GitOrigin-RevId: 4741298e44
release-0.6
@@ -34,11 +34,9 @@ bool ConvBiasImpl::AlgoFP16WinogradF23::usable( | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 0, 0) { | |||
using Strategy = winograd::winograd_2x3_4x4_f16; | |||
Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_matmul_kern_param(param); | |||
auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>( | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
(opr->param().format == param::ConvBias::Format::NCHW || | |||
(opr->param().format == | |||
@@ -63,38 +61,10 @@ bool ConvBiasImpl::AlgoFP16WinogradF23::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoFP16WinogradF23::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 0, 1) { | |||
winograd::winograd_2x3_4x4_f16 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
return megdnn::winograd::ConvBias<winograd::winograd_2x3_4x4_f16>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoFP16WinogradF23::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 0, 2) { | |||
winograd::winograd_2x3_4x4_f16 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_2x3_4x4_f16>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF23, | |||
winograd::winograd_2x3_4x4_f16, | |||
megdnn_arm_common_winograd_fp16, | |||
param::MatrixMul::Format::DEFAULT); | |||
/* ======================= AlgoFP16WinogradF45 ======================== */ | |||
@@ -106,11 +76,9 @@ bool ConvBiasImpl::AlgoFP16WinogradF45::usable( | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 1, 0) { | |||
using Strategy = winograd::winograd_4x5_1x1_f16; | |||
Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_matmul_kern_param(param); | |||
auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>( | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
(opr->param().format == param::ConvBias::Format::NCHW || | |||
(opr->param().format == | |||
@@ -133,37 +101,11 @@ bool ConvBiasImpl::AlgoFP16WinogradF45::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoFP16WinogradF45::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
winograd::winograd_4x5_1x1_f16 strategy(param.src_type, param.filter_type, | |||
param.dst_type); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 1, 1) { | |||
return megdnn::winograd::ConvBias<winograd::winograd_4x5_1x1_f16>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF45, | |||
winograd::winograd_4x5_1x1_f16, | |||
megdnn_arm_common_winograd_fp16, | |||
param::MatrixMul::Format::DEFAULT); | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoFP16WinogradF45::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 1, 2) { | |||
winograd::winograd_4x5_1x1_f16 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_4x5_1x1_f16>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
/* ======================= AlgoFP16WinogradF63 ======================== */ | |||
bool ConvBiasImpl::AlgoFP16WinogradF63::usable( | |||
@@ -174,11 +116,9 @@ bool ConvBiasImpl::AlgoFP16WinogradF63::usable( | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 2, 0) { | |||
using Strategy = winograd::winograd_6x3_1x1_f16; | |||
Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_matmul_kern_param(param); | |||
auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>( | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
(opr->param().format == param::ConvBias::Format::NCHW || | |||
(opr->param().format == | |||
@@ -201,37 +141,10 @@ bool ConvBiasImpl::AlgoFP16WinogradF63::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoFP16WinogradF63::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
winograd::winograd_6x3_1x1_f16 strategy(param.src_type, param.filter_type, | |||
param.dst_type); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 2, 1) { | |||
return megdnn::winograd::ConvBias<winograd::winograd_6x3_1x1_f16>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoFP16WinogradF63::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 2, 2) { | |||
winograd::winograd_6x3_1x1_f16 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_6x3_1x1_f16>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF63, | |||
winograd::winograd_6x3_1x1_f16, | |||
megdnn_arm_common_winograd_fp16, | |||
param::MatrixMul::Format::DEFAULT); | |||
/* ======================= AlgoFP16WinogradF23_8x8 ======================== */ | |||
@@ -249,8 +162,7 @@ bool ConvBiasImpl::AlgoFP16WinogradF23_8x8::usable( | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
m_matmul_algo->packmode() == PackMode::NO_PACK && | |||
@@ -275,39 +187,10 @@ bool ConvBiasImpl::AlgoFP16WinogradF23_8x8::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoFP16WinogradF23_8x8::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 3, 1) { | |||
winograd::winograd_2x3_8x8_f16 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
return megdnn::winograd::ConvBias<winograd::winograd_2x3_8x8_f16, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoFP16WinogradF23_8x8::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 3, 2) { | |||
winograd::winograd_2x3_8x8_f16 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_2x3_8x8_f16, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF23_8x8, | |||
winograd::winograd_2x3_8x8_f16, | |||
megdnn_arm_common_winograd_fp16, | |||
param::MatrixMul::Format::MK8); | |||
/*========================from Convolution=============================*/ | |||
@@ -22,7 +22,6 @@ public: | |||
AlgoFP16WinogradF23(fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -30,22 +29,7 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
static std::vector<fallback::MatrixMulImpl::Algorithm*> | |||
get_avaiable_matmul_algos(const NCBKernSizeParam& param); | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
class ConvBiasImpl::AlgoFP16WinogradF45 final : public AlgoBase { | |||
@@ -53,7 +37,6 @@ public: | |||
AlgoFP16WinogradF45(fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -61,30 +44,14 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
static std::vector<fallback::MatrixMulImpl::Algorithm*> | |||
get_avaiable_matmul_algos(const NCBKernSizeParam& param); | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
uint32_t m_tile_size; | |||
}; | |||
class ConvBiasImpl::AlgoFP16WinogradF63 final : public AlgoBase { | |||
public: | |||
AlgoFP16WinogradF63(fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -93,29 +60,13 @@ public: | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
static std::vector<fallback::MatrixMulImpl::Algorithm*> | |||
get_avaiable_matmul_algos(const NCBKernSizeParam& param); | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
class ConvBiasImpl::AlgoFP16WinogradF23_8x8 final : public AlgoBase { | |||
public: | |||
AlgoFP16WinogradF23_8x8(fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -123,19 +74,7 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
class ConvBiasImpl::AlgoF16Direct final : public AlgoBase { | |||
@@ -43,8 +43,7 @@ bool ConvBiasImpl::AlgoFP32WinogradF23_4x4::usable( | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
m_matmul_algo->packmode() == PackMode::NO_PACK && | |||
@@ -69,39 +68,10 @@ bool ConvBiasImpl::AlgoFP32WinogradF23_4x4::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoFP32WinogradF23_4x4::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 0, 1) { | |||
winograd::winograd_2x3_4x4_f strategy(param.src_type, param.filter_type, | |||
param.dst_type); | |||
return megdnn::winograd::ConvBias<winograd::winograd_2x3_4x4_f, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoFP32WinogradF23_4x4::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 0, 2) { | |||
winograd::winograd_2x3_4x4_f strategy(param.src_type, param.filter_type, | |||
param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_2x3_4x4_f, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF23_4x4, | |||
winograd::winograd_2x3_4x4_f, | |||
megdnn_arm_common_winograd_fp32, | |||
param::MatrixMul::Format::MK4); | |||
/* ======================= AlgoFP32WinogradF63 ======================== */ | |||
@@ -113,11 +83,9 @@ bool ConvBiasImpl::AlgoFP32WinogradF63::usable( | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 1, 0) { | |||
using Strategy = winograd::winograd_6x3_1x1_f; | |||
Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_matmul_kern_param(param); | |||
auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>( | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
(opr->param().format == param::ConvBias::Format::NCHW || | |||
(opr->param().format == | |||
@@ -140,37 +108,10 @@ bool ConvBiasImpl::AlgoFP32WinogradF63::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoFP32WinogradF63::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 1, 1) { | |||
winograd::winograd_6x3_1x1_f strategy(param.src_type, param.filter_type, | |||
param.dst_type); | |||
return megdnn::winograd::ConvBias<winograd::winograd_6x3_1x1_f>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoFP32WinogradF63::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 1, 2) { | |||
winograd::winograd_6x3_1x1_f strategy(param.src_type, param.filter_type, | |||
param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_6x3_1x1_f>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63, | |||
winograd::winograd_6x3_1x1_f, | |||
megdnn_arm_common_winograd_fp32, | |||
param::MatrixMul::Format::DEFAULT); | |||
/* ======================= AlgoFP32WinogradF54 ======================== */ | |||
@@ -182,11 +123,9 @@ bool ConvBiasImpl::AlgoFP32WinogradF54::usable( | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 2, 0) { | |||
using Strategy = winograd::winograd_5x4_1x1_f; | |||
Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_matmul_kern_param(param); | |||
auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>( | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
(opr->param().format == param::ConvBias::Format::NCHW || | |||
(opr->param().format == | |||
@@ -209,37 +148,10 @@ bool ConvBiasImpl::AlgoFP32WinogradF54::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoFP32WinogradF54::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 2, 1) { | |||
winograd::winograd_5x4_1x1_f strategy(param.src_type, param.filter_type, | |||
param.dst_type); | |||
return megdnn::winograd::ConvBias<winograd::winograd_5x4_1x1_f>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoFP32WinogradF54::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 2, 2) { | |||
winograd::winograd_5x4_1x1_f strategy(param.src_type, param.filter_type, | |||
param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_5x4_1x1_f>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF54, | |||
winograd::winograd_5x4_1x1_f, | |||
megdnn_arm_common_winograd_fp32, | |||
param::MatrixMul::Format::DEFAULT); | |||
/* ======================= AlgoFP32WinogradF45 ======================== */ | |||
@@ -251,11 +163,9 @@ bool ConvBiasImpl::AlgoFP32WinogradF45::usable( | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 3, 0) { | |||
using Strategy = winograd::winograd_4x5_1x1_f; | |||
Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_matmul_kern_param(param); | |||
auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>( | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
(opr->param().format == param::ConvBias::Format::NCHW || | |||
(opr->param().format == | |||
@@ -278,37 +188,10 @@ bool ConvBiasImpl::AlgoFP32WinogradF45::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoFP32WinogradF45::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 3, 1) { | |||
winograd::winograd_4x5_1x1_f strategy(param.src_type, param.filter_type, | |||
param.dst_type); | |||
return megdnn::winograd::ConvBias<winograd::winograd_4x5_1x1_f>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoFP32WinogradF45::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 3, 2) { | |||
winograd::winograd_4x5_1x1_f strategy(param.src_type, param.filter_type, | |||
param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_4x5_1x1_f>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF45, | |||
winograd::winograd_4x5_1x1_f, | |||
megdnn_arm_common_winograd_fp32, | |||
param::MatrixMul::Format::DEFAULT); | |||
/* ======================= AlgoFP32WinogradF63_4x4 ======================== */ | |||
@@ -326,8 +209,7 @@ bool ConvBiasImpl::AlgoFP32WinogradF63_4x4::usable( | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
m_matmul_algo->packmode() == PackMode::NO_PACK && | |||
@@ -354,39 +236,10 @@ bool ConvBiasImpl::AlgoFP32WinogradF63_4x4::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoFP32WinogradF63_4x4::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 4, 1) { | |||
winograd::winograd_6x3_4x4_f strategy(param.src_type, param.filter_type, | |||
param.dst_type); | |||
return megdnn::winograd::ConvBias<winograd::winograd_6x3_4x4_f, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoFP32WinogradF63_4x4::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 4, 2) { | |||
winograd::winograd_6x3_4x4_f strategy(param.src_type, param.filter_type, | |||
param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_6x3_4x4_f, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63_4x4, | |||
winograd::winograd_6x3_4x4_f, | |||
megdnn_arm_common_winograd_fp32, | |||
param::MatrixMul::Format::MK4); | |||
/* =================== AlgoFP32WinogradF23_4x4_NCHW44 =================== */ | |||
@@ -404,8 +257,7 @@ bool ConvBiasImpl::AlgoFP32WinogradF23_4x4_NCHW44::usable( | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
m_matmul_algo->packmode() == | |||
@@ -431,41 +283,10 @@ bool ConvBiasImpl::AlgoFP32WinogradF23_4x4_NCHW44::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoFP32WinogradF23_4x4_NCHW44::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, | |||
midout_iv("AlgoFP32WinogradF23_4x4_NCHW44"_hash)) { | |||
winograd::winograd_F23_mk4_f_nchw44 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
return megdnn::winograd::ConvBias<winograd::winograd_F23_mk4_f_nchw44, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoFP32WinogradF23_4x4_NCHW44::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, | |||
midout_iv("AlgoFP32WinogradF23_4x4_NCHW44"_hash)) { | |||
winograd::winograd_F23_mk4_f_nchw44 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_F23_mk4_f_nchw44, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF23_4x4_NCHW44, | |||
winograd::winograd_F23_mk4_f_nchw44, | |||
megdnn_arm_common_winograd_fp32, | |||
param::MatrixMul::Format::MK4); | |||
/* =================== AlgoFP32WinogradF63_4x4_NCHW44 ===================== */ | |||
@@ -483,8 +304,7 @@ bool ConvBiasImpl::AlgoFP32WinogradF63_4x4_NCHW44::usable( | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
m_matmul_algo->packmode() == | |||
@@ -512,41 +332,10 @@ bool ConvBiasImpl::AlgoFP32WinogradF63_4x4_NCHW44::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoFP32WinogradF63_4x4_NCHW44::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, | |||
midout_iv("AlgoFP32WinogradF63_4x4_NCHW44"_hash)) { | |||
winograd::winograd_F63_mk4_f_nchw44 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
return megdnn::winograd::ConvBias<winograd::winograd_F63_mk4_f_nchw44, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoFP32WinogradF63_4x4_NCHW44::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, | |||
midout_iv("AlgoFP32WinogradF63_4x4_NCHW44"_hash)) { | |||
winograd::winograd_F63_mk4_f_nchw44 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_F63_mk4_f_nchw44, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63_4x4_NCHW44, | |||
winograd::winograd_F63_mk4_f_nchw44, | |||
megdnn_arm_common_winograd_fp32, | |||
param::MatrixMul::Format::MK4); | |||
/* ===================== direct algo ===================== */ | |||
MIDOUT_DECL(megdnn_arm_common_conv_bias_f32_kimpl); | |||
@@ -17,13 +17,11 @@ | |||
namespace megdnn { | |||
namespace arm_common { | |||
class ConvBiasImpl::AlgoFP32WinogradF23_4x4 final : public AlgoBase { | |||
public: | |||
AlgoFP32WinogradF23_4x4(fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -31,18 +29,7 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
class ConvBiasImpl::AlgoFP32WinogradF63 final : public AlgoBase { | |||
@@ -50,7 +37,6 @@ public: | |||
AlgoFP32WinogradF63(fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -58,19 +44,7 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
class ConvBiasImpl::AlgoFP32WinogradF63_4x4 final : public AlgoBase { | |||
@@ -78,7 +52,6 @@ public: | |||
AlgoFP32WinogradF63_4x4(fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -86,19 +59,7 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
class ConvBiasImpl::AlgoFP32WinogradF54 final : public AlgoBase { | |||
@@ -106,7 +67,6 @@ public: | |||
AlgoFP32WinogradF54(fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -114,19 +74,7 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
class ConvBiasImpl::AlgoFP32WinogradF45 final : public AlgoBase { | |||
@@ -134,7 +82,6 @@ public: | |||
AlgoFP32WinogradF45(fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -142,19 +89,7 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
//===================== NCHW44 Winograd Support =====================// | |||
@@ -163,7 +98,6 @@ public: | |||
AlgoFP32WinogradF23_4x4_NCHW44( | |||
fallback::MatrixMulImpl::AlgoBase* matmul_algo, uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -172,18 +106,7 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
class ConvBiasImpl::AlgoFP32WinogradF63_4x4_NCHW44 final : public AlgoBase { | |||
@@ -191,7 +114,6 @@ public: | |||
AlgoFP32WinogradF63_4x4_NCHW44( | |||
fallback::MatrixMulImpl::AlgoBase* matmul_algo, uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -200,18 +122,7 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
// ================================================================= // | |||
@@ -329,4 +240,6 @@ public: | |||
} // namespace arm_common | |||
} // namespace megdnn | |||
#undef MEGDNN_WINOGRAD_ALGO_FUN_DECLARE | |||
// vim: syntax=cpp.doxygen |
@@ -221,8 +221,7 @@ bool ConvBiasImpl::AlgoS8WinogradF23_8x8::usable( | |||
Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy, param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
m_matmul_algo->packmode() == PackMode::NO_PACK && | |||
@@ -245,34 +244,11 @@ bool ConvBiasImpl::AlgoS8WinogradF23_8x8::usable( | |||
param.dst_type.enumv() == DTypeEnum::QuantizedS8; | |||
} | |||
size_t ConvBiasImpl::AlgoS8WinogradF23_8x8::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
winograd::winograd_2x3_8x8_s8 strategy(param.src_type, param.filter_type, | |||
param.dst_type); | |||
return megdnn::winograd::ConvBias<winograd::winograd_2x3_8x8_s8, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoS8WinogradF23_8x8, | |||
winograd::winograd_2x3_8x8_s8, | |||
megdnn_arm_common_conv_bias_int8, | |||
param::MatrixMul::Format::MK8); | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoS8WinogradF23_8x8::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8, 0, 2) { | |||
winograd::winograd_2x3_8x8_s8 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_2x3_8x8_s8, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
//=========================== input int8 compute float32 ========= | |||
bool ConvBiasImpl::AlgoS8CF32WinogradF23_4x4_NCHW44::usable( | |||
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
@@ -290,8 +266,7 @@ bool ConvBiasImpl::AlgoS8CF32WinogradF23_4x4_NCHW44::usable( | |||
is_matmul_usable = m_matmul_algo->usable( | |||
megdnn::winograd::ConvBias<Strategy, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param)); | |||
return is_matmul_usable && | |||
m_matmul_algo->packmode() == PackMode::NO_PACK && | |||
@@ -320,43 +295,10 @@ bool ConvBiasImpl::AlgoS8CF32WinogradF23_4x4_NCHW44::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoS8CF32WinogradF23_4x4_NCHW44::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MIDOUT_BEGIN( | |||
megdnn_arm_common_conv_bias_int8, | |||
midout_iv("arm_common_AlgoS8CF32WinogradF23_4x4::get_workspace"_hash)) { | |||
winograd::winograd_2x3_4x4_s8_f32_nchw44 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
return megdnn::winograd::ConvBias<winograd::winograd_2x3_4x4_s8_f32_nchw44, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoS8CF32WinogradF23_4x4_NCHW44::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN( | |||
megdnn_arm_common_conv_bias_int8, | |||
midout_iv( | |||
"arm_common_AlgoS8CF32WinogradF23_4x4::dispatch_kerns"_hash)) { | |||
winograd::winograd_2x3_4x4_s8_f32_nchw44 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_2x3_4x4_s8_f32_nchw44, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoS8CF32WinogradF23_4x4_NCHW44, | |||
winograd::winograd_2x3_4x4_s8_f32_nchw44, | |||
megdnn_arm_common_conv_bias_int8, | |||
param::MatrixMul::Format::MK4); | |||
/* ======================= AlgoS8WinogradF23_8x8_NCHW44 ======================== */ | |||
bool ConvBiasImpl::AlgoS8WinogradF23_8x8_NCHW44::usable( | |||
@@ -372,10 +314,8 @@ bool ConvBiasImpl::AlgoS8WinogradF23_8x8_NCHW44::usable( | |||
using Strategy = winograd::winograd_2x3_8x8_s8_nchw44; | |||
Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
megdnn::winograd::ConvBias<Strategy, param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
bool is_matmul_usable = m_matmul_algo->usable(matmul_param); | |||
return is_matmul_usable && | |||
@@ -401,41 +341,9 @@ bool ConvBiasImpl::AlgoS8WinogradF23_8x8_NCHW44::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoS8WinogradF23_8x8_NCHW44::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MIDOUT_BEGIN( | |||
megdnn_arm_common_conv_bias_int8, | |||
midout_iv( | |||
"arm_common_AlgoS8WinogradF23_8x8_NCHW44::get_workspace"_hash)) { | |||
winograd::winograd_2x3_8x8_s8_nchw44 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
return megdnn::winograd::ConvBias<winograd::winograd_2x3_8x8_s8_nchw44, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoS8WinogradF23_8x8_NCHW44, | |||
winograd::winograd_2x3_8x8_s8_nchw44, | |||
megdnn_arm_common_conv_bias_int8, | |||
param::MatrixMul::Format::MK8); | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoS8WinogradF23_8x8_NCHW44::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MIDOUT_BEGIN( | |||
megdnn_arm_common_conv_bias_int8, | |||
midout_iv( | |||
"arm_common_AlgoS8WinogradF23_8x8_NCHW44::dispatch_kerns"_hash)) { | |||
winograd::winograd_2x3_8x8_s8_nchw44 strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_2x3_8x8_s8_nchw44, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -201,7 +201,6 @@ public: | |||
AlgoS8WinogradF23_8x8(fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -209,20 +208,7 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
static std::vector<fallback::MatrixMulImpl::Algorithm*> | |||
get_avaiable_matmul_algos(const NCBKernSizeParam& param); | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
//=======================input int8 compute fp32 output int8============ | |||
@@ -231,7 +217,6 @@ public: | |||
AlgoS8CF32WinogradF23_4x4_NCHW44( | |||
fallback::MatrixMulImpl::AlgoBase* matmul_algo, uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -240,20 +225,7 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
static std::vector<fallback::MatrixMulImpl::Algorithm*> | |||
get_avaiable_matmul_algos(const NCBKernSizeParam& param); | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
//=======================input int8 compute int16 output int8============ | |||
@@ -262,7 +234,6 @@ public: | |||
AlgoS8WinogradF23_8x8_NCHW44(fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -271,20 +242,8 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
static std::vector<fallback::MatrixMulImpl::Algorithm*> | |||
get_avaiable_matmul_algos(const NCBKernSizeParam& param); | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
} // namespace arm_common | |||
@@ -14,7 +14,6 @@ | |||
#include "src/arm_common/conv_bias/int8/algos.h" | |||
#include "src/arm_common/conv_bias/int8/direct.h" | |||
#include "src/arm_common/conv_bias/int8/direct_nchw44_kern.h" | |||
#include "src/arm_common/conv_bias/int8/strategy.h" | |||
#include "src/arm_common/elemwise_op.h" | |||
#include "src/common/opr_delegate.h" | |||
@@ -57,8 +57,8 @@ void WinogradFilterPreprocessImpl::exec(_megdnn_tensor_in src, | |||
auto run = [=]() { \ | |||
_strategy strategy(src.layout.dtype, src.layout.dtype, \ | |||
src.layout.dtype); \ | |||
megdnn::winograd::ConvBias<_strategy, _format>( \ | |||
strategy, 1, 1, 1, 1, 1) \ | |||
megdnn::winograd::ConvBias<_strategy, _format>(strategy, \ | |||
1_z) \ | |||
.filter_process(src_ptr, dst_ptr, workspace_ptr, \ | |||
OC, IC); \ | |||
}; \ | |||
@@ -242,11 +242,9 @@ bool ConvBiasImpl::AlgoWinogradF32::usable( | |||
MIDOUT_BEGIN(megdnn_fallback_winograd, 1, 0) { | |||
using Strategy = fallback::winograd::winograd_2x3_1x1_f; | |||
Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy>( | |||
strategy, UNIT_TILE_SIZE, param.nr_threads, | |||
param.osz[0], param.osz[1], param.filter_meta.ocpg) | |||
.get_matmul_kern_param(param); | |||
auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>( | |||
strategy, UNIT_TILE_SIZE, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
(opr->param().format == param::ConvBias::Format::NCHW || | |||
(opr->param().format == | |||
@@ -277,8 +275,7 @@ size_t ConvBiasImpl::AlgoWinogradF32::get_workspace( | |||
p.src_type, p.filter_type, p.dst_type); | |||
return megdnn::winograd::ConvBias< | |||
fallback::winograd::winograd_2x3_1x1_f>( | |||
strategy, UNIT_TILE_SIZE, p.nr_threads, p.osz[0], | |||
p.osz[1], p.filter_meta.ocpg) | |||
strategy, UNIT_TILE_SIZE, p) | |||
.get_workspace_size(p, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
@@ -294,9 +291,8 @@ ConvBiasImpl::AlgoWinogradF32::dispatch_kerns( | |||
param.src_type, param.filter_type, param.dst_type); | |||
auto winograd_impl = megdnn::winograd::ConvBias< | |||
fallback::winograd::winograd_2x3_1x1_f>( | |||
strategy, UNIT_TILE_SIZE, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
fallback::winograd::winograd_2x3_1x1_f>(strategy, | |||
UNIT_TILE_SIZE, param); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
@@ -318,8 +314,7 @@ bool ConvBiasImpl::AlgoWinogradF32_4x4::usable( | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, UNIT_TILE_SIZE, param.nr_threads, | |||
param.osz[0], param.osz[1], param.filter_meta.ocpg) | |||
strategy, UNIT_TILE_SIZE, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
(opr->param().format == param::ConvBias::Format::NCHW || | |||
@@ -351,9 +346,8 @@ size_t ConvBiasImpl::AlgoWinogradF32_4x4::get_workspace( | |||
p.src_type, p.filter_type, p.dst_type); | |||
return megdnn::winograd::ConvBias< | |||
fallback::winograd::winograd_2x3_4x4_f, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, UNIT_TILE_SIZE, p.nr_threads, p.osz[0], | |||
p.osz[1], p.filter_meta.ocpg) | |||
param::MatrixMul::Format::MK4>(strategy, UNIT_TILE_SIZE, | |||
p) | |||
.get_workspace_size(p, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
@@ -370,9 +364,7 @@ ConvBiasImpl::AlgoWinogradF32_4x4::dispatch_kerns( | |||
auto winograd_impl = megdnn::winograd::ConvBias< | |||
fallback::winograd::winograd_2x3_4x4_f, | |||
param::MatrixMul::Format::MK4>( | |||
strategy, UNIT_TILE_SIZE, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
param::MatrixMul::Format::MK4>(strategy, UNIT_TILE_SIZE, param); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
@@ -389,11 +381,9 @@ bool ConvBiasImpl::AlgoWinogradQS8::usable( | |||
MIDOUT_BEGIN(megdnn_fallback_winograd, 3, 0) { | |||
using Strategy = fallback::winograd::winograd_2x3_1x1_qs8; | |||
Strategy strategy(param.src_type, param.filter_type, param.dst_type); | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy>( | |||
strategy, UNIT_TILE_SIZE, param.nr_threads, | |||
param.osz[0], param.osz[1], param.filter_meta.ocpg) | |||
.get_matmul_kern_param(param); | |||
auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>( | |||
strategy, UNIT_TILE_SIZE, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
(opr->param().format == param::ConvBias::Format::NCHW || | |||
@@ -425,8 +415,7 @@ size_t ConvBiasImpl::AlgoWinogradQS8::get_workspace( | |||
p.src_type, p.filter_type, p.dst_type); | |||
return megdnn::winograd::ConvBias< | |||
fallback::winograd::winograd_2x3_1x1_qs8>( | |||
strategy, UNIT_TILE_SIZE, p.nr_threads, p.osz[0], | |||
p.osz[1], p.filter_meta.ocpg) | |||
strategy, UNIT_TILE_SIZE, p) | |||
.get_workspace_size(p, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
@@ -443,8 +432,7 @@ ConvBiasImpl::AlgoWinogradQS8::dispatch_kerns( | |||
auto winograd_impl = megdnn::winograd::ConvBias< | |||
fallback::winograd::winograd_2x3_1x1_qs8>( | |||
strategy, UNIT_TILE_SIZE, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
strategy, UNIT_TILE_SIZE, param); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
@@ -466,8 +454,7 @@ bool ConvBiasImpl::AlgoWinogradQS8_8x8::usable( | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, UNIT_TILE_SIZE, param.nr_threads, | |||
param.osz[0], param.osz[1], param.filter_meta.ocpg) | |||
strategy, UNIT_TILE_SIZE, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
(opr->param().format == param::ConvBias::Format::NCHW || | |||
@@ -499,9 +486,8 @@ size_t ConvBiasImpl::AlgoWinogradQS8_8x8::get_workspace( | |||
p.src_type, p.filter_type, p.dst_type); | |||
return megdnn::winograd::ConvBias< | |||
fallback::winograd::winograd_2x3_8x8_qs8, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, UNIT_TILE_SIZE, p.nr_threads, p.osz[0], | |||
p.osz[1], p.filter_meta.ocpg) | |||
param::MatrixMul::Format::MK8>(strategy, UNIT_TILE_SIZE, | |||
p) | |||
.get_workspace_size(p, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
@@ -518,9 +504,7 @@ ConvBiasImpl::AlgoWinogradQS8_8x8::dispatch_kerns( | |||
auto winograd_impl = megdnn::winograd::ConvBias< | |||
fallback::winograd::winograd_2x3_8x8_qs8, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, UNIT_TILE_SIZE, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
param::MatrixMul::Format::MK8>(strategy, UNIT_TILE_SIZE, param); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
@@ -138,6 +138,30 @@ using BiasMode = ConvBiasForward::BiasMode; | |||
break; \ | |||
} | |||
#define MEGDNN_WINOGRAD_ALGO_FUN_DECLARE() \ | |||
bool is_reproducible() const override { return true; } \ | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, \ | |||
AlgoSelectionStrategy algo_selection_strategy) const override; \ | |||
size_t get_workspace(fallback::ConvBiasImpl*, \ | |||
const NCBKernSizeParam& param) const override; \ | |||
virtual SmallVector<NCBKern> dispatch_kerns(fallback::ConvBiasImpl* opr, \ | |||
const NCBKernSizeParam& param) \ | |||
const override; \ | |||
SmallVector<TensorLayout> deduce_preprocessed_filter_layout( \ | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) \ | |||
const override; \ | |||
size_t get_preprocess_workspace(fallback::ConvBiasImpl*, \ | |||
const NCBKernSizeParam& param) \ | |||
const override; \ | |||
virtual SmallVector<NCBKern> dispatch_preprocess_kerns( \ | |||
fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param) \ | |||
const override; \ | |||
\ | |||
private: \ | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; \ | |||
mutable std::string m_name; \ | |||
uint32_t m_tile_size; | |||
enum class PostprocessMode : uint8_t { | |||
FLOAT = 0, ///< support all biasmode and no_nonlinemode | |||
NO_PROCESS, ///<support non bias and identity | |||
@@ -88,7 +88,8 @@ class ConvBias { | |||
size_t filter_transform_buf_size = 0; | |||
//! filter : (alpha, alpha, IC, OC) or (OCB, ICB, IC_BLOCK_SIZE, | |||
//! OC_BLOCK_SIZE) | |||
if (param.filter_meta.format != | |||
if (param.preprocessed_filter == nullptr && | |||
param.filter_meta.format != | |||
param::ConvBias::Format::NCHW_WINOGRAD && | |||
param.filter_meta.format != | |||
param::ConvBias::Format::NCHW88_WINOGRAD && | |||
@@ -150,14 +151,30 @@ class ConvBias { | |||
transform_mid_buf_size, matmul_workspace_size}); | |||
} | |||
WorkspaceBundle get_preprocess_wbundle( | |||
const NCBKernSizeParam& param) const { | |||
//! use for inner temporary usage | |||
size_t transform_mid_buf_size = | |||
2 * Strategy::ALPHA * Strategy::ALPHA * | |||
sizeof(output_compute_type) * | |||
std::max(Strategy::IC_BLOCK_SIZE, Strategy::OC_BLOCK_SIZE); | |||
size_t nr_threads = param.nr_threads; | |||
SmallVector<size_t> space_vec(nr_threads, transform_mid_buf_size); | |||
return WorkspaceBundle{nullptr, space_vec}; | |||
} | |||
public: | |||
//! Get the m_unit_oc_size, according to the nr_threads and | |||
//! output_featuremap_size. When single thread the m_unit_oc_size is set | |||
//! 2048 heuristicly, When multi-threads, the m_unit_oc_size is set | |||
//! according to nr_threads and out_featuremap_size | |||
ConvBias(const Strategy& strategy, size_t unit_tile_size, size_t nr_threads, | |||
size_t OH, size_t OW, size_t OC) | |||
//! according to nr_threads and out_featuremap_size | |||
ConvBias(const Strategy& strategy, size_t unit_tile_size, | |||
const NCBKernSizeParam& param) | |||
: m_strategy{strategy}, m_unit_tile_size{unit_tile_size} { | |||
size_t nr_threads = param.nr_threads; | |||
size_t OC = param.filter_meta.ocpg; | |||
size_t OH = param.osz[0]; | |||
size_t OW = param.osz[1]; | |||
if (nr_threads > 1) { | |||
size_t units_h = div_ceil<size_t>(OH, Strategy::OUTPUT_BLOCK_SIZE); | |||
size_t units_w = div_ceil<size_t>(OW, Strategy::OUTPUT_BLOCK_SIZE); | |||
@@ -178,12 +195,55 @@ public: | |||
m_unit_oc_size = UNIT_OC_SIZE_DEFAULT; | |||
} | |||
} | |||
ConvBias(const Strategy& strategy, size_t unit_tile_size) | |||
: m_strategy{strategy}, m_unit_tile_size{unit_tile_size} { | |||
m_unit_oc_size = UNIT_OC_SIZE_DEFAULT; | |||
} | |||
size_t get_workspace_size( | |||
const NCBKernSizeParam& param, | |||
fallback::MatrixMulImpl::AlgoBase* matmul_algo) const { | |||
return get_wbundle(param, matmul_algo).total_size_in_bytes(); | |||
} | |||
size_t get_preprocess_workspace_size( | |||
const NCBKernSizeParam& param, | |||
fallback::MatrixMulImpl::AlgoBase*) const { | |||
return get_preprocess_wbundle(param).total_size_in_bytes(); | |||
} | |||
SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | |||
const NCBKernSizeParam& param, fallback::MatrixMulImpl::AlgoBase*) { | |||
size_t OC = param.filter_meta.ocpg; | |||
size_t IC = param.filter_meta.icpg; | |||
size_t GROUP = param.filter_meta.group; | |||
SmallVector<TensorLayout> preprocessed_layouts; | |||
DType dtype = m_strategy.filter_dtype; | |||
if (dtype.category() == DTypeCategory::QUANTIZED) { | |||
if (format == param::MatrixMul::Format::MK4) { | |||
dtype = dtype::Float32(); | |||
} else if (format == param::MatrixMul::Format::MK8) { | |||
dtype = dtype::Int16(); | |||
} | |||
} | |||
if (format == param::MatrixMul::Format::DEFAULT) { | |||
preprocessed_layouts.push_back( | |||
{{GROUP, Strategy::ALPHA, Strategy::ALPHA, OC, IC}, dtype}); | |||
} else if (format == param::MatrixMul::Format::MK4) { | |||
preprocessed_layouts.push_back( | |||
{{GROUP, Strategy::ALPHA, Strategy::ALPHA, OC / 4, IC / 4, | |||
4, 4}, | |||
dtype}); | |||
} else { | |||
megdnn_assert(format == param::MatrixMul::Format::MK8); | |||
preprocessed_layouts.push_back( | |||
{{GROUP, Strategy::ALPHA, Strategy::ALPHA, OC / 8, IC / 8, | |||
8, 8}, | |||
dtype}); | |||
} | |||
return preprocessed_layouts; | |||
} | |||
//! Used by winograd_filter_preprocess opr | |||
void filter_process(const stype* filter_ptr, | |||
input_filter_compute_type* filter_transform_buf, | |||
@@ -199,7 +259,6 @@ public: | |||
const WorkspaceBundle& bundle_compute, | |||
const NCBKernParam& kern_param, | |||
const NCBKernIndex& ncb_index) { | |||
size_t compute_workspace_size_per_thread = | |||
bundle_compute.total_size_in_bytes(); | |||
size_t thread_id = ncb_index.thread_id; | |||
@@ -235,6 +294,47 @@ public: | |||
IC, oc_start, oc_end); | |||
} | |||
static void filter_preprocess(Strategy strategy, | |||
const WorkspaceBundle& bundle, | |||
const TensorND& preprocessed_tensor, | |||
const NCBKernParam& kern_param, | |||
const NCBKernIndex& ncb_index) { | |||
size_t thread_id = ncb_index.thread_id; | |||
size_t oc_id = ncb_index.ndrange_id[1]; | |||
size_t group_id = ncb_index.ndrange_id[0]; | |||
size_t OC = kern_param.filter_meta.ocpg; | |||
size_t IC = kern_param.filter_meta.icpg; | |||
size_t filter_group_size = Strategy::ALPHA * Strategy::ALPHA * OC * IC * | |||
sizeof(input_filter_compute_type); | |||
//! Filter trans dst ptr | |||
input_filter_compute_type* filter_transform_buf = | |||
reinterpret_cast<input_filter_compute_type*>( | |||
reinterpret_cast<uintptr_t>( | |||
preprocessed_tensor.raw_ptr) + | |||
group_id * filter_group_size); | |||
//! Filter trans src ptr | |||
input_filter_compute_type* transform_mid_buf = | |||
reinterpret_cast<input_filter_compute_type*>( | |||
reinterpret_cast<uintptr_t>(bundle.get(thread_id))); | |||
const stype* filter_ptr = kern_param.filter<stype>(group_id); | |||
size_t oc_start, oc_end; | |||
if (kern_param.filter_meta.format == param::ConvBias::Format::NCHW88) { | |||
oc_start = 8 * oc_id; | |||
oc_end = oc_start + 8; | |||
} else if (kern_param.filter_meta.format == | |||
param::ConvBias::Format::NCHW44) { | |||
oc_start = 4 * oc_id; | |||
oc_end = oc_start + 4; | |||
} else { | |||
oc_start = oc_id; | |||
oc_end = oc_id + 1; | |||
} | |||
strategy.filter(filter_ptr, filter_transform_buf, transform_mid_buf, OC, | |||
IC, oc_start, oc_end); | |||
} | |||
static void winograd_compute( | |||
Strategy strategy, const WorkspaceBundle& bundle_top, | |||
const WorkspaceBundle& bundle_compute, | |||
@@ -287,15 +387,28 @@ public: | |||
compute_workspace_size_per_thread * thread_id); | |||
//! NCHW88_WINOGRAD and NCHW_WINOGRAD is the same offset | |||
const input_filter_compute_type* filter_transform_buf = | |||
static_cast<const input_filter_compute_type*>( | |||
ncb_param.filter<input_filter_compute_type>(group_id)); | |||
if (ncb_param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
ncb_param.filter_meta.format == param::ConvBias::Format::NCHW88 || | |||
ncb_param.filter_meta.format == param::ConvBias::Format::NCHW44) { | |||
const input_filter_compute_type* filter_transform_buf = nullptr; | |||
if (nullptr != ncb_param.preprocessed_filter) { | |||
auto preprocess_raw_ptr = | |||
ncb_param.preprocessed_filter->tensors[0].raw_ptr; | |||
filter_transform_buf = reinterpret_cast<input_filter_compute_type*>( | |||
reinterpret_cast<uintptr_t>(bundle_top.get(1)) + | |||
reinterpret_cast<uintptr_t>(preprocess_raw_ptr) + | |||
group_id * filter_group_size); | |||
} else { | |||
filter_transform_buf = | |||
static_cast<const input_filter_compute_type*>( | |||
ncb_param.filter<input_filter_compute_type>( | |||
group_id)); | |||
if (ncb_param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
ncb_param.filter_meta.format == | |||
param::ConvBias::Format::NCHW88 || | |||
ncb_param.filter_meta.format == | |||
param::ConvBias::Format::NCHW44) { | |||
filter_transform_buf = | |||
reinterpret_cast<input_filter_compute_type*>( | |||
reinterpret_cast<uintptr_t>(bundle_top.get(1)) + | |||
group_id * filter_group_size); | |||
} | |||
} | |||
//! prepare matmul param | |||
matmul_param.workspace_ptr = reinterpret_cast<void*>( | |||
@@ -371,6 +484,47 @@ public: | |||
oc_start_idx, oc_end_idx, unit_start_idx, nr_tiles_in_unit); | |||
}; | |||
SmallVector<NCBKern> get_preprocess_kerns( | |||
const NCBKernSizeParam& param, fallback::MatrixMulImpl::AlgoBase*) { | |||
megdnn_assert( | |||
param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
param.filter_meta.format == param::ConvBias::Format::NCHW88 || | |||
param.filter_meta.format == param::ConvBias::Format::NCHW44); | |||
megdnn_assert(param.preprocessed_filter && | |||
param.preprocessed_filter->tensors.size() > 0); | |||
size_t OC = param.filter_meta.ocpg; | |||
size_t GROUP = param.filter_meta.group; | |||
const TensorND& preprocessed_dst = | |||
param.preprocessed_filter->tensors[0]; | |||
WorkspaceBundle bundle = get_preprocess_wbundle(param); | |||
Strategy strategy = m_strategy; | |||
SmallVector<NCBKern> kerns; | |||
auto filter_process_kern = | |||
[strategy, bundle, &preprocessed_dst]( | |||
const NCBKernParam& ncb_param, | |||
const NCBKernIndex& ncb_index) mutable { | |||
MIDOUT_BEGIN(megdnn_fallback_conv_bias_winograd_common, | |||
midout_iv("filter_preprocess"_hash)) { | |||
bundle.set(ncb_param.workspace_ptr); | |||
filter_preprocess(strategy, bundle, preprocessed_dst, | |||
ncb_param, ncb_index); | |||
} | |||
MIDOUT_END(); | |||
}; | |||
size_t oc_parallelism = OC; | |||
if (param.filter_meta.format == param::ConvBias::Format::NCHW88) { | |||
megdnn_assert(OC % 8 == 0); | |||
oc_parallelism = OC / 8; | |||
} else if (param.filter_meta.format == | |||
param::ConvBias::Format::NCHW44) { | |||
megdnn_assert(OC % 4 == 0); | |||
oc_parallelism = OC / 4; | |||
} | |||
kerns.push_back({filter_process_kern, {GROUP, oc_parallelism}}); | |||
return kerns; | |||
} | |||
SmallVector<NCBKern> get_kerns( | |||
const NCBKernSizeParam& param, | |||
fallback::MatrixMulImpl::AlgoBase* matmul_algo) { | |||
@@ -386,7 +540,6 @@ public: | |||
static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) = | |||
get_matmul_kern_param(param, m_unit_oc_size); | |||
Strategy strategy = m_strategy; | |||
size_t unit_tile_size = m_unit_tile_size; | |||
size_t unit_oc_size = m_unit_oc_size; | |||
size_t units_h = div_ceil<size_t>(OH, Strategy::OUTPUT_BLOCK_SIZE); | |||
@@ -411,20 +564,22 @@ public: | |||
param::ConvBias::Format::NCHW44_WINOGRAD)); | |||
SmallVector<NCBKern> kerns; | |||
if (param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
param.filter_meta.format == param::ConvBias::Format::NCHW88 || | |||
param.filter_meta.format == param::ConvBias::Format::NCHW44) { | |||
//! probably a gcc bug, labmda require capturing 'this' to call | |||
//! static member function | |||
if (param.preprocessed_filter == nullptr && | |||
(param.filter_meta.format == param::ConvBias::Format::NCHW || | |||
param.filter_meta.format == param::ConvBias::Format::NCHW88 || | |||
param.filter_meta.format == param::ConvBias::Format::NCHW44)) { | |||
auto filter_process_kern = | |||
[this, strategy, bundle_top, bundle_compute]( | |||
[strategy = m_strategy, bundle_top, bundle_compute]( | |||
const NCBKernParam& ncb_param, | |||
const NCBKernIndex& ncb_index) mutable { | |||
MEGDNN_MARK_USED_VAR(this); | |||
bundle_top.set(ncb_param.workspace_ptr); | |||
bundle_compute.set(bundle_top.get(0)); | |||
filter_process(strategy, bundle_top, bundle_compute, | |||
ncb_param, std::move(ncb_index)); | |||
MIDOUT_BEGIN(megdnn_fallback_conv_bias_winograd_common, | |||
midout_iv("filter_process"_hash)) { | |||
bundle_top.set(ncb_param.workspace_ptr); | |||
bundle_compute.set(bundle_top.get(0)); | |||
filter_process(strategy, bundle_top, bundle_compute, | |||
ncb_param, std::move(ncb_index)); | |||
} | |||
MIDOUT_END(); | |||
}; | |||
size_t oc_parallelism = OC; | |||
if (param.filter_meta.format == param::ConvBias::Format::NCHW88) { | |||
@@ -438,12 +593,12 @@ public: | |||
kerns.push_back({filter_process_kern, {GROUP, 1, oc_parallelism}}); | |||
} | |||
auto winograd_compute_kern = | |||
[strategy, bundle_top, bundle_compute, matmul_algo, | |||
[strategy = m_strategy, bundle_top, bundle_compute, matmul_algo, | |||
matmul_param, unit_tile_size, | |||
unit_oc_size](const NCBKernParam& ncb_param, | |||
const NCBKernIndex& ncb_index) mutable { | |||
MIDOUT_BEGIN(megdnn_fallback_conv_bias_winograd_common, 0, | |||
0) { | |||
MIDOUT_BEGIN(megdnn_fallback_conv_bias_winograd_common, | |||
midout_iv("winograd_compute"_hash)) { | |||
bundle_top.set(ncb_param.workspace_ptr); | |||
bundle_compute.set(bundle_top.get(0)); | |||
winograd_compute(strategy, bundle_top, bundle_compute, | |||
@@ -562,4 +717,54 @@ public: | |||
filter_dtype(filter_dtype), \ | |||
dst_dtype(dst_dtype) {} | |||
#define MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, _fun, _strategy, \ | |||
_midout_flag, _matmul_format) \ | |||
MEGDNN_MARK_USED_VAR(param); \ | |||
MIDOUT_BEGIN(_midout_flag, midout_iv(#_class #_fun##_hash)) { \ | |||
_strategy strategy(param.src_type, param.filter_type, param.dst_type); \ | |||
return megdnn::winograd::ConvBias<_strategy, _matmul_format>( \ | |||
strategy, m_tile_size, param) \ | |||
._fun(param, m_matmul_algo); \ | |||
} \ | |||
MIDOUT_END(); | |||
#define MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(_class, _strategy, _midout_flag, \ | |||
_matmul_format) \ | |||
size_t ConvBiasImpl::_class::get_workspace( \ | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \ | |||
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_workspace_size, \ | |||
_strategy, _midout_flag, \ | |||
_matmul_format); \ | |||
return 0; \ | |||
} \ | |||
size_t ConvBiasImpl::_class::get_preprocess_workspace( \ | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \ | |||
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE( \ | |||
_class, get_preprocess_workspace_size, _strategy, \ | |||
_midout_flag, _matmul_format); \ | |||
return 0; \ | |||
} \ | |||
SmallVector<TensorLayout> \ | |||
ConvBiasImpl::_class::deduce_preprocessed_filter_layout( \ | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \ | |||
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE( \ | |||
_class, deduce_preprocessed_filter_layout, _strategy, \ | |||
_midout_flag, _matmul_format); \ | |||
return {}; \ | |||
} \ | |||
SmallVector<ConvBiasImpl::NCBKern> \ | |||
ConvBiasImpl::_class::dispatch_preprocess_kerns( \ | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \ | |||
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_preprocess_kerns, \ | |||
_strategy, _midout_flag, \ | |||
_matmul_format); \ | |||
return {}; \ | |||
} \ | |||
SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::_class::dispatch_kerns( \ | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { \ | |||
MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_kerns, _strategy, \ | |||
_midout_flag, _matmul_format); \ | |||
return {}; \ | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -94,7 +94,6 @@ public: | |||
AlgoFP32WinogradF63_8x8(fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -102,19 +101,8 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
void* type() const override; | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
class ConvBiasImpl::AlgoFP32WinogradF23_8x8 final : public AlgoBase { | |||
@@ -122,7 +110,6 @@ public: | |||
AlgoFP32WinogradF23_8x8(fallback::MatrixMulImpl::AlgoBase* matmul_algo, | |||
uint32_t tile_size) | |||
: m_matmul_algo{matmul_algo}, m_tile_size{tile_size} {} | |||
bool is_reproducible() const override { return true; } | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasImpl::algo_name<ConvBias::WinogradParam>( | |||
@@ -130,19 +117,8 @@ public: | |||
} | |||
return m_name.c_str(); | |||
} | |||
bool usable(fallback::ConvBiasImpl* opr, const NCBKernSizeParam& param, | |||
AlgoSelectionStrategy algo_selection_strategy) const override; | |||
size_t get_workspace(fallback::ConvBiasImpl*, | |||
const NCBKernSizeParam& param) const override; | |||
virtual SmallVector<NCBKern> dispatch_kerns( | |||
fallback::ConvBiasImpl* opr, | |||
const NCBKernSizeParam& param) const override; | |||
void* type() const override; | |||
private: | |||
fallback::MatrixMulImpl::AlgoBase* m_matmul_algo; | |||
mutable std::string m_name; | |||
uint32_t m_tile_size; | |||
MEGDNN_WINOGRAD_ALGO_FUN_DECLARE(); | |||
}; | |||
/* ===================== matmul algo ===================== */ | |||
@@ -41,8 +41,7 @@ bool ConvBiasImpl::AlgoFP32WinogradF63_8x8::usable( | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
(opr->param().format == param::ConvBias::Format::NCHW88 || | |||
@@ -67,39 +66,10 @@ bool ConvBiasImpl::AlgoFP32WinogradF63_8x8::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoFP32WinogradF63_8x8::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_x86_winograd_fp32, 1, 1) { | |||
winograd::winograd_nchw88_6x3_8x8_f strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
return megdnn::winograd::ConvBias<winograd::winograd_nchw88_6x3_8x8_f, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoFP32WinogradF63_8x8::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 1, 2) { | |||
winograd::winograd_nchw88_6x3_8x8_f strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_nchw88_6x3_8x8_f, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF63_8x8, | |||
winograd::winograd_nchw88_6x3_8x8_f, | |||
megdnn_x86_winograd_fp32, | |||
param::MatrixMul::Format::MK8); | |||
/* ======================= AlgoFP32WinogradF23_8*8 ======================== */ | |||
@@ -118,8 +88,7 @@ bool ConvBiasImpl::AlgoFP32WinogradF23_8x8::usable( | |||
auto&& matmul_param = | |||
megdnn::winograd::ConvBias<Strategy, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
strategy, m_tile_size, param) | |||
.get_matmul_kern_param(param); | |||
return m_matmul_algo->usable(matmul_param) && | |||
(opr->param().format == param::ConvBias::Format::NCHW88 || | |||
@@ -144,37 +113,9 @@ bool ConvBiasImpl::AlgoFP32WinogradF23_8x8::usable( | |||
return false; | |||
} | |||
size_t ConvBiasImpl::AlgoFP32WinogradF23_8x8::get_workspace( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_x86_winograd_fp32, 2, 1) { | |||
winograd::winograd_nchw88_2x3_8x8_f strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
return megdnn::winograd::ConvBias<winograd::winograd_nchw88_2x3_8x8_f, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg) | |||
.get_workspace_size(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return 0; | |||
} | |||
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP32WinogradF23_8x8, | |||
winograd::winograd_nchw88_2x3_8x8_f, | |||
megdnn_x86_winograd_fp32, | |||
param::MatrixMul::Format::MK8); | |||
SmallVector<ConvBiasImpl::NCBKern> | |||
ConvBiasImpl::AlgoFP32WinogradF23_8x8::dispatch_kerns( | |||
fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const { | |||
MEGDNN_MARK_USED_VAR(param); | |||
MIDOUT_BEGIN(megdnn_arm_common_winograd_fp32, 2, 2) { | |||
winograd::winograd_nchw88_2x3_8x8_f strategy( | |||
param.src_type, param.filter_type, param.dst_type); | |||
auto winograd_impl = | |||
megdnn::winograd::ConvBias<winograd::winograd_nchw88_2x3_8x8_f, | |||
param::MatrixMul::Format::MK8>( | |||
strategy, m_tile_size, param.nr_threads, param.osz[0], | |||
param.osz[1], param.filter_meta.ocpg); | |||
return winograd_impl.get_kerns(param, m_matmul_algo); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -57,6 +57,23 @@ TEST_F(ARM_COMMON, CONV_BIAS_MATMUL) { | |||
} | |||
} | |||
TEST_F(ARM_COMMON, CONV_BIAS_WINOGRAD_F63_4) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_mk_packed_args(); | |||
Checker<ConvBiasForward> checker(handle()); | |||
check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4); | |||
} | |||
TEST_F(ARM_COMMON, CONV_BIAS_WINOGRAD_F63_4_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_mk_packed_args(); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4); | |||
} | |||
#define CONV_BIAS_MATMUL_QU8_MODE(MODE) \ | |||
using namespace conv_bias; \ | |||
std::vector<TestArg> args = get_quantized_args_with_nlmode(MODE); \ | |||
@@ -783,6 +783,14 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4) { | |||
check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_mk_packed_args(); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4_NCHW44) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_nchw44_conv_bias_args({3}, 1); | |||
@@ -791,6 +799,16 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4_NCHW44) { | |||
param::ConvBias::Format::NCHW44); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, | |||
CONV_BIAS_WINOGRAD_F23_4_NCHW44_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_nchw44_conv_bias_args({3}, 1); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4, | |||
param::ConvBias::Format::NCHW44); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_args(3); | |||
@@ -799,6 +817,14 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63) { | |||
check_winograd("1:6:32", checker, args); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_args(3); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
check_winograd("1:6:32", checker, args); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_mk_packed_args(); | |||
@@ -807,6 +833,15 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4) { | |||
check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_mk_packed_args(); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4_NCHW44) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_nchw44_conv_bias_args({3}, 1); | |||
@@ -815,6 +850,15 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4_NCHW44) { | |||
param::ConvBias::Format::NCHW44); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4_NCHW44_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_nchw44_conv_bias_args({3}, 1); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4, | |||
param::ConvBias::Format::NCHW44); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F54) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_args(4); | |||
@@ -823,6 +867,14 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F54) { | |||
check_winograd("1:5:32", checker, args); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F54_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_args(4); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
check_winograd("1:5:32", checker, args); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F45) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_args(5); | |||
@@ -831,6 +883,14 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F45) { | |||
check_winograd("1:4:32", checker, args); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F45_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_args(5); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
check_winograd("1:4:32", checker, args); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_args(3); | |||
@@ -1007,6 +1067,39 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_1) { | |||
1e-3f); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, | |||
CONV_BIAS_WINOGRAD_MK_PACKED_F32_1_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
auto run = [&checker](Handle* handle, const std::vector<TestArg>& args, | |||
const std::vector<size_t>& out_size, DType A_dtype, | |||
DType B_dtype, DType C_dtype, DType D_dtype, | |||
param::MatrixMul::Format format, float eps) { | |||
for (auto&& arg : args) { | |||
for (uint32_t m : out_size) { | |||
checker.set_extra_opr_impl(std::bind( | |||
winograd_algo_extra_impl, std::placeholders::_1, m, | |||
arg.param, handle, format)); | |||
checker.set_dtype(0, A_dtype) | |||
.set_dtype(1, B_dtype) | |||
.set_dtype(2, C_dtype) | |||
.set_dtype(4, D_dtype) | |||
.set_epsilon(eps) | |||
.set_param(arg.param) | |||
.execs({arg.src, arg.filter, arg.bias, {}, {}}); | |||
} | |||
} | |||
}; | |||
std::vector<TestArg> args = get_winograd_mk_packed_args(8); | |||
std::vector<TestArg> args_first_half(args.begin(), | |||
args.begin() + args.size() / 2); | |||
run(handle(), args_first_half, {2, 6}, dtype::Float32{}, dtype::Float32{}, | |||
dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4, | |||
1e-3f); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_2) { | |||
using namespace conv_bias; | |||
@@ -1038,6 +1131,38 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_2) { | |||
1e-3f); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_2_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
auto run = [&checker](Handle* handle, const std::vector<TestArg>& args, | |||
const std::vector<size_t>& out_size, DType A_dtype, | |||
DType B_dtype, DType C_dtype, DType D_dtype, | |||
param::MatrixMul::Format format, float eps) { | |||
for (auto&& arg : args) { | |||
for (uint32_t m : out_size) { | |||
checker.set_extra_opr_impl(std::bind( | |||
winograd_algo_extra_impl, std::placeholders::_1, m, | |||
arg.param, handle, format)); | |||
checker.set_dtype(0, A_dtype) | |||
.set_dtype(1, B_dtype) | |||
.set_dtype(2, C_dtype) | |||
.set_dtype(4, D_dtype) | |||
.set_epsilon(eps) | |||
.set_param(arg.param) | |||
.execs({arg.src, arg.filter, arg.bias, {}, {}}); | |||
} | |||
} | |||
}; | |||
std::vector<TestArg> args = get_winograd_mk_packed_args(8); | |||
std::vector<TestArg> args_second_half(args.begin() + args.size() / 2, | |||
args.end()); | |||
run(handle(), args_second_half, {2, 6}, dtype::Float32{}, dtype::Float32{}, | |||
dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4, | |||
1e-3f); | |||
} | |||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F16) { | |||
using namespace conv_bias; | |||
@@ -1070,6 +1195,40 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F16) { | |||
dtype::Float16{}, dtype::Float16{}, param::MatrixMul::Format::MK8, | |||
0.25); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, | |||
CONV_BIAS_WINOGRAD_MK_PACKED_F16_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
auto run = [&checker](Handle* handle, const std::vector<TestArg>& args, | |||
const std::vector<size_t>& out_size, DType A_dtype, | |||
DType B_dtype, DType C_dtype, DType D_dtype, | |||
param::MatrixMul::Format format, float eps) { | |||
for (auto&& arg : args) { | |||
for (uint32_t m : out_size) { | |||
checker.set_extra_opr_impl(std::bind( | |||
winograd_algo_extra_impl, std::placeholders::_1, m, | |||
arg.param, handle, format)); | |||
checker.set_dtype(0, A_dtype) | |||
.set_dtype(1, B_dtype) | |||
.set_dtype(2, C_dtype) | |||
.set_dtype(4, D_dtype) | |||
.set_epsilon(eps) | |||
.set_param(arg.param) | |||
.execs({arg.src, arg.filter, arg.bias, {}, {}}); | |||
} | |||
} | |||
}; | |||
std::vector<TestArg> args = get_winograd_mk_packed_args(8); | |||
Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00); | |||
checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng); | |||
run(handle(), args, {2}, dtype::Float16{}, dtype::Float16{}, | |||
dtype::Float16{}, dtype::Float16{}, param::MatrixMul::Format::MK8, | |||
0.25); | |||
} | |||
#endif | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_INT8) { | |||
using namespace conv_bias; | |||
@@ -1281,6 +1440,223 @@ TEST_F(ARM_COMMON_MULTI_THREADS, | |||
epsilon); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, | |||
CONV_BIAS_WINOGRAD_MK_PACKED_INT8_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
auto run = [&checker](Handle* handle, const std::vector<TestArg>& args, | |||
const std::vector<size_t>& out_size, DType A_dtype, | |||
DType B_dtype, DType C_dtype, DType D_dtype, | |||
param::MatrixMul::Format format, float eps) { | |||
for (auto&& arg : args) { | |||
for (uint32_t m : out_size) { | |||
checker.set_extra_opr_impl(std::bind( | |||
winograd_algo_extra_impl, std::placeholders::_1, m, | |||
arg.param, handle, format)); | |||
checker.set_dtype(0, A_dtype) | |||
.set_dtype(1, B_dtype) | |||
.set_dtype(2, C_dtype) | |||
.set_dtype(4, D_dtype) | |||
.set_epsilon(eps) | |||
.set_param(arg.param) | |||
.execs({arg.src, arg.filter, arg.bias, {}, {}}); | |||
} | |||
} | |||
}; | |||
#if MEGDNN_AARCH64 | |||
const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8"; | |||
#else | |||
const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8"; | |||
#endif | |||
checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>( | |||
ssprintf("WINOGRAD:%s:8:2:32", matmul_name).c_str())); | |||
std::vector<TestArg> quantized_args = | |||
get_quantized_winograd_mk_packed_args(8); | |||
UniformIntRNG int_rng{-50, 50}; | |||
checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng); | |||
run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f), | |||
dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), | |||
dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, | |||
CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
auto run = [&checker](Handle* handle, const std::vector<TestArg>& args, | |||
const std::vector<size_t>& out_size, DType A_dtype, | |||
DType B_dtype, DType C_dtype, DType D_dtype, | |||
param::MatrixMul::Format format, float eps) { | |||
for (auto&& arg : args) { | |||
for (uint32_t m : out_size) { | |||
checker.set_extra_opr_impl(std::bind( | |||
winograd_algo_extra_impl, std::placeholders::_1, m, | |||
arg.param, handle, format)); | |||
checker.set_dtype(0, A_dtype) | |||
.set_dtype(1, B_dtype) | |||
.set_dtype(2, C_dtype) | |||
.set_dtype(4, D_dtype) | |||
.set_epsilon(eps) | |||
.set_param(arg.param) | |||
.execs({arg.src, arg.filter, arg.bias, {}, {}}); | |||
} | |||
} | |||
}; | |||
#if MEGDNN_AARCH64 | |||
const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8"; | |||
#else | |||
const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8"; | |||
#endif | |||
checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>( | |||
ssprintf("WINOGRAD_NCHW44:%s:8:2:32", matmul_name).c_str())); | |||
std::vector<TestArg> quantized_args = get_int8_nchw44_args(3, 4); | |||
UniformIntRNG int_rng{-50, 50}; | |||
checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng); | |||
run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f), | |||
dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), | |||
dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, | |||
CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_GROUPMODE_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
auto run = [&checker](Handle* handle, const std::vector<TestArg>& args, | |||
const std::vector<size_t>& out_size, DType A_dtype, | |||
DType B_dtype, DType C_dtype, DType D_dtype, | |||
param::MatrixMul::Format format, float eps) { | |||
for (auto&& arg : args) { | |||
for (uint32_t m : out_size) { | |||
checker.set_extra_opr_impl(std::bind( | |||
winograd_algo_extra_impl, std::placeholders::_1, m, | |||
arg.param, handle, format)); | |||
checker.set_dtype(0, A_dtype) | |||
.set_dtype(1, B_dtype) | |||
.set_dtype(2, C_dtype) | |||
.set_dtype(4, D_dtype) | |||
.set_epsilon(eps) | |||
.set_param(arg.param) | |||
.execs({arg.src, arg.filter, arg.bias, {}, {}}); | |||
} | |||
} | |||
}; | |||
#if MEGDNN_AARCH64 | |||
const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8"; | |||
#else | |||
const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8"; | |||
#endif | |||
checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>( | |||
ssprintf("WINOGRAD_NCHW44:%s:8:2:32", matmul_name).c_str())); | |||
std::vector<TestArg> quantized_args = | |||
get_int8_nchw44_args(3, 4, false, true); | |||
UniformIntRNG int_rng{-50, 50}; | |||
checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng); | |||
run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f), | |||
dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), | |||
dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, | |||
CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_COMP_F32_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
auto run = [&checker](Handle* handle, const std::vector<TestArg>& args, | |||
const std::vector<size_t>& out_size, DType A_dtype, | |||
DType B_dtype, DType C_dtype, DType D_dtype, | |||
param::MatrixMul::Format format, float eps) { | |||
for (auto&& arg : args) { | |||
for (uint32_t m : out_size) { | |||
checker.set_extra_opr_impl(std::bind( | |||
winograd_algo_extra_impl, std::placeholders::_1, m, | |||
arg.param, handle, format)); | |||
checker.set_dtype(0, A_dtype) | |||
.set_dtype(1, B_dtype) | |||
.set_dtype(2, C_dtype) | |||
.set_dtype(4, D_dtype) | |||
.set_epsilon(eps) | |||
.set_param(arg.param) | |||
.execs({arg.src, arg.filter, arg.bias, {}, {}}); | |||
} | |||
} | |||
}; | |||
float epsilon = 0.001; | |||
#if MEGDNN_AARCH64 | |||
const char* matmul_name = "AARCH64_F32_MK4_4x16"; | |||
#else | |||
const char* matmul_name = "ARMV7_F32_MK4_4x8"; | |||
#endif | |||
checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>( | |||
ssprintf("WINOGRAD_NCHW44:%s:4:2:32", matmul_name).c_str())); | |||
std::vector<TestArg> quantized_args = get_int8_nchw44_args(3, 4, true); | |||
UniformIntRNG int_rng{-50, 50}; | |||
checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng); | |||
run(handle(), quantized_args, {2}, dtype::QuantizedS8(0.41113496f), | |||
dtype::QuantizedS8(0.01887994f), | |||
dtype::QuantizedS32(0.41113496f * 0.01887994f), | |||
dtype::QuantizedS8(0.49550694f), param::MatrixMul::Format::MK4, | |||
epsilon); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, | |||
WINOGRAD_NCHW44_MK_PACKED_INT8_COMP_F32_GROUPMODE_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
auto run = [&checker](Handle* handle, const std::vector<TestArg>& args, | |||
const std::vector<size_t>& out_size, DType A_dtype, | |||
DType B_dtype, DType C_dtype, DType D_dtype, | |||
param::MatrixMul::Format format, float eps) { | |||
for (auto&& arg : args) { | |||
for (uint32_t m : out_size) { | |||
checker.set_extra_opr_impl(std::bind( | |||
winograd_algo_extra_impl, std::placeholders::_1, m, | |||
arg.param, handle, format)); | |||
checker.set_dtype(0, A_dtype) | |||
.set_dtype(1, B_dtype) | |||
.set_dtype(2, C_dtype) | |||
.set_dtype(4, D_dtype) | |||
.set_epsilon(eps) | |||
.set_param(arg.param) | |||
.execs({arg.src, arg.filter, arg.bias, {}, {}}); | |||
} | |||
} | |||
}; | |||
float epsilon = 0.001; | |||
#if MEGDNN_AARCH64 | |||
const char* matmul_name = "AARCH64_F32_MK4_4x16"; | |||
#else | |||
const char* matmul_name = "ARMV7_F32_MK4_4x8"; | |||
#endif | |||
checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>( | |||
ssprintf("WINOGRAD_NCHW44:%s:4:2:32", matmul_name).c_str())); | |||
std::vector<TestArg> quantized_args = | |||
get_int8_nchw44_args(3, 4, true, true); | |||
UniformIntRNG int_rng{-50, 50}; | |||
checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng); | |||
run(handle(), quantized_args, {2}, dtype::QuantizedS8(0.41113496f), | |||
dtype::QuantizedS8(0.01887994f), | |||
dtype::QuantizedS32(0.41113496f * 0.01887994f), | |||
dtype::QuantizedS8(0.49550694f), param::MatrixMul::Format::MK4, | |||
epsilon); | |||
} | |||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F23) { | |||
using namespace conv_bias; | |||
@@ -1338,6 +1714,72 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_8x8_2) { | |||
check_winograd_fp16("8:2:32", checker, args_back_half, rng, 0.25, | |||
param::MatrixMul::Format::MK8); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F23_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_mk_packed_args(); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
check_winograd_fp16("1:2:32", checker, args, NULL, 0.08); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, | |||
CONV_BIAS_WINOGRAD_F16_F45_1_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_args(5); | |||
std::vector<TestArg> args_head_half(args.begin(), | |||
args.begin() + args.size() / 2); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
//! fp16 range -1.0 ~ 1.0 | |||
Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00); | |||
check_winograd_fp16("1:4:32", checker, args_head_half, rng, 0.25); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, | |||
CONV_BIAS_WINOGRAD_F16_F45_2_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_args(5); | |||
std::vector<TestArg> args_back_half(args.begin() + args.size() / 2, | |||
args.end()); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
//! fp16 range -1.0 ~ 1.0 | |||
Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00); | |||
check_winograd_fp16("1:4:32", checker, args_back_half, rng, 0.25); | |||
} | |||
//! FIXME: This test may be failed if run `ARM_COMMON.CONV_BIAS_WINOGRAD*`, but | |||
//! it will pass when run single testcase | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F63_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_args(3); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
//! fp16 range -1.0 ~ 1.0 | |||
Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00); | |||
check_winograd_fp16("1:6:32", checker, args, rng, 0.3); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, | |||
CONV_BIAS_WINOGRAD_F16_8x8_1_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_mk_packed_args(8); | |||
std::vector<TestArg> args_head_half(args.begin(), | |||
args.begin() + args.size() / 2); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00); | |||
check_winograd_fp16("8:2:32", checker, args_head_half, rng, 0.25, | |||
param::MatrixMul::Format::MK8); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, | |||
CONV_BIAS_WINOGRAD_F16_8x8_2_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_mk_packed_args(8); | |||
std::vector<TestArg> args_back_half(args.begin() + args.size() / 2, | |||
args.end()); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00); | |||
check_winograd_fp16("8:2:32", checker, args_back_half, rng, 0.25, | |||
param::MatrixMul::Format::MK8); | |||
} | |||
#endif | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_INT8_8X8) { | |||
using namespace conv_bias; | |||
@@ -1354,6 +1796,23 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_INT8_8X8) { | |||
check_winograd("8:2:32", checker, args, param::MatrixMul::Format::MK8); | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, | |||
CONV_BIAS_WINOGRAD_INT8_8X8_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_quantized_winograd_mk_packed_args(8); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
UniformIntRNG rng{-50, 50}; | |||
checker.set_dtype(0, dtype::QuantizedS8(2.5f)) | |||
.set_dtype(1, dtype::QuantizedS8(2.5f)) | |||
.set_dtype(2, dtype::QuantizedS32(6.25f)) | |||
.set_dtype(4, dtype::QuantizedS8(60.25f)) | |||
.set_rng(0, &rng) | |||
.set_rng(1, &rng) | |||
.set_rng(2, &rng); | |||
check_winograd("8:2:32", checker, args, param::MatrixMul::Format::MK8); | |||
} | |||
void checker_conv_bias(std::vector<conv_bias::TestArg> args, Handle* handle, | |||
RNG* rng, float epsilon, DType type0, DType type1, | |||
@@ -1364,7 +1364,8 @@ std::vector<conv_bias::TestArg> get_winograd_mk_nchw88_args() { | |||
TensorShape{oc, ic, 3, 3, 8, 8},TensorShape{}); | |||
//! bias | |||
args.emplace_back(cur_param, TensorShape{2, ic, i, i, 8}, | |||
TensorShape{oc, ic, 3, 3, 8, 8}, TensorShape{2, oc, i, i, 8}); | |||
TensorShape{oc, ic, 3, 3, 8, 8}, | |||
TensorShape{2, oc, i, i, 8}); | |||
/*cur_param.sparse = param::ConvBias::Sparse::GROUP; | |||
args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i, 8}, | |||
@@ -1401,6 +1402,21 @@ TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_NCHW88_F63) { | |||
} | |||
} | |||
TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_NCHW88_F63_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_mk_nchw88_args(); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>( | |||
ssprintf("WINOGRAD:X86_F32MK8_8X8:8:6").c_str())); | |||
for (auto&& arg : args) { | |||
checker.set_param(arg.param).execs( | |||
{arg.src, arg.filter, arg.bias, {}, {}}); | |||
} | |||
} | |||
TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_NCHW88_F23) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_mk_nchw88_args(); | |||
@@ -1415,6 +1431,21 @@ TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_NCHW88_F23) { | |||
} | |||
} | |||
TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_NCHW88_F23_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_mk_nchw88_args(); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle()); | |||
checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>( | |||
ssprintf("WINOGRAD:X86_F32MK8_8X8:8:2").c_str())); | |||
for (auto&& arg : args) { | |||
checker.set_param(arg.param).execs( | |||
{arg.src, arg.filter, arg.bias, {}, {}}); | |||
} | |||
} | |||
TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_WEIGHT_PREPROCESS) { | |||
using namespace conv_bias; | |||
std::vector<TestArg> args = get_winograd_mk_nchw88_args(); | |||