@@ -29,10 +29,13 @@ def convert_tensor_format(x: Tensor, inplace: bool = True): | |||
# TODO: use initialization from tensor after fixing format setting | |||
if x.format != "nhwc": | |||
if inplace: | |||
# reset will destroy backward grad | |||
data = x.numpy().transpose(*pattern) | |||
x[...] = Tensor(data, format="nhwc") | |||
else: | |||
x = Tensor(x.numpy().transpose(*pattern), format="nhwc") | |||
# use mge interface to maintain grad | |||
x = F.transpose(x, pattern) | |||
x.format="nhwc" | |||
return x | |||
@@ -245,6 +245,8 @@ def conv2d( | |||
sparse_type = "dense" if groups == 1 else "group" | |||
compute_mode = _config._get_actual_op_param(compute_mode, _config.__compute_mode) | |||
with _config._override(auto_format_convert=False): | |||
print(compute_mode, inp.shape, inp.format, weight.shape, weight.format) | |||
op = builtin.Convolution( | |||
stride_h=stride_h, | |||
stride_w=stride_w, | |||
@@ -1,5 +1,6 @@ | |||
import numpy as np | |||
import megengine as mge | |||
import megengine.functional as F | |||
from megengine import Parameter | |||
@@ -34,6 +35,7 @@ class GroupNorm(Module): | |||
def forward(self, x): | |||
N, C, H, W = x.shape | |||
format = x.format | |||
assert C == self.num_channels | |||
x = x.reshape(N, self.num_groups, -1) | |||
@@ -44,7 +46,9 @@ class GroupNorm(Module): | |||
x = x.reshape(N, C, H, W) | |||
if self.affine: | |||
x = self.weight.reshape(1, -1, 1, 1) * x + self.bias.reshape(1, -1, 1, 1) | |||
# FIXME(czh): remove this after making it a builtin op. | |||
if format == "nhwc": | |||
x = mge.amp.convert_tensor_format(x, inplace=False) | |||
return x | |||
def _module_info_string(self) -> str: | |||
@@ -81,6 +85,7 @@ class InstanceNorm(Module): | |||
def forward(self, x): | |||
N, C, H, W = x.shape | |||
format = x.format | |||
assert C == self.num_channels | |||
x = x.reshape(N, C, -1) | |||
mean = x.mean(axis=2, keepdims=True) | |||
@@ -90,7 +95,9 @@ class InstanceNorm(Module): | |||
x = x.reshape(N, C, H, W) | |||
if self.affine: | |||
x = self.weight.reshape(1, -1, 1, 1) * x + self.bias.reshape(1, -1, 1, 1) | |||
# FIXME(czh): remove this after making it a builtin op. | |||
if format == "nhwc": | |||
x = mge.amp.convert_tensor_format(x, inplace=False) | |||
return x | |||
def _module_info_string(self) -> str: | |||
@@ -122,7 +122,11 @@ class Tensor(_Tensor, ArrayMethodMixin): | |||
@property | |||
def format(self) -> str: | |||
return super().format | |||
return super().format() | |||
@format.setter | |||
def format(self, format): | |||
super()._set_format(format) | |||
@property | |||
def qparams(self): | |||
@@ -584,6 +584,12 @@ void TensorWrapper::set_module_trace_info(PyObject* obj) { | |||
module_trace_info_map[m_tensor->data()] = py::reinterpret_borrow<py::object>(obj); | |||
} | |||
void TensorWrapper::_set_format(PyObject* dest) { | |||
auto py_dest = py::reinterpret_borrow<py::object>(dest); | |||
auto format = py_dest.cast<std::string>(); | |||
m_tensor->set_format(format); | |||
} | |||
void TensorWrapper::_set_name(PyObject* dest) { | |||
auto py_dest = py::reinterpret_borrow<py::object>(dest); | |||
auto name = py_dest.cast<std::string>(); | |||
@@ -812,7 +818,7 @@ void init_tensor(py::module m) { | |||
.def_getset<&TensorWrapper::shape>("shape") | |||
.def_getset<&TensorWrapper::dtype>("dtype") | |||
.def_getset<&TensorWrapper::device>("device") | |||
.def_getset<&TensorWrapper::format>("format") | |||
.def<&TensorWrapper::format>("format") | |||
.def<&TensorWrapper::reset>("_reset") | |||
.def<&TensorWrapper::isscalar>("_isscalar") | |||
.def<&TensorWrapper::detach>("detach") | |||
@@ -820,6 +826,7 @@ void init_tensor(py::module m) { | |||
.def<&TensorWrapper::_dev_tensor>("_dev_tensor") | |||
.def<&TensorWrapper::_drop>("_drop") | |||
.def<&TensorWrapper::_detail>("_detail") | |||
.def<&TensorWrapper::_set_format>("_set_format") | |||
.def<&TensorWrapper::_set_name>("_set_name") | |||
.def<&TensorWrapper::_watch>("_watch") | |||
.def<&TensorWrapper::_var>("var") | |||
@@ -59,6 +59,11 @@ public: | |||
return *shape; | |||
} | |||
inline Format format() { return *data().format(); } | |||
inline void set_format(std::string format) { | |||
if (!format.empty()) { | |||
m_data = imperative::apply(SetFormat(format), m_data)[0]; | |||
} | |||
} | |||
inline HostValue::ref_t numpy() { return data().numpy(); } | |||
inline void reset(ValueRef value) { | |||
m_data = value; | |||
@@ -130,6 +135,7 @@ public: | |||
PyObject* copied(); | |||
PyObject* module_trace_info(); | |||
void set_module_trace_info(PyObject*); | |||
void _set_format(PyObject*); | |||
void _set_name(PyObject*); | |||
PyObject* _detail(); | |||
PyObject* _var(); | |||
@@ -31,6 +31,9 @@ def test_basic(): | |||
b[...] = tensor(data, format="nchw") | |||
assert b.format == "nchw" | |||
# set tensor's format | |||
b.format = "nhwc" | |||
assert b.format == "nhwc" | |||
def _compare_nchw_nhwc(data, func, is_symbolic=None): | |||
x1 = tensor(data) | |||
@@ -105,9 +105,16 @@ std::string IsScalar::to_string() const { | |||
return "IsScalar"; | |||
} | |||
std::string GetFormat::to_string() const { | |||
return "GetFormat{}"; | |||
} | |||
std::string SetFormat::to_string() const { | |||
return ssprintf("SetFormat{format=%s}", m_format.to_string().c_str()); | |||
} | |||
std::string GetVarVal::to_string() const { | |||
return "GetVarVal"; | |||
} | |||
} // namespace imperative | |||
} // namespace mgb |
@@ -57,15 +57,15 @@ inline ValueRefList FormatTransformation::unwrap_inputs( | |||
} | |||
inline ValueRef FormatTransformation::wrap_output( | |||
const ValueRef& output, FT type) const { | |||
return m_value_type.make(output, type); | |||
const ValueRef& output, Format format) const { | |||
return m_value_type.make(output, format); | |||
} | |||
inline ValueRefList FormatTransformation::wrap_outputs( | |||
const ValueRefList& outputs, FT type) const { | |||
const ValueRefList& outputs, Format format) const { | |||
ValueRefList wrapped_outputs(outputs.size()); | |||
for (size_t i = 0; i < outputs.size(); ++i) { | |||
wrapped_outputs[i] = wrap_output(outputs[i], type); | |||
wrapped_outputs[i] = wrap_output(outputs[i], format); | |||
} | |||
return wrapped_outputs; | |||
} | |||
@@ -241,7 +241,7 @@ ValueRefList subtensor_rule( | |||
if (!(auto_convert && src.format() == FT::NHWC)) { | |||
return {t.wrap_output( | |||
imperative::apply(op, t.unwrap_inputs(inputs))[0], | |||
src.format().type())}; | |||
src.format())}; | |||
} | |||
auto nhwc_items = convert_nchw2nhwc_idx_items(op.items); | |||
auto outputs = imperative::apply( | |||
@@ -264,7 +264,7 @@ ValueRefList setsubtensor_rule( | |||
if (!(auto_convert && src.format() == FT::NHWC)) { | |||
return {t.wrap_output( | |||
imperative::apply(op, t.unwrap_inputs(inputs))[0], | |||
src.format().type())}; | |||
src.format())}; | |||
} | |||
// value has been broadcasted to src's fake NCHW shape. | |||
auto& value = inputs[1].cast(t.value_type()); | |||
@@ -330,7 +330,7 @@ ValueRefList identity_rule_helper( | |||
// mgb_assert(inputs.size() == 1); | |||
auto& src = inputs[0].cast(t.value_type()); | |||
return t.wrap_outputs( | |||
imperative::apply(op, t.unwrap_inputs(inputs)), src.format().type()); | |||
imperative::apply(op, t.unwrap_inputs(inputs)), src.format()); | |||
} | |||
ValueRefList batchnorm_rule( | |||
@@ -467,7 +467,7 @@ ValueRefList FormatTransformation::apply_transformation( | |||
} | |||
} else if (auto* create_tensor = op.as<CreateTensor>()) { | |||
auto format = create_tensor->format(); | |||
return {wrap_output(imperative::apply(op, inputs)[0], format.type())}; | |||
return {wrap_output(imperative::apply(op, inputs)[0], format)}; | |||
} else if (auto* get_attr = op.as<GetAttr>()) { | |||
auto&& input = inputs.item(); | |||
if (!input.is(m_value_type)) { | |||
@@ -500,12 +500,16 @@ ValueRefList FormatTransformation::apply_transformation( | |||
op.to_string().c_str(), inputs[0].to_string().c_str()); | |||
return {FormatValue::make(FT::DEFAULT)}; | |||
} | |||
} else if (auto* _op = op.as<SetFormat>()) { | |||
auto&& inp_ref = inputs[0].as_ref(m_value_type); | |||
mgb_assert(inp_ref, "Cannot set format for non-format Tensor."); | |||
return {m_value_type.make(inp_ref->value(), _op->format())}; | |||
} else if (op.is<Operator::IdentityLike>()) { | |||
auto&& inp_ref = inputs[0].as_ref(m_value_type); | |||
if (inp_ref) { | |||
auto&& format = inp_ref->format(); | |||
return wrap_outputs( | |||
imperative::apply(op, unwrap_inputs(inputs)), format.type()); | |||
imperative::apply(op, unwrap_inputs(inputs)), format); | |||
} else { | |||
mgb_log_warn( | |||
"Not FormattedTensorValue input for IdentityLike op: %s, %s", | |||
@@ -521,13 +525,13 @@ ValueRefList FormatTransformation::apply_transformation( | |||
GenericFunction new_callback = | |||
[this, callback, format](Span<ValueRef> inputs_) -> ValueRefList { | |||
auto wrapped_inputs = SmallVector<ValueRef>{ | |||
this->value_type().make(inputs_.item(), format.type())}; | |||
this->value_type().make(inputs_.item(), format)}; | |||
auto ret = callback(wrapped_inputs); | |||
return ret; | |||
}; | |||
auto&& outputs = imperative::apply( | |||
op, inp_ref->value(), FunctionValue::make(new_callback)); | |||
return wrap_outputs(outputs, format.type()); | |||
return wrap_outputs(outputs, format); | |||
} else { | |||
mgb_log_warn( | |||
"Not FormattedTensorValue input for AttachGrad op: %s, %s", | |||
@@ -549,7 +553,7 @@ ValueRefList FormatTransformation::apply_transformation( | |||
for (size_t i = 0; i < nr_outputs; ++i) { | |||
if (auto output_ref = outputs_[i].as_ref(m_value_type)) { | |||
wrapped_outputs[i] = | |||
m_value_type.make(outputs[i], output_ref->format().type()); | |||
m_value_type.make(outputs[i], output_ref->format()); | |||
} else { | |||
mgb_log_warn( | |||
"Not FormattedTensorValue outputs for SetGrad op: %s, %s", | |||
@@ -164,7 +164,19 @@ public: | |||
class GetFormat final : public OperatorImpl<GetFormat, Operator::GetAttrLike> { | |||
public: | |||
std::string to_string() const override { return "GetFormat{}"; } | |||
std::string to_string() const override; | |||
}; | |||
class SetFormat final : public OperatorImpl<SetFormat, Operator::IdentityLike> { | |||
private: | |||
Format m_format; | |||
public: | |||
SetFormat(std::string format) : m_format(format) {} | |||
Format format() const { return m_format; } | |||
std::string to_string() const override; | |||
}; | |||
class GetVarVal final : public OperatorImpl<GetVarVal, Operator::GetAttrLike> { | |||
@@ -26,6 +26,8 @@ public: | |||
const Format& format() const { return m_format; } | |||
void set_format(Format format) { m_format = format; } | |||
void clear() override { | |||
m_value = {}; | |||
m_format = {}; | |||
@@ -65,10 +67,10 @@ public: | |||
inline ValueRef unwrap_input(const ValueRef& input) const; | |||
inline ValueRefList unwrap_inputs(const Span<ValueRef>& inputs) const; | |||
inline ValueRef wrap_output( | |||
const ValueRef& output, Format::Type type = Format::Type::DEFAULT) const; | |||
const ValueRef& output, Format format = Format::Type::DEFAULT) const; | |||
inline ValueRefList wrap_outputs( | |||
const ValueRefList& outputs, | |||
Format::Type type = Format::Type::DEFAULT) const; | |||
Format format = Format::Type::DEFAULT) const; | |||
TypedValueRef<FormattedTensorValue> as( | |||
const FormattedTensorValue&, const Format::Type& target) const; | |||