Browse Source

feat(cuda): add large kernel direct conv to heuristic algo chooser

GitOrigin-RevId: bc927b6df7
tags/v1.9.0
Megvii Engine Team 3 years ago
parent
commit
f7994683bd
2 changed files with 18 additions and 2 deletions
  1. +8
    -1
      dnn/src/cuda/conv_bias/opr_impl.cpp
  2. +10
    -1
      dnn/src/cuda/convolution/opr_impl.cpp

+ 8
- 1
dnn/src/cuda/conv_bias/opr_impl.cpp View File

@@ -148,7 +148,9 @@ ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_heuristic(
//! choose for large kernel cases
size_t fh = args.filter_meta.spatial[0], fw = args.filter_meta.spatial[1];
size_t hi = src[2], wi = src[3];
const bool prefer_dnn_lk_implbmm = hi <= 2 * fh && wi <= 2 * fw;
const bool prefer_dnn_lk_implbmm =
hi <= 2 * fh && wi <= 2 * fw && wi < 32 && hi <= 32;
const bool prefer_direct_lk = fh > 10 && fw > 10;
//! avoid bad case in cudnn, check dnn chanwise impl first
if (is_chanwise) {
if (prefer_dnn_lk_implbmm) {
@@ -160,6 +162,11 @@ ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_heuristic(
if (sm_algo_pack.f32_implicit_bmm[0].is_available_attribute(
args, positive_attr, negative_attr, workspace_limit_in_bytes))
return &sm_algo_pack.f32_implicit_bmm[0];
} else if (
prefer_direct_lk &&
sm_algo_pack.depthwise_large_filter.is_available_attribute(
args, positive_attr, negative_attr, workspace_limit_in_bytes)) {
return &sm_algo_pack.depthwise_large_filter;
} else if (prefer_dnn_chanwise) {
if (sm_algo_pack.chanwise.is_available_attribute(
args, positive_attr, negative_attr, workspace_limit_in_bytes))


+ 10
- 1
dnn/src/cuda/convolution/opr_impl.cpp View File

@@ -119,7 +119,10 @@ ConvolutionBackwardDataImpl::Algorithm* ConvolutionBackwardDataImpl::
size_t fh = args.filter_meta.spatial[0], fw = args.filter_meta.spatial[1];
size_t ho = diff[2], wo = diff[3];
const bool prefer_dnn_lk_implbmm = args.filter_meta.format == Param::Format::NCHW &&
ho <= 2 * fh && wo <= 2 * fw;
ho <= 2 * fh && wo <= 2 * fw && ho < 32 &&
wo < 32;
const bool prefer_direct_lk =
args.filter_meta.format == Param::Format::NCHW && fh > 10 && fw > 10;
if (prefer_dnn_lk_implbmm) {
#if CUDA_VERSION >= 10020
if (sm_algo_pack.implbmm_nchw_hmma[0].is_available_attribute(
@@ -131,6 +134,12 @@ ConvolutionBackwardDataImpl::Algorithm* ConvolutionBackwardDataImpl::
return &sm_algo_pack.implbmm_nchw_fma[0];
}

if (prefer_direct_lk &&
sm_algo_pack.depthwise_large_filter.is_available_attribute(
args, positive_attr, negative_attr, workspace_limit_in_bytes)) {
return &sm_algo_pack.depthwise_large_filter;
}

if (args.filter_meta.group > 1 &&
sm_algo_pack.chanwise.is_available_attribute(
args, positive_attr, negative_attr, workspace_limit_in_bytes)) {


Loading…
Cancel
Save