
LiteTensorPhase phase = LiteTensorPhase::LITE_INPUT) override; | |||
@@ -127,12 +127,12 @@ std::shared_ptr<Tensor> Network::get_io_tensor( | |||
LITE_ERROR_HANDLER_END | |||
} | |||
std::vector<std::shared_ptr<Tensor>> Network::get_io_tensors( | |||
std::vector<std::shared_ptr<Tensor>> Network::get_discrete_tensors( | |||
std::string name, LiteTensorPhase phase) { | |||
LITE_ERROR_HANDLER_BEGIN | |||
LITE_ASSERT(m_loaded, "get_io_tensor should be used after model loaded."); | |||
LITE_CHECK_NON_NULL_POINTER(m_impl); | |||
return m_impl->get_io_tensors(name, phase); | |||
return m_impl->get_discrete_tensors(name, phase); | |||
LITE_ERROR_HANDLER_END | |||
} | |||
@@ -91,8 +91,10 @@ public: | |||
//! get the network input tensors which input consists of discrete multiple tensors, | |||
//! layout (1, c, h, w) | |||
virtual std::vector<std::shared_ptr<Tensor>> get_io_tensors( | |||
virtual std::vector<std::shared_ptr<Tensor>> get_discrete_tensors( | |||
std::string io_name, LiteTensorPhase phase = LiteTensorPhase::LITE_INPUT) { | |||
LITE_MARK_USED_VAR(io_name); | |||
LITE_MARK_USED_VAR(phase); | |||
return {}; | |||
} | |||
@@ -102,6 +104,7 @@ public: | |||
//! get the network input tensors which input consists of discrete multiple tensors | |||
//! by index | |||
virtual std::vector<std::shared_ptr<Tensor>> get_input_tensors(size_t index) { | |||
LITE_MARK_USED_VAR(index); | |||
return {}; | |||
} | |||
@@ -1393,6 +1393,7 @@ TEST(TestNetWork, Discrete_Input) { | |||
auto data_0 = get_input_data("./data0.npy"); | |||
auto data_1 = get_input_data("./data1.npy"); | |||
auto data_2 = get_input_data("./data2.npy"); | |||
auto roi = get_input_data("./roi.npy"); | |||
std::string model_path = "./test_discrete_input.mge"; | |||
Config config; | |||
@@ -1403,6 +1404,8 @@ TEST(TestNetWork, Discrete_Input) { | |||
std::shared_ptr<Tensor> data_tensor = network0->get_io_tensor("data"); | |||
data_tensor->share_memory_with(*data); | |||
std::shared_ptr<Tensor> roi_tensor = network0->get_io_tensor("roi"); | |||
roi_tensor->share_memory_with(*roi); | |||
network0->forward(); | |||
network0->wait(); | |||
@@ -1417,8 +1420,11 @@ TEST(TestNetWork, Discrete_Input) { | |||
std::shared_ptr<Network> network1 = std::make_shared<Network>(config, ios); | |||
network1->load_model(model_path); | |||
std::shared_ptr<Tensor> roi_tensor1 = network1->get_io_tensor("roi"); | |||
roi_tensor1->copy_from(*roi); | |||
std::vector<std::shared_ptr<Tensor>> data_tensors = | |||
network1->get_io_tensors("data"); | |||
network1->get_discrete_tensors("data"); | |||
data_tensors[0]->share_memory_with(*data_0); | |||
data_tensors[1]->share_memory_with(*data_1); | |||
data_tensors[2]->share_memory_with(*data_2); | |||
@@ -1435,6 +1441,7 @@ TEST(TestNetWork, Discrete_Input_Device) { | |||
auto data_0 = get_input_data("./data0.npy"); | |||
auto data_1 = get_input_data("./data1.npy"); | |||
auto data_2 = get_input_data("./data2.npy"); | |||
auto roi = get_input_data("./roi.npy"); | |||
std::string model_path = "./test_discrete_input.mge"; | |||
Config config; | |||
@@ -1444,7 +1451,9 @@ TEST(TestNetWork, Discrete_Input_Device) { | |||
network0->load_model(model_path); | |||
std::shared_ptr<Tensor> data_tensor = network0->get_io_tensor("data"); | |||
data_tensor->share_memory_with(*data); | |||
data_tensor->copy_from(*data); | |||
std::shared_ptr<Tensor> roi_tensor = network0->get_io_tensor("roi"); | |||
roi_tensor->copy_from(*roi); | |||
network0->forward(); | |||
network0->wait(); | |||
@@ -1459,8 +1468,10 @@ TEST(TestNetWork, Discrete_Input_Device) { | |||
std::shared_ptr<Network> network1 = std::make_shared<Network>(config, ios); | |||
network1->load_model(model_path); | |||
std::shared_ptr<Tensor> roi_tensor1 = network1->get_io_tensor("roi"); | |||
roi_tensor1->copy_from(*roi); | |||
std::vector<std::shared_ptr<Tensor>> data_tensors = | |||
network1->get_io_tensors("data"); | |||
network1->get_discrete_tensors("data"); | |||
auto d0_cuda = Tensor(LiteDeviceType::LITE_CUDA, d_ly); | |||
auto d1_cuda = Tensor(LiteDeviceType::LITE_CUDA, d_ly); | |||
auto d2_cuda = Tensor(LiteDeviceType::LITE_CUDA, d_ly); | |||
@@ -1477,6 +1488,48 @@ TEST(TestNetWork, Discrete_Input_Device) { | |||
compare_lite_tensor<float>(output_tensor0, output_tensor1); | |||
} | |||
TEST(TestNetWork, Discrete_Input_Concat) { | |||
auto data = get_input_data("./data_b3.npy"); | |||
auto data_0 = get_input_data("./data0.npy"); | |||
auto data_1 = get_input_data("./data1.npy"); | |||
auto data_2 = get_input_data("./data2.npy"); | |||
std::string model_path = "./test_discrete_input_concat.mge"; | |||
Config config; | |||
config.device_type = LiteDeviceType::LITE_CUDA; | |||
std::shared_ptr<Network> network0 = std::make_shared<Network>(config); | |||
network0->load_model(model_path); | |||
std::shared_ptr<Tensor> data_tensor = network0->get_io_tensor("data"); | |||
data_tensor->copy_from(*data); | |||
network0->forward(); | |||
network0->wait(); | |||
std::shared_ptr<Tensor> output_tensor0 = network0->get_output_tensor(0); | |||
config.discrete_input_name = "data"; | |||
NetworkIO ios; | |||
bool is_host = true; | |||
Layout d_ly{{3, 3, 224, 224}, 4, LiteDataType::LITE_FLOAT}; | |||
ios.inputs.push_back({"data", is_host, LiteIOType::LITE_IO_VALUE, d_ly}); | |||
std::shared_ptr<Network> network1 = std::make_shared<Network>(config, ios); | |||
network1->load_model(model_path); | |||
std::vector<std::shared_ptr<Tensor>> data_tensors = | |||
network1->get_discrete_tensors("data"); | |||
data_tensors[0]->copy_from(*data_0); | |||
data_tensors[1]->copy_from(*data_1); | |||
data_tensors[2]->copy_from(*data_2); | |||
network1->forward(); | |||
network1->wait(); | |||
std::shared_ptr<Tensor> output_tensor1 = network1->get_output_tensor(0); | |||
compare_lite_tensor<float>(output_tensor0, output_tensor1); | |||
} | |||
#endif | |||
#if MGB_ATLAS || MGB_CAMBRICON | |||
@@ -322,7 +322,7 @@ TEST(TestCapiNetWork, Discrete_Input) { | |||
std::vector<LiteTensor> c_data_tensors(3, nullptr); | |||
for (size_t i = 0; i < 3; i++) { | |||
LITE_CAPI_CHECK(LITE_get_io_tensors( | |||
LITE_CAPI_CHECK(LITE_get_discrete_tensor( | |||
c_network, "data", i, LITE_INPUT, &c_data_tensors[i])); | |||
LITE_CAPI_CHECK(LITE_reset_tensor_memory( | |||
c_data_tensors[i], datas[i]->get_memory_ptr(), data_length_in_byte)); | |||