Browse Source

fix(dnn/check_non_finite): adjust some details of CheckNonFinite

GitOrigin-RevId: 52ddd805b4
release-1.10
Megvii Engine Team 3 years ago
parent
commit
fc0f454685
6 changed files with 62 additions and 34 deletions
  1. +3
    -3
      dnn/src/common/reduce_helper_device.h
  2. +4
    -4
      dnn/src/cuda/check_non_finite/kern.cu
  3. +4
    -4
      dnn/src/cuda/check_non_finite/opr_impl.cpp
  4. +4
    -2
      imperative/python/megengine/amp/grad_scaler.py
  5. +3
    -1
      imperative/python/megengine/functional/math.py
  6. +44
    -20
      imperative/python/test/unit/amp/test_grad_scaler.py

+ 3
- 3
dnn/src/common/reduce_helper_device.h View File

@@ -175,13 +175,13 @@ struct MaxOp<src_ctype, dst_ctype, dt_float32> {
: INIT(wtype(DTypeTrait<wtype>::min())), src(src), dst(dst), B(B) {}
};

template <typename src_ctype, typename index_ctype, typename dst_ctype, typename wtype_>
template <typename src_ctype, typename dst_ctype, typename wtype_>
struct CheckNonFiniteOp {
typedef wtype_ wtype;
const wtype INIT;

src_ctype** srcs;
index_ctype* srcs_total_nr_elems;
size_t* srcs_total_nr_elems;
dst_ctype* dst;
const size_t B;
const src_ctype scale;
@@ -206,7 +206,7 @@ struct CheckNonFiniteOp {
return lhs | rhs;
}
MEGDNN_HOST MEGDNN_DEVICE CheckNonFiniteOp(
src_ctype** srcs, index_ctype* srcs_total_nr_elems, dst_ctype* dst,
src_ctype** srcs, size_t* srcs_total_nr_elems, dst_ctype* dst,
size_t B, src_ctype scale)
: INIT(wtype(0)),
srcs(srcs),


+ 4
- 4
dnn/src/cuda/check_non_finite/kern.cu View File

@@ -8,10 +8,10 @@ namespace cuda {

#define COMMA ,

#define cb(_dtype) \
INST_REDUCE( \
device_reduce::CheckNonFiniteOp< \
_dtype COMMA size_t COMMA dt_int32 COMMA dt_int32>, \
#define cb(_dtype) \
INST_REDUCE( \
device_reduce::CheckNonFiniteOp< \
_dtype COMMA dt_float32 COMMA dt_int32 COMMA dt_int32>, \
false);

cb(dt_float32);


+ 4
- 4
dnn/src/cuda/check_non_finite/opr_impl.cpp View File

@@ -10,11 +10,11 @@ namespace megdnn {
namespace cuda {

using device_reduce::CheckNonFiniteOp;
#define total_nr_elems_max 2048
#define total_nr_elems_max 8192
template <typename T>
size_t CheckNonFiniteImpl::_get_workspace_in_bytes() {
// Call the _get_workspace_in_bytes to reduce the loop fetch workspace bytes
typedef CheckNonFiniteOp<T, size_t, dt_int32, dt_int32> Op;
typedef CheckNonFiniteOp<T, dt_float32, dt_int32, dt_int32> Op;
megdnn_assert(m_size > 0);
WorkspaceBundle bundle(
nullptr, {
@@ -59,7 +59,7 @@ void CheckNonFiniteImpl::_exec(
_megdnn_in const TensorNDArray& srcs, _megdnn_tensor_out dst,
_megdnn_workspace workspace) {
check_exec(srcs, dst, workspace.size);
typedef CheckNonFiniteOp<T, size_t, dt_int32, dt_int32> Op;
typedef CheckNonFiniteOp<T, dt_float32, dt_int32, dt_int32> Op;
auto stream = cuda_stream(this->handle());
SmallVector<size_t> workspace_sizes{
sizeof(T*) * m_size,
@@ -102,7 +102,7 @@ void CheckNonFiniteImpl::_exec(
cuda_check(cudaStreamAddCallback(
stream, callback_free, static_cast<void*>(workspace_cpu_raw), 0));

return run_reduce<Op, false>(
run_reduce<Op, false>(
static_cast<dt_int32*>(
(void*)((char*)workspace_gpu_raw +
workspace_gpu.total_size_in_bytes())),


+ 4
- 2
imperative/python/megengine/amp/grad_scaler.py View File

@@ -141,8 +141,10 @@ class GradScaler:
tensor.grad = None
return self

def _check_gradients(self, grad, scale):
return _check_non_finite(grad, scale)
def _check_gradients(self, grads, scale):
if len(grads) == 0:
return False
return _check_non_finite(grads, scale)

def update(self, new_scale: float = None):
r"""Update the scale factor according to whether encountered overflow grad.


+ 3
- 1
imperative/python/megengine/functional/math.py View File

@@ -691,11 +691,13 @@ def _check_non_finite(inps: Iterable[Tensor], scale=1.0) -> Tensor:
r"""Check whether input contains infinite or nan value.

Args:
inp: a tensor to be checked.
inps: tensors to be checked.

Returns:
a int32 scalar tensor, 0 for False and 1 for True.
"""
if isinstance(inps, Tensor):
inps = [inps]
op = builtin.CheckNonFinite(scale=scale)
oups = apply(op, *inps)
out = oups[-1]


+ 44
- 20
imperative/python/test/unit/amp/test_grad_scaler.py View File

@@ -1,4 +1,5 @@
import numpy as np
import pytest

import megengine as mge
from megengine.amp import GradScaler
@@ -6,23 +7,46 @@ from megengine.autodiff import GradManager
from megengine.jit import trace


def test_grad_scaler():
def f():
gm = GradManager()
scaler = GradScaler()

x = mge.tensor(1.0)
for _ in range(3):
with gm:
y = x + 1
gm.attach(y)
loss = y + 1
scaler.backward(gm, loss, unscale_grad=False)
np.testing.assert_equal(y.grad.numpy(), scaler.scale_factor)
scaler.unscale(gm.attached_tensors())
np.testing.assert_equal(y.grad.numpy(), 1)
# test handle None elements
scaler.unscale(gm.attached_tensors())

f()
trace(f)()
@pytest.mark.parametrize(
"is_trace", [False, True],
)
def test_grad_scaler(is_trace):
gm = GradManager()
scaler = GradScaler()

def f(idx, data, calc):
x = mge.tensor(data, no_cache=True)
y = mge.tensor(data, no_cache=True)

if is_trace:
calc = trace(calc)

gm.attach([x, y])
with gm:
loss = calc(x, y)
scaler.backward(gm, loss, unscale_grad=False)
np.testing.assert_equal(x.grad.numpy(), 2 * scaler.scale_factor)
scaler.unscale(filter(lambda t: t.grad is not None, gm.attached_tensors()))
# scaler.unscale(gm.attached_tensors())
np.testing.assert_equal(x.grad.numpy(), 2)

def double_variables(x, y):
z = x + 2 * y
loss = 2 * z + 1
return loss

def single_variable(x, y):
z = x + 1
loss = 2 * z + 1
return loss

# need grad being unique storage or not inplace modifying grad
def double_variables_with_same_grad(x, y):
z = x + y
loss = 2 * z + 1
return loss

for data in [np.random.random((1, 2, 3, 4)), 1.0]:
for calc in [double_variables, single_variable, double_variables_with_same_grad]:
for idx in range(3):
f(idx, data, calc)

Loading…
Cancel
Save