|
|
@@ -134,7 +134,6 @@ def _ctc_npy_single_seq(pred, label, blank): |
|
|
|
x, y = np.maximum(x, y), np.minimum(x, y) |
|
|
|
return x + np.log1p(np.exp(y - x)) |
|
|
|
|
|
|
|
assert np.abs(pred.sum(axis=1) - 1).max() <= 1e-3 |
|
|
|
len_pred, alphabet_size = pred.shape |
|
|
|
(len_label,) = label.shape |
|
|
|
|
|
|
@@ -166,6 +165,8 @@ def test_ctc_loss(): |
|
|
|
def test_func(T, C, N): |
|
|
|
input = np.random.randn(T, N, C) |
|
|
|
input = F.softmax(Tensor(input), axis=-1).numpy() |
|
|
|
# replace nan to 0.2 |
|
|
|
input = np.nan_to_num(input, copy=True, nan=0.2) |
|
|
|
input_lengths = np.ones(N, dtype=np.int32) * T |
|
|
|
target_lengths = np.random.randint(low=1, high=T + 1, size=(N,), dtype=np.int32) |
|
|
|
target = np.random.randint( |
|
|
|